Supercomputing

INn Plain English
Part I11:

Q|| Instruction Level Parallelism

Henry Neeman, Director

OU Supercomputing Center for Education & Research
University of Oklahoma Information Technology
INFORMATION

Tuesday February 17 2009
't TECHNOLOGY

FFFFFFFFFFFFFFFFFFFFFFFFFF

Q| This Is an experiment!

It’s the nature of these kinds of videoconferences that
FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone
bridge to fall back on.

I/(OSCER}\ % 7 4 Supercomputing in Plain English: Instruction Level Parallelism
\\ // lt BroRTON Tuesday February 17 2009 2

Q| Access Grid

This week’s Access Grid (AG) venue: Monte Carlo.
If you aren’t sure whether you have AG, you probably don’t.

Tue Feb 17 Monte Carlo

Tue Feb 27 Helium

Tue March 3 Titan

Tue March 10 | NO WORKSHOP Many than kS tO

Tue March 17 NO WORKSHOP
Tue March 24 | Axon
Tue March 31 Cactus

John Chapman of
U Arkansas for

Tue Apr 7 Walkabout setti ng these up
Tue Apr 14 Cactus for us.
Tue Apr 21 Verlet

'/(O&ER}\ % ™ 4 Supercomputing in Plain English: Instruction Level Parallelism
K '|t RESRY Tuesday February 17 2009 3

H.323 (Polycom etc)

If you want to use H.323 videoconferencing — for example,
Polycom — then dial

69.77.7_203##12345

any time after 2:00pm. Please connect early, at least today.

For assistance, contact Andy Fleming of KanREN/Kan-ed
(afleming@kanren.net or 785-865-6434).

KanREN/Kan-ed’s H.323 system can handle up to 40
simultaneous H.323 connections. If you cannot connect, it
may be that all 40 are already in use.

Many thanks to Andy and KanREN/Kan-ed for providing
H.323 access.

Tuesday February 17 2009

'/(OS(:ER}\ % Y™ 4 Supercomputmg in Plain English: Instruction Level Parallelism

http://www.kanren.net/
mailto:afleming@kanren.net

®) iLinc

We have unlimited simultaneous iLInc connections available.

If you’re already on the SIPE e-mail list, then you should
receive an e-mail about iLinc before each session begins.

If you want to use iLinc, please follow the directions in the
ILinc e-mail.

For iLinc, you MUST use either Windows (XP strongly
preferred) or MacOS X with Internet Explorer.

To use iLinc, you’ll need to download a client program to your
PC. It’s free, and setup should take only a few minutes.

Many thanks to Katherine Kantardjieff of California State U
Fullerton for providing the iLinc licenses.

y Tuesday February 17 2009 5

1/{0 " R\\ % ™ 4 Supercomputing in Plain English: Instruction Level Parallelism
D, :? lt INFORMATIO
\Q“‘r s :\y "&m TECHNOLOG

Q| QuickTime Broadcaster

If you cannot connect via the Access Grid, H.323 or ILinc,
then you can connect via QuickTime:

rtsp://129.15.254.141/test hpc09.sdp

We recommend using QuickTime Player for this, because
we’ve tested it successfully.

We recommend upgrading to the latest version at:
http://www.apple.com/quicktime/
When you run QuickTime Player, traverse the menus
File -> Open URL
Then paste In the rstp URL into the textbox, and click OK.

Many thanks to Kevin Blake of OU for setting up QuickTime
Broadcaster for us.

TR e,/ Supercomputing in Plain English: Instruction Level Parallelism
(#20SCERES)
(< } % ; l;t.}:.i?*%ﬁg? Tuesday February 17 2009

http://www.apple.com/quicktime/

Q| Phone Bridge

If all else fails, you can call into our toll free phone bridge:
1-866-285-7778, access code 6483137#

Please mute yourself and use the phone to listen.

Don’t worry, we’ll call out slide numbers as we go.

Please use the phone bridge ONLY if you cannot connect any
other way: the phone bridge is charged per connection per
minute, so our preference is to minimize the number of
connections.

Many thanks to Amy Apon and U Arkansas for providing the
toll free phone bridge.

Supercomputing in Plain English: Instruction Level Parallelism

-+ His -
Bt % © lIlt pEomaTY Tuesday February 17 2009

Please Mute Yourself

No matter how you connect, please mute yourself, so that we
cannot hear you.

At OU, we will turn off the sound on all conferencing
technologies.

That way, we won’t have problems with echo cancellation.
Of course, that means we cannot hear questions.
So for questions, you’ll need to send some kind of text.

Also, if you’re on iLinc: SIT ON YOUR HANDS!
Please DON’T touch ANYTHING!

Supercomputmg in Plain English: Instruction Level Parallelism
; Tuesday February 17 2009

Q| Questions via Text: iLinc or E-mall

Ask questions via text, using one of the following:
= ILinc’s text messaging facility;
= e-mail to si1pe2009@gmail . com.

All questions will be read out loud and then answered out loud.

o ™4 Supercomputing in Plain English: Instruction Level Parallelism
'|i heome: Tuesday February 17 2009 9

mailto:sipe2009@gmail.com

Q| Thanks for helping!

= OSCER operations staff (Brandon George, Dave Akin, Brett
Zimmerman, Josh Alexander)

= OU Research Campus staff (Patrick Calhoun, Josh Maxey)
= Kevin Blake, OU IT (videographer)

= Katherine Kantardjieff, CSU Fullerton

= John Chapman and Amy Apon, U Arkansas

= Andy Fleming, KanREN/Kan-ed

= This material is based upon work supported by the National
Science Foundation under Grant No. OCI-0636427, “CI-
TEAM Demonstration: Cyberinfrastructure Education for
Bioinformatics and Beyond.”

I/{OSCER\;\ % Y 4 Supercomputing in Plain English: Instruction Level Parallelism
- lt Szmunce Tuesday February 17 2009 10

Q| This Is an experiment!

It’s the nature of these kinds of videoconferences that
FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone
bridge to fall back on.

I/(OSCER}\ % 7 4 Supercomputing in Plain English: Instruction Level Parallelism
\\ // lt BroRTON Tuesday February 17 2009 11

Q| Supercomputing Exercises

Want to do the “Supercomputing in Plain English” exercises?

= The first two exercises are already posted at:
http://www.oscer .ou.edu/education.php

= If you don’t yet have a supercomputer account, you can get

a temporary account, just for the “Supercomputing in Plain
English” exercises, by sending e-mail to:

hneeman@ou . edu

Please note that this account is for doing the exercises only,
and will be shut down at the end of the series.

s This week’s Arithmetic Operations exercise will give you

experience benchmarking various arithmetic operations
under various conditions.

%'6'7 Supercomputing in Plain English: Instruction Level Parallelism
i l_it_}*;;?,ﬁ._’;,ﬂgﬁ Tuesday February 17 2009 12

http://www.oscer.ou.edu/education.php
mailto:hneeman@ou.edu

Q| OK Supercomputing Symposium
Wed Oct 7 2009 @ OU

2003 Keynote: " ”

Peter Freeman 2004 Keynote:

NSF Sangtae Kim It
Computer & NSF Shared
Igf(_)rmat:g‘n Cyberinfrastructure 2005 Keynote: 5q06 keynote: m
: r vanced Head of NSF's 2007 K te: -
Assistant Director Supercomputing Office of Jay Bo?élge%lf VA
Division Director ~ Cyber- Director 2008 K -
Parallel Programming Workshop — infrastructure Tgyas Advanced “Joos Noiow
I Computing Center Deputy Office
FREE! Tue Oct 6 2009_ @ OuU U. Texas Austin ~ Director/ Senior
Sponsored by SC09 Education Program Scientific é%'fror
FREE! Symposium Wed Oct 7 2009 @ OU infrastructure
National Science

OMPLTTR

http://symposium2009.oscer.ou.edu/ Foundation

%'6'7 Supercomputing in Plain English: Instruction Level Parallelism
A 4 I | TR Tuesday February 17 2009 13

Q| SC09 Summer Workshops

This coming summer, the SC09 Education Program, part of the
SCO09 (Supercomputing 2009) conference, is planning to
hold two weeklong supercomputing-related workshops in
Oklahoma, for FREE (except you pay your own travel):

= At OU: Parallel Programming & Cluster Computing, date to
be decided, weeklong, for FREE

= At OSU: Computational Chemistry (tentative), date to be
decided, weeklong, for FREE

We’ll alert everyone when the details have been ironed out and
the registration webpage opens.

Please note that you must apply for a seat, and acceptance
CANNOT be guaranteed.

Supercomputmg in Plain English: Instruction Level Parallelism
iQ&ER i) % ¥ 'It Tuesday February 17 2009 14

®) Outline

= What is Instruction-Level Parallelism?
= Scalar Operation

= Loops

= Pipelining

= Loop Performance

= Superpipelining

= \Vectors

= A Real Example

=y

& S(_:EE}\ @ Y™ 4 Supercomputing in Plain English: Instruction Level Parallelism
et 'lja"!_ u PLEORATIEN Tuesday February 17 2009

Parallelism

Parallelism means

doing multiple things at
the same time: You can
get more work done in

the same time.
Less fish ...

OOOOOOOOOO
HE UNIVERSITY OF OKLAM

More fis

Tuesday February 17 2009

n!

Supercomputing in Plain English: Instruction Level Parallelism

16

®) What Is ILP?

Instruction-Level Parallelism (ILP) is a set of techniques for
executing multiple instructions at the same time within
the same CPU core.

(Note that ILP has nothing to do with multicore.)

The problem: The CPU has lots of circuitry, and at any given
time, most of it is idle, which is wasteful.

The solution: Have different parts of the CPU work on
different operations at the same time: If the CPU has the
ability to work on 10 operations at a time, then the program
can, in principle, run as much as 10 times as fast (although in
practice, not quite so much).

I/&)S&EEB\ @ ™ 4 Supercomputing in Plain English: Instruction Level Parallelism
_// lt TECHNOLOG Tuesday February 17 2009 17

N
Y

OMPUT
-RCOMPLTINE-,
W £
| e
= =
=
5) & i
4
S S
¥ NOVAS

DON"T
PANIC!

%"'6'7 Supercomputing in Plain English: Instruction Level Parallelism
l_ll___'__{;_f;?,;fgggg Tuesday February 17 2009

18

Why You Shouldn’t Panic

In general, the compiler and the CPU will do most of the heavy
lifting for instruction-level parallelism.

BUT:

You need to be aware of ILP, because
how your code Is structured affects
how much ILP the compiler and the
CPU can give you.

Supercomputing in Plain English: Instruction Level Parallelism
DL reonamey Tuesday February 17 2009 19

®) Kinds of ILP

= Superscalar: Perform multiple operations at the same time
(for example, simultaneously perform an add, a multiply and
a load).

= Pipeline: Start performing an operation on one piece of data
while finishing the same operation on another piece of data —
perform different stages of the same operation on different
sets of operands at the same time (like an assembly line).

= Superpipeline: A combination of superscalar and pipelining
— perform multiple pipelined operations at the same time.

= Vector: Load multiple pieces of data into special registers and
perform the same operation on all of them at the same time.

NG

R\;\ & ™ 4 Supercomputing in Plain English: Instruction Level Parallelism
& lt#’;i%&’;ﬁﬂ%: Tuesday February 17 2009 20

N iy ey
e :‘.-f\y
T R

Q| What’s an Instruction?

= Memory: For example, load a value from a specific address
In main memory into a specific register, or store a value
from a specific register into a specific address in main
memory.

= Arithmetic: For example, add two specific registers together
and put their sum In a specific register — or subtract,
multiply, divide, square root, etc.

= Logical: For example, determine whether two registers both
contain nonzero values (“AND”).

= Branch: Jump from one sequence of instructions to another
(for example, function call).

m ...andsoon....

/\\ Supercomputing in Plain English: Instruction Level Parallelism
lé/:O&:ERﬁxl QI lt INFORMATION P P : y
\’iﬂ};;_\.‘uf_%:_\::%:\(\j TECHNQLQGV Tuesday February 17 2009 21

®) What’s a Cycle?

You’ve heard people talk about having a 2 GHz processor or a 3
GHz processor or whatever. (For example, Henry’s laptop
has a 1.83 GHz Pentium4 Centrino Duo.)

Inside every CPU is a little clock that ticks with a fixed
frequency. We call each tick of the CPU clock a clock cycle

or a cycle.
So a 2 GHz processor has 2 billion clock cycles per second.

Typically, a primitive operation (for example, add, multiply,
divide) takes a fixed number of cycles to execute (assuming

no pipelining).

| /(Ogc ER}\ : T 4 sUpercompUtlng in Plain English: Instruction Level Parallelism

Tuesday February 17 2009 22

@) What’s the Relevance of Cycles?

Typically, a primitive operation (for example, add, multiply,
divide) takes a fixed number of cycles to execute (assuming
no pipelining).

= |IBM POWER4 [1]

= Multiply or add: 6 cycles (64 bit floating point) £
= Load: 4 cycles from L1 cache
14 cycles from L2 cache

= Intel Pentium4 EM6GAT (Core) [2]

= Multiply: 7 cycles (64 bit floating point) s

= Add, subtract: 5 cycles (64 bit floating point) ¥l
= Divide: 38 cycles (64 bit floating point) [g SUIE
= Square root: 39 cycles (64 bit floating point)

= Tangent: 240-300 cycles (64 bit floating point) &

'OSCER} QI /} Supercomputing in Plain English: Instruction Level Parallelism
FORMATION Tuesday February 17 2009 23

ation
Scalar Oper
Q||

OMPUT
-RCOMPLTINE-,
W £
| e
= =
=
5) & i
4
S S
¥ NOVAS

DON"T
PANIC!

%"'6'7 Supercomputing in Plain English: Instruction Level Parallelism
l_ll___'__{;_f;?,;fgggg Tuesday February 17 2009

25

®) Scalar Operation
Z =a*b+c * d;

How would this statement be executed?

Load a into register RO

Load b into R1

Multiply R2 = RO * R1

Load c Into R3

Load d into R4

Multiply R5 = R3 * R4

Add R6 = R2 + R5

Store R6 Into z

N OR WM R

Supercomputing in Plain English: Instruction Level Parallelism
DL reonsey Tuesday February 17 2009 26

Q| Does Order Matter?

Zz =a>*b+c* d;

1. Load a into RO 1. Load d into RO
2. Load b Into R1 2. Load c iInto R1
3. Multl I%/%O « R1 3. I\/Iultlplﬁo « 1
4, Load c Into R3 4., Load b Into R3
5. Load d into R4 5. Load a into R4
6. Multiply 6. Multiply
R5 = R3 * R4 R5 = R3 * R4
7. Add R6 = R2 + R5 | 7. Add R6 = R2 + R5
8. Store R6 Into z 8. Store R6 into z

In the cases where order doesn’t matter, we say that
the operations are independent of one another.

R % ™ 4 Supercomputing in Plain English: Instruction Level Parallelism
. lit_}*é;%i%ﬂ%? Tuesday February 17 2009 27

Superscalar Operation

B~ w

D.

Z =a*b+c* d;
Load a into RO AND
load b into R1
Multiply R2 = RO * R1 AND
load ¢ into R3 AND
load d into R4
Multiply R5 = R3 * R4
Add R6 = R2 + R5
Store R6 Into z
If order doesn’t matter,
then things can happen simultaneously.

So, we go from 8 operations down to 5.
(Note: there are lots of simplifying assumptions here.)

Supercomputing in Plain English: Instruction Level Parallelism
il | Sy Tuesday February 17 2009 28

L_oopS
Q||

_oops Are Good

Most compilers are very good at optimizing loops, and not
very good at optimizing other constructs.
Why?

DO 1ndex = 1, length
dst(index) = srcl(index) + src2(index)
END DO

for (index = 0O; iIndex < length; index++) {
dst[index] = srcl[index] + src2[index];

Supercomputing in Plain English: Instruction Level Parallelism
il | Sy Tuesday February 17 2009 30

®) Why Loops Are Good

= Loops are very common in many programs.

= Also, It’s easier to optimize loops than more arbitrary
sequences of instructions: when a program does the same
thing over and over, it’s easier to predict what’s likely to
happen next.

So, hardware vendors have designed their products to be able

to execute loops quickly.

TECHNOLOGY

I/(OS(:ER\}\ @ Y™ 4 Supercomputing in Plain English: Instruction Level Parallelism
\\// 'It INFORMATION Tuesday February 17 2009 31

OMPUT
-RCOMPLTINE-,
W £
| e
= =
=
5) & i
4
S S
¥ NOVAS

DON"T
PANIC!

%"'6'7 Supercomputing in Plain English: Instruction Level Parallelism
l_ll___'__{;_f;?,;fgggg Tuesday February 17 2009

32

Superscalar Loops

DO 1 = 1, length

z(1) = a(r) * b(r) + c(r) * d(rn)
END DO
Each of the iterations is completely independent of all

of the other Iiterations; for example,

z(1) = a(l) * b(1) + c(1) * d(1)
has nothing to do with

z(2) = a(2) * b(2) + c(2) * d(2)
Operations that are independent of each other can be
performed In parallel.

Supercomputing in Plain English: Instruction Level Parallelism
Bl | ety Tuesday February 17 2009 33

®) Superscalar Loops

for (i O; 1 < length; 1++) {
z[a] = a[r] * b[r] + c[1] * d[1];
}

1. Load aJ 1] into RO AND load b[1] into R1
2. Multiply R2 = RO * R1 AND load c[1] into
R3 AND load d[i] Into R4
3. Multiply R5 = R3 * R4 AND
load a[|+1] into RO AND load b[i+1] into R1
. Add R6 = R2 + R5 AND load c[1+1] into R3

AND load d[1+1] into R4
. Store R6 into z[1] AND multiply R2 = RO * R1

4
5

6. etcetcetc
Once this loop Is “In flight,” each iteration adds only

2 operations to the total, not 8.

Ge . & ™ 4 Supercomputing in Plain English: Instruction Level Parallelism
e lit_}’éi%ﬁ.’&ﬂ;‘é? Tuesday February 17 2009 34

®) Example: IBM POWERA4

8-way Superscalar: can execute up to 8 operations at the same
timell]

= 2 integer arithmetic or logical operations, and

= 2 floating point arithmetic operations, and

= 2 memory access (load or store) operations, and
= 1 branch operation, and
= 1 conditional operation

I/(OScE;{\}\ @ ™ 4 Supercomputing in Plain English: Instruction Level Parallelism
B lt SEonamoN Tuesday February 17 2009 35

Pipelining
Q||

®) Pipelining

Pipelining is like an assembly line or a bucket brigade.

= An operation consists of multiple stages.

= After a particular set of operands
z(1) = a(r) * b(r) + c(r) * d(n)
completes a particular stage, they move into the next stage.

= Then, another set of operands
z(i1+l) = a(i+l) * b(1+l) + c(i+l) * d(i+l)
can move Into the stage that was just abandoned by the previous
set.

I/OSEEE}\' @ ™ 4 Supercomputing in Plain English: Instruction Level Parallelism
K _// lﬁt TECHNOLOGY Tuesday February 17 2009 37

755

S

OMPUT
-RCOMPLTINE-,
W £
| e
= =
=
5) & i
4
S S
¥ NOVAS

DON"T
PANIC!

%"'6'7 Supercomputing in Plain English: Instruction Level Parallelism
l_ll___'__{;_f;?,;fgggg Tuesday February 17 2009

38

) Pipelining Example

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7

1 = 1 poNn'TPANIC!

DON'TPANIC! § = 4

Computation time
If each stage takes, say, one CPU cycle, then once the
loop gets going, each iteration of the loop increases the
total time by only one c¥cle So a loop of length 1000
takes only 1004 cycles. I3

o 2 % Supercomputing in Plain English: Instruction Level Parallelism
hEomunon Tuesday February 17 2009 39

®) Pipelines: Example

= IBM POWERA4: pipeline length = 15 stages [

/&)&_EE}\ % Y™ 4 Supercomputing in Plain English: Instruction Level Parallelism
K '|t RESRY Tuesday February 17 2009

40

Some Simple Loops (F90)

DO index = 1, length
dst(index) = srcl(index) + src2(index)
END DO

DO index = 1, length
dst(index) = srcl(index) - src2(index)
END DO

DO index = 1, length
dst(index) = srcl(index) * src2(index)
END DO

DO index = 1, length
dst(index) = srcl(index) / src2(index)

END DO
DO index = 1, length : A

sum = sum + src(index) Reduction: convert
END DO array to scalar

l;*;f;a'::g,ﬁ,'gu Tuesday February 17 2009 41

% Qlfi") Supercomputing in Plain English: Instruction Level Parallelism

®) Some Simple Loops (C)

for (index = 0; 1ndex < length; index++) {
dstlindex] = srcl[index] + srcZ2[index];

}

for (index = 0; index < length; index++) {
dstlindex] = srcl[index] - srcZ[index];

}

for (index = 0; index < length; index++) {
dst[index] = srcl[index] * src2[index];

}

for (index = 0; index < length; Index++) {
y dst[index] = srclfindex] / src2[index];

for (index = 0; index < length; index++) {
sum = sum + src[index];

}

§ TS Tuesday February 17 2009

% Qll?i") Supercomputing in Plain English: Instruction Level Parallelism

Q) Slightly Less Simple Loops (F90)

DO index = 1, length
dst(index) = srcl(index) ** src2(index) !'! srcl ™ src2
END DO

DO index = 1, length
dst(index) = MOD(srcl(index), src2(index))
END DO

DO index = 1, length
dst(index) = SQRT(src(index))
END DO

DO index = 1, length
dst(index) = COS(src(index))
END DO

DO 1ndex = 1, length
dst(index) = EXP(src(index))
END DO

DO index = 1, length
dst(index) = LOG(src(index))
END DO

% Qll?i'? Supercomputing in Plain English: Instruction Level Parallelism

l;*;f;amﬂgu Tuesday February 17 2009 43

@) Slightly Less Simple Loops (C)

for (index = 0; index < length; index++) {
dst[index] = pow(srcl[index], src2[index]);

for (index =
y dst[i1ndex]

for (index =
dst[i1ndex]

}

for (index =
y dst[i1ndex]

for (index = 0; index < length; index++) {
y dst[index] = exp(src[index]);

for (index = 0; index < length; index++) {
dst[index] = log(src[index]);

o

; Index < length; index++} {
srclfindex] % src2[index];

; Iindex < length; index++) {
sgrt(src|index]);

o

; Index < length; index++) {
cos(src[index]);

o

l;r;ggm{ggu Tuesday February 17 2009 44

% Qll?i") Supercomputing in Plain English: Instruction Level Parallelism

formance
Loop Per
Q||

Q| Performance Characteristics

= Different operations take different amounts of time.

= Different processor types have different performance
characteristics, but there are some characteristics that many
platforms have in common.

= Different compilers, even on the same hardware, perform
differently.

= On some processors, floating point and integer speeds are
similar, while on others they differ.

/ Supercomputmg in Plain English: Instruction Level Parallelism
(O&ER} % lEI'rt e Tuesday February 17 2009 46

Arithmetic Operation Speeds

Better

MFLOPs

Arithmetic Performance on Pentium4 EM64T
(Irwindale 3.2 GHz)

3000

2500

2000 A

1500 A

1000 ~

500

l' —l

o
x
[

= = = o o o 9o 29

= = = = = = = 2

;ﬁt‘tn
53 2 g3 323 3 88 8 2 ¢

rlog

o
S N N
(1)

radd
iadd
rsum
isum
rsub
isub
rmul
imul
rmam
imam
rmad
imad
rdiv
idiv
rdot

| m ifort -O0 m pgfo0 -O0 m nagf95 -O0 m gfortran -O0 M ifort -O2 M pgfo0 -O3 M gfortran -O2 M nagfo5 -04 \

: - % ? Supercomputing in Plain English: Instruction Level Parallelism
o | | R Tuesday February 17 2009

47

Fast and Slow Operations

= Fast: sum, add, subtract, multiply

= Medium: divide, mod (that is, remainder)

= Slow: transcendental functions (sqrt, sin, exp)
= Incredibly slow: power x¥ for real x and y

On most platforms, divide, mod and transcendental functions
are not pipelined, so a code will run faster if most of it is
just adds, subtracts and multiplies.

For example, solving an N x N system of linear equations by
LU decomposition uses on the order of N3 additions and
multiplications, but only on the order of N divisions.

v Tuesday February 17 2009 48

r i) % ™ 4 Supercomputing in Plain English: Instruction Level Parallelism
5 25/ lt INFORMATIO
. f TE.(?H.N?.LO.G

@) What Can Prevent Pipelining?

Certain events make it very hard (maybe even impossible) for
compilers to pipeline a loop, such as:

= array elements accessed in random order

= loop body too complicated

= 1T statements inside the loop (on some platforms)
= premature loop exits

= function/subroutine calls

= 1/0

SR Y Y™ 4 Supercomputing in Plain English: Instruction Level Parallelism
(OSCER} % . lt Tuesday February 17 2009 49

@) How Do They Kill Pipelining?

= Random access order: Ordered array access iIs common, so
pipelining hardware and compilers tend to be designed under
the assumption that most loops will be ordered. Also, the
pipeline will constantly stall because data will come from
main memory, not cache.

= Complicated loop body: The compiler gets too
overwhelmed and can’t figure out how to schedule the

Instructions.

————

/oS(_:EE}\' Ql';i’ P 4 Supercomputing in Plain English: Instruction Level Parallelism
g 3% I

\zea INFORMATION TueSday February 17 2009 50

TECHNOLOGY

@) How Do They Kill Pipelining?

= 1T statements in the loop: On some platforms (but not all),

the pipelines need to perform exactly the same operations
over and over; 1T statements make that impossible.

However, many CPUs can now perform speculative execution:
both branches of the 1T statement are executed while the

condition is being evaluated, but only one of the results is
retained (the one associated with the condition’s value).

Also, many CPUs can now perform branch prediction to head
down the most likely compute path.

G o R ™ 4 Supercomputing in Plain English: Instruction Level Parallelism
(#30SCERES) - g
et '_l?!_ TECINOLOY Tuesday February 17 2009 51

@) How Do They Kill Pipelining?

= Function/subroutine calls interrupt the flow of the
program even more than 1 statements. They can take

execution to a completely different part of the program, and
pipelines aren’t set up to handle that.

= Loop exits are similar. Most compilers can’t pipeline loops
with premature or unpredictable exits.

= |/O: Typically, 1/O is handled in subroutines (above).
Also, 1/O instructions can take control of the program away
from the CPU (they can give control to 1/O devices).

lo.’:(_:EE} @ ™ 4 Supercomputing in Plain English: Instruction Level Parallelism
_// 'I,"t BEoMunoN Tuesday February 17 2009 52

What If No Pipelining?

SLOW!

(on most platforms)

N Tuesday February 17 2009

R %"'6'7 Supercomputing in Plain English: Instruction Level Parallelism
Ja 2% ' l' " INFORMATIO
e THE UNYERSTY OF O

53

®) Randomly Permuted Loops

Arithmetic Performance: Ordered vs Random

(Irwindale 3.2 GHz)
Better 3000
2500
2000 -+
)
o
1 1500
LL
=
1000
500 -
0 - p— " L
T EEZg S ST ZTEE YRR 2T 2 238382 g e e 33 YJS I &I
g.sg,gz.egéggggeggggeg:Egééégég =

‘ M ifort -O2 M permuted ‘

"~ %'6'7 Supercomputing in Plain English: Instruction Level Parallelism
a7 4 B l]_'_}:;ggfgiggc Tuesday February 17 2009

Ipelining
Superpipe
Q||

®) Superpipelining

Superpipelining is a combination of superscalar and
pipelining.

So, a superpipeline is a collection of multiple pipelines that
can operate simultaneously.

In other words, several different operations can execute
simultaneously, and each of these operations can be broken
Into stages, each of which is filled all the time.

So you can get multiple operations per CPU cycle.

For example, a IBM Power4 can have over 200 different
operations “in flight” at the same time.[]

I/{OSCER\;\ % Y 4 Supercomputing in Plain English: Instruction Level Parallelism
K 'It nEomaToN Tuesday February 17 2009 56

®) More Operations At a Time

= |f you put more operations into the code for a loop, you can
get better performance:
= More operations can execute at a time (use more
pipelines), and
= you get better register/cache reuse.

= On most platforms, there’s a limit to how many operations
you can put in a loop to increase performance, but that limit

varies among platforms, and can be quite large.

TECHNOLOGY

l/(O&E%}\ @ Y™ 4 Supercomputing in Plain English: Instruction Level Parallelism
KN lt INFORMATION Tuesday February 17 2009 57

®) Some Complicated Loops

DO index = 1, length madd (or FMA):
dst(index) = srcl(index) + 5.0 * src2(index) mult then add
dot = 0O

DO index = 1, length dot duct
dot = dot + srcl(index) * src2(index) Ot produc
END DO (2 ops)

DO index = 1, length

dst(index) = srcl(index) * src2(index) + & lromour
& src3(index) * src4(index) example
END DO (3 ops)
DO index = 1, length : :
diff12 = srci(index) - src2(index) Fuclidean distance
diff34 = src3(index) - src4(index) (6 ops)
dst(index) = SQRT(diff12 * diffl2 + diff34 * diff34)

-~ COMPUTT
‘._\\Ll N
&

%"'6'7 Supercomputing in Plain English: Instruction Level Parallelism
7 Q ' 1.'.._._.5??%%13%5_ Tuesday February 17 2009 58

®) A Very Complicated Loop

ot = 0.0
DO index = 1, length

ot = lot + &
& srcl(index) * src2(index) + &
& src3(index) * src4(index) + &
& (srcl(index) + src2(index)) * &
& (src3(index) + src4(index)) * &
& (srcl(index) - src2(index)) * &
& (src3(index) - src4(index)) * &
& (srcl(index) - src3(index) + &
& src2(index) - src4(index)) * &
& (srcl(index) + src3(index) - &
& src2(index) + src4(index)) + &
& (srcl(index) * src3(index)) + &
& (src2(index) * src4(index))
END DO

24 arithmetic ops per iteration

4 memory/cache loads per iteration

%"'6'7 Supercomputing in Plain English: Instruction Level Parallelism
S 20 N |]',...???%5%?325 Tuesday February 17 2009

Multiple Ops Per Iteration

Better

MFLOPs

Arithmetic Performance: Multiple Operations
(Irwindale 3.2 GHz)

3000
2500
2000 -
Ml ifort -O2
1500 M pgfa0 -0O3
M nagf9s -04
M gfortran -O2
1000
500 A
O .

radd jadd rmam imam rmad imad rdot reuc rlot08 rlotl0 rlotl2 rlotl6 rlot20 rlot24

Qlfi'? Supercomputing in Plain English: Instruction Level Parallelism

COMPUTR
RCOMPUT/
o &
o
= =
5) {3 i
o
" rr}"-_r oo b0 :
¥ NOLLY

_ll__'__;;_f;g;fg;:ggg Tuesday February 17 2009

60

Vectors
Q||

Q| What Is a Vector?

A vector Is a giant register that behaves like a collection of
regular registers, except these registers all simultaneously
perform the same operation on multiple sets of operands,
producing multiple results.

In a sense, vectors are like operation-specific cache.

A vector register is a register that’s actually made up of many
Individual registers.

A vector instruction is an instruction that performs the same
operation simultaneously on all of the individual registers of a
vector register.

I/(OScE;{\}\ @ ™ 4 Supercomputing in Plain English: Instruction Level Parallelism
B lt SEonamoN Tuesday February 17 2009 62

) Vector Register

V2

+ + + + + + + +

vO <- v1 + V2

% @ Supercomputing in Plain English: Instruction Level Parallelism
| o Tuesday February 17 2009 63

uuuuuuuuuuuuuuuuuuuuuuu

Vectors Are Expensive

Vectors were very popular in the 1980s, because they’re very
fast, often faster than pipelines.

In the 1990s, though, they weren’t very popular. Why?

Well, vectors aren’t used by many commercial codes (for .' y
example, MS Word). So most chip makers didn’t bother Wlth
Vectors.

So, If you wanted vectors, you had to pay a lot of extra money
for them.

However, with the Pentium 111 Intel reintroduced very small
vectors (2 operations at a time), for integer operations only.
The Pentium4 added floating point vector operations, also of
size 2. Now, the Pentium4 EM64T has doubled the vector
size to 4.

| /(Ogc ER}\ : T 4 sUpercompUtlng in Plain English: Instruction Level Parallelism

Tuesday February 17 2009 64

mple
A Real Exa
Q||

A Real Examplel]

DO k=2,nz-1
DO j=2,ny-1
DO 1=2,nx-1
teml(n,j,k)
tem2(1,j,k)
tem3(1,],Kk)
END DO
END DO
END DO
DO k=2,nz-1
DO j=2,ny-1
DO 1=2,nx-1
u(i,j.k,3) = udi,jy,k,1) - &
& dtbig2*(teml(1,j,k)+tem2(1,j,k)+tem3(i1,j,k))
END DO
END DO
END DO

u(n,j.k,2)*(u(i+l,j.k,2)-u(i-1,j,k,2))*dxinv2
v(i,j.k,2)*(u(i,j+1,k,2)-u(i,j-1,k,2))*dyinv2
w(i,j,K,2)*u(i,j,k+1,2)-u(i,j.k-1,2))*dzinv2

X Supercomputing in Plain English: Instruction Level Parallelism
e W]_it_;;;gmggu_ Tuesday February 17 2009 66

®) Real Example Performance

Performance By Method
Better

MFLOPS

10 loops 5 loops 1 loop 2loops 2loops unrolled
Method

M Pentium3 NAG M Pentium3 Vast

Tuesday February 17 2009 67

_ % Supercomputing in Plain English: Instruction Level Parallelism
B ; :f l INFORMATION

OMPUT
-RCOMPLTINE-,
W £
| e
= =
=
5) & i
4
S S
¥ NOVAS

DON"T
PANIC!

%"'6'7 Supercomputing in Plain English: Instruction Level Parallelism
l_ll___'__{;_f;?,;fgggg Tuesday February 17 2009

68

Why You Shouldn’t Panic

In general, the compiler and the CPU will do most of the heavy
lifting for instruction-level parallelism.

BUT:

You need to be aware of ILP, because
how your code Is structured affects
how much ILP the compiler and the
CPU can give you.

Supercomputing in Plain English: Instruction Level Parallelism
| s Tuesday February 17 2009 69

Q| OK Supercomputing Symposium
Wed Oct 7 2009 @ OU

2003 Keynote: " ”

Peter Freeman 2004 Keynote:

NSF Sangtae Kim It
Computer & NSF Shared
Igf(_)rmat:g‘n Cyberinfrastructure 2005 Keynote: 5q06 keynote: m
: r vanced Head of NSF's 2007 K te: -
Assistant Director Supercomputing Office of Jay Bo?élge%lf VA
Division Director ~ Cyber- Director 2008 K -
Parallel Programming Workshop — infrastructure Tgyas Advanced “Joos Noiow
I Computing Center Deputy Office
FREE! Tue Oct 6 2009_ @ OuU U. Texas Austin ~ Director/ Senior
Sponsored by SC09 Education Program Scientific é%'fror
FREE! Symposium Wed Oct 7 2009 @ OU infrastructure
National Science

OMPLTTR

http://symposium2009.oscer.ou.edu/ Foundation

%'6'7 Supercomputing in Plain English: Instruction Level Parallelism
A 1B '|| Tuesday February 17 2009 70

Q| SC09 Summer Workshops

This coming summer, the SC09 Education Program, part of the
SCO09 (Supercomputing 2009) conference, is planning to
hold two weeklong supercomputing-related workshops in
Oklahoma, for FREE (except you pay your own travel):

= At OU: Parallel Programming & Cluster Computing, date to
be decided, weeklong, for FREE

= At OSU: Computational Chemistry (tentative), date to be
decided, weeklong, for FREE

We’ll alert everyone when the details have been ironed out and
the registration webpage opens.

Please note that you must apply for a seat, and acceptance
CANNOT be guaranteed.

Supercomputmg in Plain English: Instruction Level Parallelism
if)&ER) % ¥ 'It Tuesday February 17 2009 7

To Learn More Supercomputing

SOMPLTj7
RCOMPUT/
\\‘“ ,(_/_r
n i
Chm [T
=
- [\
2, &3
+ 24
"r:"“"q 1y oo g0 .
¥ % NoY

http://www.oscer.ou.edu/education.php

%"'6'7 Supercomputing in Plain English: Instruction Level Parallelism
l_ll___'__{;_f;?,;fgggg Tuesday February 17 2009

72

http://www.oscer.ou.edu/education.php

Thanks for your

Q|| attention!

Questions?

References

[1] Steve Behling et al, The POWER4 Processor Introduction and Tuning Guide, IBM, 2001.
[2] Intel® 64 and IA-32 Architectures Optimization Reference Manual, Order Number: 248966-015

May 2007
http://www. intel .com/design/processor/manuals/248966.pdf

[3] Kevin Dowd and Charles Severance, High Performance Computing,
2" ed. O’Reilly, 1998.

[4] Code courtesy of Dan Weber, 2001.

%"'6'7 Supercomputing in Plain English: Instruction Level Parallelism
e N]_ll___}f;_f;?;:;g,iggu_ Tuesday February 17 2009

74

http://www.intel.com/design/processor/manuals/248966.pdf

	Supercomputing�in Plain English�Part III:�Instruction Level Parallelism
	This is an experiment!
	Access Grid
	H.323 (Polycom etc)
	iLinc
	QuickTime Broadcaster
	Phone Bridge
	Please Mute Yourself
	Questions via Text: iLinc or E-mail
	Thanks for helping!
	This is an experiment!
	Supercomputing Exercises
	OK Supercomputing Symposium
	SC09 Summer Workshops
	Outline
	Parallelism
	What Is ILP?
	Why You Shouldn’t Panic
	Kinds of ILP
	What’s an Instruction?
	What’s a Cycle?
	What’s the Relevance of Cycles?
	Scalar Operation
	Scalar Operation
	Does Order Matter?
	Superscalar Operation
	Loops
	Loops Are Good
	Why Loops Are Good
	Superscalar Loops
	Superscalar Loops
	Example: IBM POWER4
	Pipelining
	Pipelining
	Pipelining Example
	Pipelines: Example
	Some Simple Loops (F90)
	Some Simple Loops (C)
	Slightly Less Simple Loops (F90)
	Slightly Less Simple Loops (C)
	Loop Performance
	Performance Characteristics
	Arithmetic Operation Speeds
	Fast and Slow Operations
	What Can Prevent Pipelining?
	How Do They Kill Pipelining?
	How Do They Kill Pipelining?
	How Do They Kill Pipelining?
	What If No Pipelining?
	Randomly Permuted Loops
	Superpipelining
	Superpipelining
	More Operations At a Time
	Some Complicated Loops
	A Very Complicated Loop
	Multiple Ops Per Iteration
	Vectors
	What Is a Vector?
	Vector Register
	Vectors Are Expensive
	A Real Example
	A Real Example[4]
	Real Example Performance
	Why You Shouldn’t Panic
	OK Supercomputing Symposium
	SC09 Summer Workshops
	To Learn More Supercomputing
	Thanks for your attention!��Questions?
	References

