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Q| This Is an experiment!

It’s the nature of these kinds of videoconferences that
FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone
bridge to fall back on.
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Q| Access Grid

This week’s Access Grid (AG) venue: Monte Carlo.
If you aren’t sure whether you have AG, you probably don’t.

Tue Feb 17 Monte Carlo

Tue Feb 27 Helium

Tue March 3 Titan

Tue March 10 | NO WORKSHOP Many than kS tO

Tue March 17 NO WORKSHOP
Tue March 24 | Axon
Tue March 31 Cactus

John Chapman of
U Arkansas for

Tue Apr 7 Walkabout setti ng these up
Tue Apr 14 Cactus for us.
Tue Apr 21 Verlet
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H.323 (Polycom etc)

If you want to use H.323 videoconferencing — for example,
Polycom — then dial

69.77.7_203##12345

any time after 2:00pm. Please connect early, at least today.

For assistance, contact Andy Fleming of KanREN/Kan-ed
(afleming@kanren.net or 785-865-6434).

KanREN/Kan-ed’s H.323 system can handle up to 40
simultaneous H.323 connections. If you cannot connect, it
may be that all 40 are already in use.

Many thanks to Andy and KanREN/Kan-ed for providing
H.323 access.

Tuesday February 17 2009
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®) iLinc

We have unlimited simultaneous iLInc connections available.

If you’re already on the SIPE e-mail list, then you should
receive an e-mail about iLinc before each session begins.

If you want to use iLinc, please follow the directions in the
ILinc e-mail.

For iLinc, you MUST use either Windows (XP strongly
preferred) or MacOS X with Internet Explorer.

To use iLinc, you’ll need to download a client program to your
PC. It’s free, and setup should take only a few minutes.

Many thanks to Katherine Kantardjieff of California State U
Fullerton for providing the iLinc licenses.
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Q| QuickTime Broadcaster

If you cannot connect via the Access Grid, H.323 or ILinc,
then you can connect via QuickTime:

rtsp://129.15.254.141/test hpc09.sdp

We recommend using QuickTime Player for this, because
we’ve tested it successfully.

We recommend upgrading to the latest version at:
http://www.apple.com/quicktime/
When you run QuickTime Player, traverse the menus
File -> Open URL
Then paste In the rstp URL into the textbox, and click OK.

Many thanks to Kevin Blake of OU for setting up QuickTime
Broadcaster for us.
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Q| Phone Bridge

If all else fails, you can call into our toll free phone bridge:
1-866-285-7778, access code 6483137#

Please mute yourself and use the phone to listen.

Don’t worry, we’ll call out slide numbers as we go.

Please use the phone bridge ONLY if you cannot connect any
other way: the phone bridge is charged per connection per
minute, so our preference is to minimize the number of
connections.

Many thanks to Amy Apon and U Arkansas for providing the
toll free phone bridge.
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Please Mute Yourself

No matter how you connect, please mute yourself, so that we
cannot hear you.

At OU, we will turn off the sound on all conferencing
technologies.

That way, we won’t have problems with echo cancellation.
Of course, that means we cannot hear questions.
So for questions, you’ll need to send some kind of text.

Also, if you’re on iLinc: SIT ON YOUR HANDS!
Please DON’T touch ANYTHING!
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Q| Questions via Text: iLinc or E-mall

Ask questions via text, using one of the following:
= ILinc’s text messaging facility;
= e-mail to si1pe2009@gmail . com.

All questions will be read out loud and then answered out loud.
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Q| Thanks for helping!

= OSCER operations staff (Brandon George, Dave Akin, Brett
Zimmerman, Josh Alexander)

= OU Research Campus staff (Patrick Calhoun, Josh Maxey)
= Kevin Blake, OU IT (videographer)

= Katherine Kantardjieff, CSU Fullerton

= John Chapman and Amy Apon, U Arkansas

= Andy Fleming, KanREN/Kan-ed

= This material is based upon work supported by the National
Science Foundation under Grant No. OCI-0636427, “CI-
TEAM Demonstration: Cyberinfrastructure Education for
Bioinformatics and Beyond.”
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Q| This Is an experiment!

It’s the nature of these kinds of videoconferences that
FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone
bridge to fall back on.
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Q| Supercomputing Exercises

Want to do the “Supercomputing in Plain English” exercises?

= The first two exercises are already posted at:
http://www.oscer .ou.edu/education.php

= If you don’t yet have a supercomputer account, you can get

a temporary account, just for the “Supercomputing in Plain
English” exercises, by sending e-mail to:

hneeman@ou . edu

Please note that this account is for doing the exercises only,
and will be shut down at the end of the series.

s This week’s Arithmetic Operations exercise will give you

experience benchmarking various arithmetic operations
under various conditions.
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Q| OK Supercomputing Symposium
Wed Oct 7 2009 @ OU

2003 Keynote: " ”

Peter Freeman 2004 Keynote:

NSF Sangtae Kim It
Computer & NSF Shared
Igf(_)rmat:g‘n Cyberinfrastructure 2005 Keynote:  5q06 keynote: m
: r vanced Head of NSF's 2007 K te: -
Assistant Director Supercomputing Office of Jay Bo?élge%lf VA
Division Director ~ Cyber- Director 2008 K -
Parallel Programming Workshop — infrastructure  Tgyas Advanced  “Joos Noiow
I Computing Center  Deputy Office
FREE! Tue Oct 6 2009_ @ OuU U. Texas Austin ~ Director/ Senior
Sponsored by SC09 Education Program Scientific é%'fror
FREE! Symposium Wed Oct 7 2009 @ OU infrastructure
National Science

OMPLTTR

http://symposium2009.oscer.ou.edu/ Foundation
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Q| SC09 Summer Workshops

This coming summer, the SC09 Education Program, part of the
SCO09 (Supercomputing 2009) conference, is planning to
hold two weeklong supercomputing-related workshops in
Oklahoma, for FREE (except you pay your own travel):

= At OU: Parallel Programming & Cluster Computing, date to
be decided, weeklong, for FREE

= At OSU: Computational Chemistry (tentative), date to be
decided, weeklong, for FREE

We’ll alert everyone when the details have been ironed out and
the registration webpage opens.

Please note that you must apply for a seat, and acceptance
CANNOT be guaranteed.
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®) Outline

= What is Instruction-Level Parallelism?
= Scalar Operation

= Loops

= Pipelining

= Loop Performance

= Superpipelining

= \Vectors

= A Real Example

=y
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Parallelism

Parallelism means

doing multiple things at
the same time: You can
get more work done in

the same time.
Less fish ...

OOOOOOOOOO
HE UNIVERSITY OF OKLAM

More fis
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®) What Is ILP?

Instruction-Level Parallelism (ILP) is a set of techniques for
executing multiple instructions at the same time within
the same CPU core.

(Note that ILP has nothing to do with multicore.)

The problem: The CPU has lots of circuitry, and at any given
time, most of it is idle, which is wasteful.

The solution: Have different parts of the CPU work on
different operations at the same time: If the CPU has the
ability to work on 10 operations at a time, then the program
can, in principle, run as much as 10 times as fast (although in
practice, not quite so much).
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Why You Shouldn’t Panic

In general, the compiler and the CPU will do most of the heavy
lifting for instruction-level parallelism.

BUT:

You need to be aware of ILP, because
how your code Is structured affects
how much ILP the compiler and the
CPU can give you.
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®) Kinds of ILP

= Superscalar: Perform multiple operations at the same time
(for example, simultaneously perform an add, a multiply and
a load).

= Pipeline: Start performing an operation on one piece of data
while finishing the same operation on another piece of data —
perform different stages of the same operation on different
sets of operands at the same time (like an assembly line).

= Superpipeline: A combination of superscalar and pipelining
— perform multiple pipelined operations at the same time.

= Vector: Load multiple pieces of data into special registers and
perform the same operation on all of them at the same time.

NG
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Q| What’s an Instruction?

= Memory: For example, load a value from a specific address
In main memory into a specific register, or store a value
from a specific register into a specific address in main
memory.

= Arithmetic: For example, add two specific registers together
and put their sum In a specific register — or subtract,
multiply, divide, square root, etc.

= Logical: For example, determine whether two registers both
contain nonzero values (“AND”).

= Branch: Jump from one sequence of instructions to another
(for example, function call).

m ...andsoon....
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®) What’s a Cycle?

You’ve heard people talk about having a 2 GHz processor or a 3
GHz processor or whatever. (For example, Henry’s laptop
has a 1.83 GHz Pentium4 Centrino Duo.)

Inside every CPU is a little clock that ticks with a fixed
frequency. We call each tick of the CPU clock a clock cycle

or a cycle.
So a 2 GHz processor has 2 billion clock cycles per second.

Typically, a primitive operation (for example, add, multiply,
divide) takes a fixed number of cycles to execute (assuming

no pipelining).
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@) What’s the Relevance of Cycles?

Typically, a primitive operation (for example, add, multiply,
divide) takes a fixed number of cycles to execute (assuming
no pipelining).

= |IBM POWER4 [1]

= Multiply or add: 6 cycles (64 bit floating point) £
= Load: 4 cycles from L1 cache
14 cycles from L2 cache

= Intel Pentium4 EM6GAT (Core) [2]

= Multiply: 7 cycles (64 bit floating point) s

= Add, subtract: 5 cycles (64 bit floating point) ¥l
= Divide: 38 cycles (64 bit floating point) [ g SUIE
= Square root: 39 cycles (64 bit floating point)

= Tangent: 240-300 cycles (64 bit floating point) &
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®) Scalar Operation
Z =a*b+c * d;

How would this statement be executed?

Load a into register RO

Load b into R1

Multiply R2 = RO * R1

Load c Into R3

Load d into R4

Multiply R5 = R3 * R4

Add R6 = R2 + R5

Store R6 Into z

N OR WM R

Supercomputing in Plain English: Instruction Level Parallelism
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Q| Does Order Matter?

Zz =a>*b+c* d;

1. Load a into RO 1. Load d into RO
2. Load b Into R1 2. Load c iInto R1
3. Multl I%/%O « R1 3. I\/Iultlplﬁo « 1
4, Load c Into R3 4., Load b Into R3
5. Load d into R4 5. Load a into R4
6. Multiply 6. Multiply
R5 = R3 * R4 R5 = R3 * R4
7. Add R6 = R2 + R5 | 7. Add R6 = R2 + R5
8. Store R6 Into z 8. Store R6 into z

In the cases where order doesn’t matter, we say that
the operations are independent of one another.
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Superscalar Operation

B~ w

D.

Z =a*b+c* d;
Load a into RO AND
load b into R1
Multiply R2 = RO * R1 AND
load ¢ into R3 AND
load d into R4
Multiply R5 = R3 * R4
Add R6 = R2 + R5
Store R6 Into z
If order doesn’t matter,
then things can happen simultaneously.

So, we go from 8 operations down to 5.
(Note: there are lots of simplifying assumptions here.)

Supercomputing in Plain English: Instruction Level Parallelism
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_oops Are Good

Most compilers are very good at optimizing loops, and not
very good at optimizing other constructs.
Why?

DO 1ndex = 1, length
dst(index) = srcl(index) + src2(index)
END DO

for (index = 0O; iIndex < length; index++) {
dst[index] = srcl[index] + src2[index];

Supercomputing in Plain English: Instruction Level Parallelism
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®) Why Loops Are Good

= Loops are very common in many programs.

= Also, It’s easier to optimize loops than more arbitrary
sequences of instructions: when a program does the same
thing over and over, it’s easier to predict what’s likely to
happen next.

So, hardware vendors have designed their products to be able

to execute loops quickly.

TECHNOLOGY
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Superscalar Loops

DO 1 = 1, length

z(1) = a(r) * b(r) + c(r) * d(rn)
END DO
Each of the iterations is completely independent of all

of the other Iiterations; for example,

z(1) = a(l) * b(1) + c(1) * d(1)
has nothing to do with

z(2) = a(2) * b(2) + c(2) * d(2)
Operations that are independent of each other can be
performed In parallel.

Supercomputing in Plain English: Instruction Level Parallelism
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®) Superscalar Loops

for (i O; 1 < length; 1++) {
z[a] = a[r] * b[r] + c[1] * d[1];
}

1. Load aJ 1] into RO AND load b[1] into R1
2. Multiply R2 = RO * R1 AND load c[1] into
R3 AND load d[i] Into R4
3. Multiply R5 = R3 * R4 AND
load a[|+1] into RO AND load b[i+1] into R1
. Add R6 = R2 + R5 AND load c[1+1] into R3

AND load d[1+1] into R4
. Store R6 into z[ 1] AND multiply R2 = RO * R1

4
5

6. etcetcetc
Once this loop Is “In flight,” each iteration adds only

2 operations to the total, not 8.

Ge . & ™ 4 Supercomputing in Plain English: Instruction Level Parallelism
e lit_}’éi%ﬁ.’&ﬂ;‘é? Tuesday February 17 2009 34




®) Example: IBM POWERA4

8-way Superscalar: can execute up to 8 operations at the same
timell]

= 2 integer arithmetic or logical operations, and

= 2 floating point arithmetic operations, and

= 2 memory access (load or store) operations, and
= 1 branch operation, and
= 1 conditional operation
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®) Pipelining

Pipelining is like an assembly line or a bucket brigade.

= An operation consists of multiple stages.

= After a particular set of operands
z(1) = a(r) * b(r) + c(r) * d(n)
completes a particular stage, they move into the next stage.

= Then, another set of operands
z(i1+l) = a(i+l) * b(1+l) + c(i+l) * d(i+l)
can move Into the stage that was just abandoned by the previous
set.

I/OSEEE}\' @ ™ 4 Supercomputing in Plain English: Instruction Level Parallelism
K _// lﬁt TECHNOLOGY Tuesday February 17 2009 37

755

S



OMPUT
-RCOMPLTINE-,
W £
| e
= =
=
5) & i
4
S S
¥ NOVAS

DON"T
PANIC!

%"'6'7 Supercomputing in Plain English: Instruction Level Parallelism
l_ll___'__{;_f;?,;fgggg Tuesday February 17 2009

38



) Pipelining Example

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7

1 = 1 poNn'TPANIC!

DON'TPANIC! § = 4

Computation time
If each stage takes, say, one CPU cycle, then once the
loop gets going, each iteration of the loop increases the
total time by only one c¥cle So a loop of length 1000
takes only 1004 cycles. I3
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®) Pipelines: Example

= IBM POWERA4: pipeline length = 15 stages [
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Some Simple Loops (F90)

DO index = 1, length
dst(index) = srcl(index) + src2(index)
END DO

DO index = 1, length
dst(index) = srcl(index) - src2(index)
END DO

DO index = 1, length
dst(index) = srcl(index) * src2(index)
END DO

DO index = 1, length
dst(index) = srcl(index) / src2(index)

END DO
DO index = 1, length : A

sum = sum + src(index) Reduction: convert
END DO array to scalar
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®) Some Simple Loops (C)

for (index = 0; 1ndex < length; index++) {
dstlindex] = srcl[index] + srcZ2[index];

}

for (index = 0; index < length; index++) {
dstlindex] = srcl[index] - srcZ[index];

}

for (index = 0; index < length; index++) {
dst[index] = srcl[index] * src2[index];

}

for (index = 0; index < length; Index++) {
y dst[index] = srclfindex] / src2[index];

for (index = 0; index < length; index++) {
sum = sum + src[index];

}

§ TS Tuesday February 17 2009
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Q) Slightly Less Simple Loops (F90)

DO index = 1, length
dst(index) = srcl(index) ** src2(index) !'! srcl ™ src2
END DO

DO index = 1, length
dst(index) = MOD(srcl(index), src2(index))
END DO

DO index = 1, length
dst(index) = SQRT(src(index))
END DO

DO index = 1, length
dst(index) = COS(src(index))
END DO

DO 1ndex = 1, length
dst(index) = EXP(src(index))
END DO

DO index = 1, length
dst(index) = LOG(src(index))
END DO
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@) Slightly Less Simple Loops (C)

for (index = 0; index < length; index++) {
dst[index] = pow(srcl[index], src2[index]);

for (index =
y dst[ i1ndex]

for (index =
dst[i1ndex]

}

for (index =
y dst[i1ndex]

for (index = 0; index < length; index++) {
y dst[index] = exp(src[index]);

for (index = 0; index < length; index++) {
dst[index] = log(src[index]);

o

; Index < length; index++} {
srclfindex] % src2[index];

; Iindex < length; index++) {
sgrt(src|index]);

o

; Index < length; index++) {
cos(src[index]);

o
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Q| Performance Characteristics

= Different operations take different amounts of time.

= Different processor types have different performance
characteristics, but there are some characteristics that many
platforms have in common.

= Different compilers, even on the same hardware, perform
differently.

= On some processors, floating point and integer speeds are
similar, while on others they differ.
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Arithmetic Operation Speeds

Better

MFLOPs

Arithmetic Performance on Pentium4 EM64T
(Irwindale 3.2 GHz)
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Fast and Slow Operations

= Fast: sum, add, subtract, multiply

= Medium: divide, mod (that is, remainder)

= Slow: transcendental functions (sqrt, sin, exp)
= Incredibly slow: power x¥ for real x and y

On most platforms, divide, mod and transcendental functions
are not pipelined, so a code will run faster if most of it is
just adds, subtracts and multiplies.

For example, solving an N x N system of linear equations by
LU decomposition uses on the order of N3 additions and
multiplications, but only on the order of N divisions.
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@) What Can Prevent Pipelining?

Certain events make it very hard (maybe even impossible) for
compilers to pipeline a loop, such as:

= array elements accessed in random order

= loop body too complicated

= 1T statements inside the loop (on some platforms)
= premature loop exits

= function/subroutine calls

= 1/0
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@) How Do They Kill Pipelining?

= Random access order: Ordered array access iIs common, so
pipelining hardware and compilers tend to be designed under
the assumption that most loops will be ordered. Also, the
pipeline will constantly stall because data will come from
main memory, not cache.

= Complicated loop body: The compiler gets too
overwhelmed and can’t figure out how to schedule the

Instructions.

————
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@) How Do They Kill Pipelining?

= 1T statements in the loop: On some platforms (but not all),

the pipelines need to perform exactly the same operations
over and over; 1T statements make that impossible.

However, many CPUs can now perform speculative execution:
both branches of the 1T statement are executed while the

condition is being evaluated, but only one of the results is
retained (the one associated with the condition’s value).

Also, many CPUs can now perform branch prediction to head
down the most likely compute path.
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@) How Do They Kill Pipelining?

= Function/subroutine calls interrupt the flow of the
program even more than 1 statements. They can take

execution to a completely different part of the program, and
pipelines aren’t set up to handle that.

= Loop exits are similar. Most compilers can’t pipeline loops
with premature or unpredictable exits.

= |/O: Typically, 1/O is handled in subroutines (above).
Also, 1/O instructions can take control of the program away
from the CPU (they can give control to 1/O devices).
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What If No Pipelining?

SLOW!

(on most platforms)

N Tuesday February 17 2009
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®) Randomly Permuted Loops

Arithmetic Performance: Ordered vs Random

(Irwindale 3.2 GHz)
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®) Superpipelining

Superpipelining is a combination of superscalar and
pipelining.

So, a superpipeline is a collection of multiple pipelines that
can operate simultaneously.

In other words, several different operations can execute
simultaneously, and each of these operations can be broken
Into stages, each of which is filled all the time.

So you can get multiple operations per CPU cycle.

For example, a IBM Power4 can have over 200 different
operations “in flight” at the same time.[]
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®) More Operations At a Time

= |f you put more operations into the code for a loop, you can
get better performance:
= More operations can execute at a time (use more
pipelines), and
= you get better register/cache reuse.

= On most platforms, there’s a limit to how many operations
you can put in a loop to increase performance, but that limit

varies among platforms, and can be quite large.

TECHNOLOGY
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®) Some Complicated Loops

DO index = 1, length madd (or FMA):
dst(index) = srcl(index) + 5.0 * src2(index) mult then add
dot = 0O

DO index = 1, length dot duct
dot = dot + srcl(index) * src2(index) Ot produc
END DO (2 ops)

DO index = 1, length

dst(index) = srcl(index) * src2(index) + & lromour
& src3(index) * src4(index) example
END DO (3 ops)
DO index = 1, length : :
diff12 = srci(index) - src2(index) Fuclidean distance
diff34 = src3(index) - src4(index) (6 ops)
dst(index) = SQRT(diff12 * diffl2 + diff34 * diff34)

-~ COMPUTT
‘._\\Ll N
&

%"'6'7 Supercomputing in Plain English: Instruction Level Parallelism
7 Q ' 1.'.._._.5??%%13%5_ Tuesday February 17 2009 58




®) A Very Complicated Loop

ot = 0.0
DO index = 1, length

ot = lot + &
& srcl(index) * src2(index) + &
& src3(index) * src4(index) + &
& (srcl(index) + src2(index)) * &
& (src3(index) + src4(index)) * &
& (srcl(index) - src2(index)) * &
& (src3(index) - src4(index)) * &
& (srcl(index) - src3(index) + &
& src2(index) - src4(index)) * &
& (srcl(index) + src3(index) - &
& src2(index) + src4(index)) + &
& (srcl(index) * src3(index)) + &
& (src2(index) * src4(index))
END DO

24 arithmetic ops per iteration

4 memory/cache loads per iteration
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Multiple Ops Per Iteration

Better

MFLOPs

Arithmetic Performance: Multiple Operations
(Irwindale 3.2 GHz)
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Q| What Is a Vector?

A vector Is a giant register that behaves like a collection of
regular registers, except these registers all simultaneously
perform the same operation on multiple sets of operands,
producing multiple results.

In a sense, vectors are like operation-specific cache.

A vector register is a register that’s actually made up of many
Individual registers.

A vector instruction is an instruction that performs the same
operation simultaneously on all of the individual registers of a
vector register.
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) Vector Register

V2

+ + + + + + + +

vO <- v1 + V2
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Vectors Are Expensive

Vectors were very popular in the 1980s, because they’re very
fast, often faster than pipelines.

In the 1990s, though, they weren’t very popular. Why?

Well, vectors aren’t used by many commercial codes (for .' y
example, MS Word). So most chip makers didn’t bother Wlth
Vectors.

So, If you wanted vectors, you had to pay a lot of extra money
for them.

However, with the Pentium 111 Intel reintroduced very small
vectors (2 operations at a time), for integer operations only.
The Pentium4 added floating point vector operations, also of
size 2. Now, the Pentium4 EM64T has doubled the vector
size to 4.
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A Real Examplel]

DO k=2,nz-1
DO j=2,ny-1
DO 1=2,nx-1
teml(n,j,k)
tem2(1,j,k)
tem3(1,],Kk)
END DO
END DO
END DO
DO k=2,nz-1
DO j=2,ny-1
DO 1=2,nx-1
u(i,j.k,3) = udi,jy,k,1) - &
& dtbig2*(teml(1,j,k)+tem2(1,j,k)+tem3(i1,j,k))
END DO
END DO
END DO

u(n,j.k,2)*(u(i+l,j.k,2)-u(i-1,j,k,2))*dxinv2
v(i,j.k,2)*(u(i,j+1,k,2)-u(i,j-1,k,2))*dyinv2
w(i,j,K,2)*u(i,j,k+1,2)-u(i,j.k-1,2))*dzinv2
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®) Real Example Performance

Performance By Method
Better

MFLOPS

10 loops 5 loops 1 loop 2loops  2loops unrolled
Method

M Pentium3 NAG M Pentium3 Vast
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Why You Shouldn’t Panic

In general, the compiler and the CPU will do most of the heavy
lifting for instruction-level parallelism.

BUT:

You need to be aware of ILP, because
how your code Is structured affects
how much ILP the compiler and the
CPU can give you.
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Q| OK Supercomputing Symposium
Wed Oct 7 2009 @ OU

2003 Keynote: " ”

Peter Freeman 2004 Keynote:

NSF Sangtae Kim It
Computer & NSF Shared
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: r vanced Head of NSF's 2007 K te: -
Assistant Director Supercomputing Office of Jay Bo?élge%lf VA
Division Director ~ Cyber- Director 2008 K -
Parallel Programming Workshop — infrastructure  Tgyas Advanced  “Joos Noiow
I Computing Center  Deputy Office
FREE! Tue Oct 6 2009_ @ OuU U. Texas Austin ~ Director/ Senior
Sponsored by SC09 Education Program Scientific é%'fror
FREE! Symposium Wed Oct 7 2009 @ OU infrastructure
National Science

OMPLTTR

http://symposium2009.oscer.ou.edu/ Foundation
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Q| SC09 Summer Workshops

This coming summer, the SC09 Education Program, part of the
SCO09 (Supercomputing 2009) conference, is planning to
hold two weeklong supercomputing-related workshops in
Oklahoma, for FREE (except you pay your own travel):

= At OU: Parallel Programming & Cluster Computing, date to
be decided, weeklong, for FREE

= At OSU: Computational Chemistry (tentative), date to be
decided, weeklong, for FREE

We’ll alert everyone when the details have been ironed out and
the registration webpage opens.

Please note that you must apply for a seat, and acceptance
CANNOT be guaranteed.
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To Learn More Supercomputing
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Thanks for your

Q|| attention!

Questions?
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