
SupercomputingSupercomputing
in Plain Englishin Plain English

Part III:Part III:
Instruction Level ParallelismInstruction Level Parallelism

Henry Neeman, Director
OU Supercomputing Center for Education & Research

University of Oklahoma Information Technology
Tuesday February 17 2009

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 2

This is an experiment!
It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone
bridge to fall back on.

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 3

Access Grid
This week’s Access Grid (AG) venue: Monte Carlo.

If you aren’t sure whether you have AG, you probably don’t.
Tue Feb 17 Monte Carlo

Tue Feb 27 Helium

Tue March 3 Titan

Tue March 10 NO WORKSHOP

Tue March 17 NO WORKSHOP

Tue March 24 Axon

Tue March 31 Cactus

Tue Apr 7 Walkabout

Tue Apr 14 Cactus

Tue Apr 21 Verlet

Many thanks to
John Chapman of
U Arkansas for
setting these up

for us.

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 4

H.323 (Polycom etc)
If you want to use H.323 videoconferencing – for example,

Polycom – then dial
69.77.7.203##12345

any time after 2:00pm. Please connect early, at least today.
For assistance, contact Andy Fleming of KanREN/Kan-ed

(afleming@kanren.net or 785-865-6434).
KanREN/Kan-ed’s H.323 system can handle up to 40

simultaneous H.323 connections. If you cannot connect, it
may be that all 40 are already in use.

Many thanks to Andy and KanREN/Kan-ed for providing
H.323 access.

http://www.kanren.net/
mailto:afleming@kanren.net

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 5

iLinc
We have unlimited simultaneous iLinc connections available.
If you’re already on the SiPE e-mail list, then you should

receive an e-mail about iLinc before each session begins.
If you want to use iLinc, please follow the directions in the

iLinc e-mail.
For iLinc, you MUST use either Windows (XP strongly

preferred) or MacOS X with Internet Explorer.
To use iLinc, you’ll need to download a client program to your

PC. It’s free, and setup should take only a few minutes.
Many thanks to Katherine Kantardjieff of California State U

Fullerton for providing the iLinc licenses.

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 6

QuickTime Broadcaster
If you cannot connect via the Access Grid, H.323 or iLinc,

then you can connect via QuickTime:
rtsp://129.15.254.141/test_hpc09.sdp

We recommend using QuickTime Player for this, because
we’ve tested it successfully.

We recommend upgrading to the latest version at:
http://www.apple.com/quicktime/

When you run QuickTime Player, traverse the menus
File -> Open URL

Then paste in the rstp URL into the textbox, and click OK.
Many thanks to Kevin Blake of OU for setting up QuickTime

Broadcaster for us.

http://www.apple.com/quicktime/

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 7

Phone Bridge
If all else fails, you can call into our toll free phone bridge:

1-866-285-7778, access code 6483137#
Please mute yourself and use the phone to listen.
Don’t worry, we’ll call out slide numbers as we go.
Please use the phone bridge ONLY if you cannot connect any

other way: the phone bridge is charged per connection per
minute, so our preference is to minimize the number of
connections.

Many thanks to Amy Apon and U Arkansas for providing the
toll free phone bridge.

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 8

Please Mute Yourself
No matter how you connect, please mute yourself, so that we

cannot hear you.
At OU, we will turn off the sound on all conferencing

technologies.
That way, we won’t have problems with echo cancellation.
Of course, that means we cannot hear questions.
So for questions, you’ll need to send some kind of text.

Also, if you’re on iLinc: SIT ON YOUR HANDS!
Please DON’T touch ANYTHING!

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 9

Questions via Text: iLinc or E-mail
Ask questions via text, using one of the following:

iLinc’s text messaging facility;
e-mail to sipe2009@gmail.com.

All questions will be read out loud and then answered out loud.

mailto:sipe2009@gmail.com

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 10

Thanks for helping!
OSCER operations staff (Brandon George, Dave Akin, Brett
Zimmerman, Josh Alexander)
OU Research Campus staff (Patrick Calhoun, Josh Maxey)
Kevin Blake, OU IT (videographer)
Katherine Kantardjieff, CSU Fullerton
John Chapman and Amy Apon, U Arkansas
Andy Fleming, KanREN/Kan-ed
This material is based upon work supported by the National
Science Foundation under Grant No. OCI-0636427, “CI-
TEAM Demonstration: Cyberinfrastructure Education for
Bioinformatics and Beyond.”

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 11

This is an experiment!
It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone
bridge to fall back on.

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 12

Supercomputing Exercises
Want to do the “Supercomputing in Plain English” exercises?

The first two exercises are already posted at:
http://www.oscer.ou.edu/education.php

If you don’t yet have a supercomputer account, you can get
a temporary account, just for the “Supercomputing in Plain
English” exercises, by sending e-mail to:

hneeman@ou.edu
Please note that this account is for doing the exercises only,

and will be shut down at the end of the series.
This week’s Arithmetic Operations exercise will give you
experience benchmarking various arithmetic operations
under various conditions.

http://www.oscer.ou.edu/education.php
mailto:hneeman@ou.edu

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 13

OK Supercomputing Symposium

2006 Keynote:
Dan Atkins

Head of NSF’s
Office of
Cyber-

infrastructure

2004 Keynote:
Sangtae Kim
NSF Shared

Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer &
Information
Science &
Engineering

Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

http://symposium2009.oscer.ou.edu/

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

Wed Oct 7 2009 @ OU
Over 235 registrations already!

Over 150 in the first day, over 200 in the first
week, over 225 in the first month.

Parallel Programming Workshop
FREE! Tue Oct 6 2009 @ OU

Sponsored by SC09 Education Program
FREE! Symposium Wed Oct 7 2009 @ OU

2008 Keynote:
José Munoz

Deputy Office
Director/ Senior

Scientific Advisor
Office of Cyber-

infrastructure
National Science

Foundation

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 14

SC09 Summer Workshops
This coming summer, the SC09 Education Program, part of the

SC09 (Supercomputing 2009) conference, is planning to
hold two weeklong supercomputing-related workshops in
Oklahoma, for FREE (except you pay your own travel):
At OU: Parallel Programming & Cluster Computing, date to
be decided, weeklong, for FREE
At OSU: Computational Chemistry (tentative), date to be
decided, weeklong, for FREE

We’ll alert everyone when the details have been ironed out and
the registration webpage opens.

Please note that you must apply for a seat, and acceptance
CANNOT be guaranteed.

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 15

Outline
What is Instruction-Level Parallelism?
Scalar Operation
Loops
Pipelining
Loop Performance
Superpipelining
Vectors
A Real Example

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 16

Parallelism

Less fish …

More fish!

Parallelism means
doing multiple things at
the same time: You can
get more work done in
the same time.

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 17

What Is ILP?
Instruction-Level Parallelism (ILP) is a set of techniques for

executing multiple instructions at the same time within
the same CPU core.

(Note that ILP has nothing to do with multicore.)
The problem: The CPU has lots of circuitry, and at any given

time, most of it is idle, which is wasteful.
The solution: Have different parts of the CPU work on

different operations at the same time: If the CPU has the
ability to work on 10 operations at a time, then the program
can, in principle, run as much as 10 times as fast (although in
practice, not quite so much).

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 18

DON’T
PANIC!

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 19

Why You Shouldn’t Panic
In general, the compiler and the CPU will do most of the heavy

lifting for instruction-level parallelism.

BUT:
You need to be aware of ILP, because
how your code is structured affects
how much ILP the compiler and the
CPU can give you.

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 20

Kinds of ILP
Superscalar: Perform multiple operations at the same time
(for example, simultaneously perform an add, a multiply and
a load).
Pipeline: Start performing an operation on one piece of data
while finishing the same operation on another piece of data –
perform different stages of the same operation on different
sets of operands at the same time (like an assembly line).
Superpipeline: A combination of superscalar and pipelining
– perform multiple pipelined operations at the same time.
Vector: Load multiple pieces of data into special registers and
perform the same operation on all of them at the same time.

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 21

What’s an Instruction?
Memory: For example, load a value from a specific address
in main memory into a specific register, or store a value
from a specific register into a specific address in main
memory.
Arithmetic: For example, add two specific registers together
and put their sum in a specific register – or subtract,
multiply, divide, square root, etc.
Logical: For example, determine whether two registers both
contain nonzero values (“AND”).
Branch: Jump from one sequence of instructions to another
(for example, function call).
… and so on ….

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 22

What’s a Cycle?
You’ve heard people talk about having a 2 GHz processor or a 3

GHz processor or whatever. (For example, Henry’s laptop
has a 1.83 GHz Pentium4 Centrino Duo.)

Inside every CPU is a little clock that ticks with a fixed
frequency. We call each tick of the CPU clock a clock cycle
or a cycle.

So a 2 GHz processor has 2 billion clock cycles per second.
Typically, a primitive operation (for example, add, multiply,

divide) takes a fixed number of cycles to execute (assuming
no pipelining).

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 23

What’s the Relevance of Cycles?
Typically, a primitive operation (for example, add, multiply,

divide) takes a fixed number of cycles to execute (assuming
no pipelining).
IBM POWER4 [1]

Multiply or add: 6 cycles (64 bit floating point)
Load: 4 cycles from L1 cache

14 cycles from L2 cache
Intel Pentium4 EM64T (Core) [2]

Multiply: 7 cycles (64 bit floating point)
Add, subtract: 5 cycles (64 bit floating point)
Divide: 38 cycles (64 bit floating point)
Square root: 39 cycles (64 bit floating point)
Tangent: 240-300 cycles (64 bit floating point)

Scalar Operation

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 25

DON’T
PANIC!

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 26

Scalar Operation

1. Load a into register R0
2. Load b into R1
3. Multiply R2 = R0 * R1
4. Load c into R3
5. Load d into R4
6. Multiply R5 = R3 * R4
7. Add R6 = R2 + R5
8. Store R6 into z

z = a * b + c * d;
How would this statement be executed?

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 27

Does Order Matter?

1. Load a into R0
2. Load b into R1
3. Multiply

R2 = R0 * R1
4. Load c into R3
5. Load d into R4
6. Multiply

R5 = R3 * R4
7. Add R6 = R2 + R5
8. Store R6 into z

z = a * b + c * d;

In the cases where order doesn’t matter, we say that
the operations are independent of one another.

1. Load d into R0
2. Load c into R1
3. Multiply

R2 = R0 * R1
4. Load b into R3
5. Load a into R4
6. Multiply

R5 = R3 * R4
7. Add R6 = R2 + R5
8. Store R6 into z

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 28

Superscalar Operation

1. Load a into R0 AND
load b into R1

2. Multiply R2 = R0 * R1 AND
load c into R3 AND
load d into R4

3. Multiply R5 = R3 * R4
4. Add R6 = R2 + R5
5. Store R6 into z

z = a * b + c * d;

If order doesn’t matter,
then things can happen simultaneously.
So, we go from 8 operations down to 5.
(Note: there are lots of simplifying assumptions here.)

Loops

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 30

Loops Are Good
Most compilers are very good at optimizing loops, and not

very good at optimizing other constructs.
Why?

DO index = 1, length
dst(index) = src1(index) + src2(index)

END DO

for (index = 0; index < length; index++) {
dst[index] = src1[index] + src2[index];

}

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 31

Why Loops Are Good
Loops are very common in many programs.
Also, it’s easier to optimize loops than more arbitrary
sequences of instructions: when a program does the same
thing over and over, it’s easier to predict what’s likely to
happen next.

So, hardware vendors have designed their products to be able
to execute loops quickly.

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 32

DON’T
PANIC!

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 33

Superscalar Loops
DO i = 1, length
z(i) = a(i) * b(i) + c(i) * d(i)

END DO
Each of the iterations is completely independent of all
of the other iterations; for example,

z(1) = a(1) * b(1) + c(1) * d(1)
has nothing to do with

z(2) = a(2) * b(2) + c(2) * d(2)
Operations that are independent of each other can be
performed in parallel.

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 34

Superscalar Loops
for (i = 0; i < length; i++) {
z[i] = a[i] * b[i] + c[i] * d[i];

}
1. Load a[i] into R0 AND load b[i] into R1
2. Multiply R2 = R0 * R1 AND load c[i] into

R3 AND load d[i] into R4
3. Multiply R5 = R3 * R4 AND

load a[i+1] into R0 AND load b[i+1] into R1
4. Add R6 = R2 + R5 AND load c[i+1] into R3

AND load d[i+1] into R4
5. Store R6 into z[i] AND multiply R2 = R0 * R1
6. etc etc etc
Once this loop is “in flight,” each iteration adds only

2 operations to the total, not 8.

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 35

Example: IBM POWER4
8-way Superscalar: can execute up to 8 operations at the same

time[1]

2 integer arithmetic or logical operations, and
2 floating point arithmetic operations, and
2 memory access (load or store) operations, and
1 branch operation, and
1 conditional operation

Pipelining

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 37

Pipelining
Pipelining is like an assembly line or a bucket brigade.

An operation consists of multiple stages.
After a particular set of operands
z(i) = a(i) * b(i) + c(i) * d(i)
completes a particular stage, they move into the next stage.
Then, another set of operands
z(i+1) = a(i+1) * b(i+1) + c(i+1) * d(i+1)
can move into the stage that was just abandoned by the previous
set.

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 38

DON’T
PANIC!

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 39

Pipelining Example

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Instruction
Execution

Result
Writeback

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Instruction
Execution

Result
Writeback

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Instruction
Execution

Result
Writeback

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Instruction
Execution

Result
Writeback

i = 1

i = 2

i = 3

i = 4

Computation time
If each stage takes, say, one CPU cycle, then once the
loop gets going, each iteration of the loop increases the
total time by only one cycle. So a loop of length 1000
takes only 1004 cycles. [3]

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

DON’T PANIC!

DON’T PANIC!

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 40

Pipelines: Example
IBM POWER4: pipeline length ≅ 15 stages [1]

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 41

Some Simple Loops (F90)
DO index = 1, length
dst(index) = src1(index) + src2(index)

END DO

DO index = 1, length
dst(index) = src1(index) - src2(index)

END DO

DO index = 1, length
dst(index) = src1(index) * src2(index)

END DO

DO index = 1, length
dst(index) = src1(index) / src2(index)

END DO

DO index = 1, length
sum = sum + src(index)

END DO

Reduction: convert
array to scalar

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 42

Some Simple Loops (C)
for (index = 0; index < length; index++) {
dst[index] = src1[index] + src2[index];

}

for (index = 0; index < length; index++) {
dst[index] = src1[index] - src2[index];

}

for (index = 0; index < length; index++) {
dst[index] = src1[index] * src2[index];

}

for (index = 0; index < length; index++) {
dst[index] = src1[index] / src2[index];

}

for (index = 0; index < length; index++) {
sum = sum + src[index];

}

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 43

Slightly Less Simple Loops (F90)
DO index = 1, length
dst(index) = src1(index) ** src2(index) !! src1 ^ src2

END DO

DO index = 1, length
dst(index) = MOD(src1(index), src2(index))

END DO

DO index = 1, length
dst(index) = SQRT(src(index))

END DO

DO index = 1, length
dst(index) = COS(src(index))

END DO

DO index = 1, length
dst(index) = EXP(src(index))

END DO
DO index = 1, length
dst(index) = LOG(src(index))

END DO

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 44

Slightly Less Simple Loops (C)
for (index = 0; index < length; index++) {
dst[index] = pow(src1[index], src2[index]);

}

for (index = 0; index < length; index++) {
dst[index] = src1[index] % src2[index];

}

for (index = 0; index < length; index++) {
dst[index] = sqrt(src[index]);

}

for (index = 0; index < length; index++) {
dst[index] = cos(src[index]);

}

for (index = 0; index < length; index++) {
dst[index] = exp(src[index]);

}

for (index = 0; index < length; index++) {
dst[index] = log(src[index]);

}

Loop Performance

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 46

Performance Characteristics
Different operations take different amounts of time.
Different processor types have different performance
characteristics, but there are some characteristics that many
platforms have in common.
Different compilers, even on the same hardware, perform
differently.
On some processors, floating point and integer speeds are
similar, while on others they differ.

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 47

Arithmetic Operation Speeds
Arithmetic Performance on Pentium4 EM64T

(Irwindale 3.2 GHz)

0

500

1000

1500

2000

2500

3000
ra

dd

ia
dd

rs
um is
um rs
ub is
ub

rm
ul

im
ul

rm
am

im
am

rm
ad

im
ad

rd
iv

id
iv

rp
ow

im
od

rs
qr

t

rc
os

re
xp rlo

g

rd
ot

re
uc

rlo
t0

8

rlo
t1

0

rlo
t1

2

rlo
t1

6

rlo
t2

0

lo
t2

4r i2
r

r2
i

M
FL

O
Ps

ifort -O0 pgf90 -O0 nagf95 -O0 gfortran -O0 ifort -O2 pgf90 -O3 gfortran -O2 nagf95 -O4

Better

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 48

Fast and Slow Operations
Fast: sum, add, subtract, multiply
Medium: divide, mod (that is, remainder)
Slow: transcendental functions (sqrt, sin, exp)
Incredibly slow: power xy for real x and y

On most platforms, divide, mod and transcendental functions
are not pipelined, so a code will run faster if most of it is
just adds, subtracts and multiplies.

For example, solving an N x N system of linear equations by
LU decomposition uses on the order of N3 additions and
multiplications, but only on the order of N divisions.

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 49

What Can Prevent Pipelining?
Certain events make it very hard (maybe even impossible) for

compilers to pipeline a loop, such as:
array elements accessed in random order
loop body too complicated
if statements inside the loop (on some platforms)
premature loop exits
function/subroutine calls
I/O

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 50

How Do They Kill Pipelining?
Random access order: Ordered array access is common, so
pipelining hardware and compilers tend to be designed under
the assumption that most loops will be ordered. Also, the
pipeline will constantly stall because data will come from
main memory, not cache.
Complicated loop body: The compiler gets too
overwhelmed and can’t figure out how to schedule the
instructions.

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 51

How Do They Kill Pipelining?
if statements in the loop: On some platforms (but not all),
the pipelines need to perform exactly the same operations
over and over; if statements make that impossible.

However, many CPUs can now perform speculative execution:
both branches of the if statement are executed while the
condition is being evaluated, but only one of the results is
retained (the one associated with the condition’s value).

Also, many CPUs can now perform branch prediction to head
down the most likely compute path.

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 52

How Do They Kill Pipelining?
Function/subroutine calls interrupt the flow of the
program even more than if statements. They can take
execution to a completely different part of the program, and
pipelines aren’t set up to handle that.
Loop exits are similar. Most compilers can’t pipeline loops
with premature or unpredictable exits.
I/O: Typically, I/O is handled in subroutines (above).
Also, I/O instructions can take control of the program away
from the CPU (they can give control to I/O devices).

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 53

What If No Pipelining?

SLOW!

(on most platforms)

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 54

Randomly Permuted Loops
Arithmetic Performance: Ordered vs Random

(Irwindale 3.2 GHz)

0

500

1000

1500

2000

2500

3000
ra

dd

ia
dd

rs
um is
um rs
ub is
ub

rm
ul

im
ul

rm
am

im
am

rm
ad

im
ad

rd
iv

id
iv

rp
ow

im
od

rs
qr

t

rc
os

re
xp rlo

g

rd
ot

re
uc

rlo
t0

8

rlo
t1

0

rlo
t1

2

rlo
t1

6

rlo
t2

0

lo
t2

4r i2
r

r2
i

M
FL

O
Ps

ifort -O2 permuted

Better

Superpipelining

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 56

Superpipelining
Superpipelining is a combination of superscalar and

pipelining.
So, a superpipeline is a collection of multiple pipelines that

can operate simultaneously.
In other words, several different operations can execute

simultaneously, and each of these operations can be broken
into stages, each of which is filled all the time.

So you can get multiple operations per CPU cycle.
For example, a IBM Power4 can have over 200 different

operations “in flight” at the same time.[1]

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 57

More Operations At a Time
If you put more operations into the code for a loop, you can
get better performance:

more operations can execute at a time (use more
pipelines), and
you get better register/cache reuse.

On most platforms, there’s a limit to how many operations
you can put in a loop to increase performance, but that limit
varies among platforms, and can be quite large.

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 58

Some Complicated Loops
DO index = 1, length
dst(index) = src1(index) + 5.0 * src2(index)

END DO

dot = 0
DO index = 1, length
dot = dot + src1(index) * src2(index)

END DO

DO index = 1, length
dst(index) = src1(index) * src2(index) + &

& src3(index) * src4(index)
END DO

DO index = 1, length
diff12 = src1(index) - src2(index)
diff34 = src3(index) - src4(index)
dst(index) = SQRT(diff12 * diff12 + diff34 * diff34)

END DO

madd (or FMA):
mult then add

(2 ops)

Euclidean distance
(6 ops)

dot product
(2 ops)

from our
example
(3 ops)

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 59

A Very Complicated Loop
lot = 0.0
DO index = 1, length

lot = lot + &
& src1(index) * src2(index) + &
& src3(index) * src4(index) + &
& (src1(index) + src2(index)) * &
& (src3(index) + src4(index)) * &
& (src1(index) - src2(index)) * &
& (src3(index) - src4(index)) * &
& (src1(index) - src3(index) + &
& src2(index) - src4(index)) * &
& (src1(index) + src3(index) - &
& src2(index) + src4(index)) + &
& (src1(index) * src3(index)) + &
& (src2(index) * src4(index))
END DO

24 arithmetic ops per iteration
4 memory/cache loads per iteration

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 60

Multiple Ops Per Iteration
Arithmetic Performance: Multiple Operations

(Irwindale 3.2 GHz)

0

500

1000

1500

2000

2500

3000

radd iadd rmam imam rmad imad rdot reuc rlot08 rlot10 rlot12 rlot16 rlot20 rlot24

M
FL

O
Ps ifort -O2

pgf90 -O3
nagf95 -O4
gfortran -O2

Better

Vectors

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 62

What Is a Vector?
A vector is a giant register that behaves like a collection of

regular registers, except these registers all simultaneously
perform the same operation on multiple sets of operands,
producing multiple results.

In a sense, vectors are like operation-specific cache.
A vector register is a register that’s actually made up of many

individual registers.
A vector instruction is an instruction that performs the same

operation simultaneously on all of the individual registers of a
vector register.

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 63

Vector Register

v0 v1 v2

v0 <- v1 + v2

<-
<-
<-
<-
<-

<-
<-
<-

+
+
+
+
+
+
+
+

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 64

Vectors Are Expensive
Vectors were very popular in the 1980s, because they’re very

fast, often faster than pipelines.
In the 1990s, though, they weren’t very popular. Why?
Well, vectors aren’t used by many commercial codes (for

example, MS Word). So most chip makers didn’t bother with
vectors.

So, if you wanted vectors, you had to pay a lot of extra money
for them.

However, with the Pentium III Intel reintroduced very small
vectors (2 operations at a time), for integer operations only.
The Pentium4 added floating point vector operations, also of
size 2. Now, the Pentium4 EM64T has doubled the vector
size to 4.

A Real Example

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 66

A Real Example[4]

DO k=2,nz-1
DO j=2,ny-1

DO i=2,nx-1
tem1(i,j,k) = u(i,j,k,2)*(u(i+1,j,k,2)-u(i-1,j,k,2))*dxinv2
tem2(i,j,k) = v(i,j,k,2)*(u(i,j+1,k,2)-u(i,j-1,k,2))*dyinv2
tem3(i,j,k) = w(i,j,k,2)*(u(i,j,k+1,2)-u(i,j,k-1,2))*dzinv2

END DO
END DO

END DO
DO k=2,nz-1
DO j=2,ny-1

DO i=2,nx-1
u(i,j,k,3) = u(i,j,k,1) - &

& dtbig2*(tem1(i,j,k)+tem2(i,j,k)+tem3(i,j,k))
END DO

END DO
END DO

. . .

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 67

Real Example Performance

Performance By Method

0
10
20
30
40
50
60
70
80

10 loops 5 loops 1 loop 2 loops 2 loops unrolled
Method

M
FL

O
PS

Pentium3 NAG Pentium3 Vast

Better

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 68

DON’T
PANIC!

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 69

Why You Shouldn’t Panic
In general, the compiler and the CPU will do most of the heavy

lifting for instruction-level parallelism.

BUT:
You need to be aware of ILP, because
how your code is structured affects
how much ILP the compiler and the
CPU can give you.

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 70

OK Supercomputing Symposium

2006 Keynote:
Dan Atkins

Head of NSF’s
Office of
Cyber-

infrastructure

2004 Keynote:
Sangtae Kim
NSF Shared

Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer &
Information
Science &
Engineering

Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

http://symposium2009.oscer.ou.edu/

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

Wed Oct 7 2009 @ OU
Over 235 registrations already!

Over 150 in the first day, over 200 in the first
week, over 225 in the first month.

Parallel Programming Workshop
FREE! Tue Oct 6 2009 @ OU

Sponsored by SC09 Education Program
FREE! Symposium Wed Oct 7 2009 @ OU

2008 Keynote:
José Munoz

Deputy Office
Director/ Senior

Scientific Advisor
Office of Cyber-

infrastructure
National Science

Foundation

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 71

SC09 Summer Workshops
This coming summer, the SC09 Education Program, part of the

SC09 (Supercomputing 2009) conference, is planning to
hold two weeklong supercomputing-related workshops in
Oklahoma, for FREE (except you pay your own travel):
At OU: Parallel Programming & Cluster Computing, date to
be decided, weeklong, for FREE
At OSU: Computational Chemistry (tentative), date to be
decided, weeklong, for FREE

We’ll alert everyone when the details have been ironed out and
the registration webpage opens.

Please note that you must apply for a seat, and acceptance
CANNOT be guaranteed.

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 72

To Learn More Supercomputing
http://www.oscer.ou.edu/education.php

http://www.oscer.ou.edu/education.php

Thanks for your
attention!

Questions?

Supercomputing in Plain English: Instruction Level Parallelism
Tuesday February 17 2009 74

References
[1] Steve Behling et al, The POWER4 Processor Introduction and Tuning Guide, IBM, 2001.
[2] Intel® 64 and IA-32 Architectures Optimization Reference Manual, Order Number: 248966-015
May 2007
http://www.intel.com/design/processor/manuals/248966.pdf
[3] Kevin Dowd and Charles Severance, High Performance Computing,

2nd ed. O’Reilly, 1998.
[4] Code courtesy of Dan Weber, 2001.

http://www.intel.com/design/processor/manuals/248966.pdf

	Supercomputing�in Plain English�Part III:�Instruction Level Parallelism
	This is an experiment!
	Access Grid
	H.323 (Polycom etc)
	iLinc
	QuickTime Broadcaster
	Phone Bridge
	Please Mute Yourself
	Questions via Text: iLinc or E-mail
	Thanks for helping!
	This is an experiment!
	Supercomputing Exercises
	OK Supercomputing Symposium
	SC09 Summer Workshops
	Outline
	Parallelism
	What Is ILP?
	Why You Shouldn’t Panic
	Kinds of ILP
	What’s an Instruction?
	What’s a Cycle?
	What’s the Relevance of Cycles?
	Scalar Operation
	Scalar Operation
	Does Order Matter?
	Superscalar Operation
	Loops
	Loops Are Good
	Why Loops Are Good
	Superscalar Loops
	Superscalar Loops
	Example: IBM POWER4
	Pipelining
	Pipelining
	Pipelining Example
	Pipelines: Example
	Some Simple Loops (F90)
	Some Simple Loops (C)
	Slightly Less Simple Loops (F90)
	Slightly Less Simple Loops (C)
	Loop Performance
	Performance Characteristics
	Arithmetic Operation Speeds
	Fast and Slow Operations
	What Can Prevent Pipelining?
	How Do They Kill Pipelining?
	How Do They Kill Pipelining?
	How Do They Kill Pipelining?
	What If No Pipelining?
	Randomly Permuted Loops
	Superpipelining
	Superpipelining
	More Operations At a Time
	Some Complicated Loops
	A Very Complicated Loop
	Multiple Ops Per Iteration
	Vectors
	What Is a Vector?
	Vector Register
	Vectors Are Expensive
	A Real Example
	A Real Example[4]
	Real Example Performance
	Why You Shouldn’t Panic
	OK Supercomputing Symposium
	SC09 Summer Workshops
	To Learn More Supercomputing
	Thanks for your attention!��Questions?
	References

