
Supercomputing Supercomputing
in Plain Englishin Plain English

Part IX:Part IX:
Grab BagGrab Bag

Henry Neeman, Director
OU Supercomputing Center for Education & Research

University of Oklahoma
Wednesday November 7 2007

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 2

This is an experiment!
It’s the nature of these kinds of videoconferences that

failures are guaranteed to happen!
NO PROMISES!
So, please bear with us. Hopefully everything will work out

well enough.

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 3

Access Grid/VRVS
If you’re connecting via the Access Grid or VRVS, the venue

is:
NCSA Venue Mosaic

It’s available Wed Oct 17 2007 1:00-4:30pm Central Time, but
the workshop starts at 3:00pm Central Time.

Many thanks to John Chapman of U Arkansas for setting this
up for us.

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 4

iLinc
We only have about 40-45 simultaneous iLinc connections

available.
Therefore, each institution has at most one iLinc person

designated.
If you’re the iLinc person for your institution, you’ve already

gotten e-mail about it, so please follow the instructions.
If you aren’t your institution’s iLinc person, then you can’t

become it, because we’re completely out of iLinc
connections.

Many thanks to Katherine Kantardjieff of California State U
Fullerton for setting this up for us.

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 5

QuickTime Broadcast
If you don’t have iLinc, you can connect via QuickTime:

rtsp://129.15.254.141/neeman_02.sdp

We strongly recommend using QuickTime player, since we’ve
seen it work.

When you run it, traverse the menus
File -> Open URL

Then paste in the rstp URL the Movie URL space, and click
OK.

Many thanks to Kevin Blake of OU for setting this up.

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 6

Phone Bridge
If all else fails, you can call into our phone bridge:

1-866-285-7778, access code 6483137#
Please mute yourself and use the phone to listen.
Don’t worry, I’ll call out slide numbers as we go.
To ask questions, please use Google Talk or Gmail.
Many thanks to Amy Apon of U Arkansas for setting this up

for us, and to U Arkansas for absorbing the costs.

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 7

Google Talk
To ask questions, please use our Google Talk group chat

session (text only).
You need to have (or create) a gmail.com account to use

Google Talk.
Once you’ve logged in to your gmail.com account, go to:

http://www.google.com/talk/
and then contact the user named:

oscer.sipe
Alternatively, you can send your questions by e-mail to

oscer.sipe@gmail.com.

http://www.google.com/talk/

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 8

This is an experiment!
REMINDER:
It’s the nature of these kinds of videoconferences that

failures are guaranteed to happen!
NO PROMISES!
So, please bear with us. Hopefully everything will work out

well enough.

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 9

Outline
Scientific Computing Pipeline
Scientific Libraries
I/O Libraries
Scientific Visualization

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 10

Scientific Computing Pipeline
Real World

Physics
Mathematical Representation (continuous)

Numerical Representation (discrete)
Algorithm

Implementation (program)
Port (to a specific platform)

Result (run)

Thanks to Julia Mullen of MIT Lincoln Lab for this concept.

Analysis
Verification

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 11

Five Rules of Scientific Computing
1. Know the physics.
2. Control the software.
3. Understand the numerics.
4. Achieve expected behavior.
5. Question unexpected behavior.
Thanks to Robert E. Peterkin for these.

Scientific Libraries

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 13

Preinvented Wheels
Many simulations perform fairly common tasks; for example,

solving systems of equations:
Ax = b

where A is the matrix of coefficients, x is the vector of
unknowns and b is the vector of knowns.

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

nnnnnnn

n

n

n

b

b
b
b

x

x
x
x

aaaa

aaaa
aaaa
aaaa

MM

L

MOMMM

L

L

L

3

2

1

3

2

1

,3,2,1,

,33,32,31,3

,23,22,21,2

,13,12,11,1

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 14

Scientific Libraries
Because some tasks are quite common across many science

and engineering applications, groups of researchers have put
a lot of effort into writing scientific libraries: collections of
routines for performing these commonly-used tasks (e.g.,
linear algebra solvers).

The people who write these libraries know a lot more about
these things than we do.

So, a good strategy is to use their libraries, rather than trying to
write our own.

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 15

Solver Libraries
Probably the most common scientific computing task is

solving a system of equations
Ax = b

where A is a matrix of coefficients, x is a vector of unknowns,
and b is a vector of knowns.

The goal is to solve for x.

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 16

Solving Systems of Equations
Don’ts:

Don’t invert the matrix (x = A-1b). That’s much more costly
than solving directly, and much more prone to numerical
error.
Don’t write your own solver code. There are people who
devote their whole careers to writing solvers. They know a
lot more about writing solvers than we do.

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 17

Solving Do’s
Do’s:

Do use standard, portable solver libraries.
Do use a version that’s tuned for the platform you’re
running on, if available.
Do use the information that you have about your system to
pick the most efficient solver.

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 18

All About Your Matrix
If you know things about your matrix, you maybe can use a

more efficient solver.
Symmetric: ai,j = aj,i

Positive definite: xTAx > 0 for all x ≠ 0 (e.g., if all
eigenvalues are positive)
Banded:
0 except
on the
bands

Tridiagonal:

0
0 and …

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 19

Sparse Matrices
A sparse matrix is a matrix that has mostly zeros in it.

“Mostly” is vaguely defined, but a good rule of thumb is
that a matrix is sparse if more than, say, 90-95% of its
entries are zero. (A non-sparse matrix is dense.)

×
×

××
××

××
××

××××××
××××

××××××
×××

××
×××

×××
×××

×××
×××

×××
×××

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 20

Linear Algebra Libraries
BLAS [1],[2]

ATLAS[3]

LAPACK[4]

ScaLAPACK[5]

PETSc[6],[7],[8]

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 21

BLAS
The Basic Linear Algebra Subprograms (BLAS) are a set of low

level linear algebra routines:
Level 1: Vector-vector (e.g., dot product)
Level 2: Matrix-vector (e.g., matrix-vector multiply)
Level 3: Matrix-matrix (e.g., matrix-matrix multiply)

Many linear algebra packages, including LAPACK,
ScaLAPACK and PETSc, are built on top of BLAS.

Most supercomputer vendors have versions of BLAS that are
highly tuned for their platforms.

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 22

ATLAS
The Automatically Tuned Linear Algebra Software package

(ATLAS) is a self-tuned version of BLAS (it also includes a
few LAPACK routines).

When it’s installed, it tests and times a variety of approaches to
each routine, and selects the version that runs the fastest.

ATLAS is substantially faster than the generic version of
BLAS.

And, it’s free!

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 23

Goto BLAS
In the past few years, a new version of BLAS has been

released, developed by Kazushige Goto (currently at UT
Austin).

This version is unusual, because instead of optimizing for
cache, it optimizes for the Translation Lookaside Buffer
(TLB), which is a special little cache that often is ignored by
software developers.

Goto realized that optimizing for the TLB would be more
efficient than optimizing for cache.

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 24

ATLAS vs. BLAS Performance

ATLAS DGEMM: 2.76 GFLOP/s = 69% of peak

Generic DGEMM: 0.91 GFLOP/s = 23% of peak

DGEMM: Double precision GEneral Matrix-Matrix multiply
DGEMV: Double precision GEneral Matrix-Vector multiply

BETTER

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 25

LAPACK
LAPACK (Linear Algebra PACKage) solves dense or special-

case sparse systems of equations depending on matrix
properties such as:
Precision: single, double
Data type: real, complex
Shape: diagonal, bidiagonal, tridiagonal, banded, triangular,
trapezoidal, Hesenberg, general dense
Properties: orthogonal, positive definite, Hermetian
(complex), symmetric, general

LAPACK is built on top of BLAS, which means it can benefit
from ATLAS.

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 26

LAPACK Example
REAL,DIMENSION(numrows,numcols) :: A
REAL,DIMENSION(numrows) :: B
REAL,DIMENSION(numcols) :: X
INTEGER,DIMENSION(numrows) :: pivot
INTEGER :: row, col, info, numrhs = 1
DO row = 1, numrows
B(row) = …

END DO
DO col = 1, numcols
DO row = 1, numrows
A(row,col) = …

END DO
END DO
CALL sgesv(numrows, numrhs, A, numrows, pivot, &
& B, numrows, info)
DO col = 1, numcols
X(col) = B(col)

END DO

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 27

LAPACK: A Library and an API
LAPACK is a library that you can download for free from the

Web:
www.netlib.org

But, it’s also an Application Programming Interface (API): a
definition of a set of routines, their arguments, and their
behaviors.

So, anyone can write an implementation of LAPACK.

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 28

It’s Good to Be Popular
LAPACK is a good choice for non-parallelized solving,

because its popularity has convinced many supercomputer
vendors to write their own, highly tuned versions.

The API for the LAPACK routines is the same as the portable
version from NetLib, but the performance can be much
better, via either ATLAS or proprietary vendor-tuned
versions.

Also, some vendors have shared memory parallel versions of
LAPACK.

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 29

LAPACK Performance
Because LAPACK uses BLAS, it’s about as fast as BLAS. For

example, DGESV (Double precision General SolVer) on a 2
GHz Pentium4 using ATLAS gets 65% of peak, compared
to 69% of peak for Matrix-Matrix multiply.

In fact, an older version of LAPACK, called LINPACK, is
used to determine the top 500 supercomputers in the world.

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 30

ScaLAPACK
ScaLAPACK is the distributed parallel (MPI) version of

LAPACK. It actually contains only a subset of the LAPACK
routines, and has a somewhat awkward Application
Programming Interface (API).

Like LAPACK, ScaLAPACK is also available from
www.netlib.org.

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 31

PETSc
PETSc (Portable, Extensible Toolkit for Scientific

Computation) is a solver library for sparse matrices that
uses distributed parallelism (MPI).

PETSc is designed for general sparse matrices with no special
properties, but it also works well for sparse matrices with
simple properties like banding and symmetry.

It has a simpler, more intuitive Application Programming
Interface than ScaLAPACK.

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 32

Pick Your Solver Package
Dense Matrix

Serial: LAPACK
Shared Memory Parallel: threaded LAPACK
Distributed Parallel: ScaLAPACK

Sparse Matrix: PETSc

I/O Libraries

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 34

I/O Challenges
I/O presents two important challenges to scientific computing:

Performance
Portability

The performance issue arises because I/O is much more time-
consuming than computation, as we saw in the “Storage
Hierarchy” session.

The portability issue arises because different kinds of
computers can have different ways of representing real
(“floating point” numbers).

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 35

Storage Formats
When you use a PRINT statement in Fortran or a printf in

C or output to cout in C++, you are asking the program to
output data in human-readable form:

x = 5
PRINT *, x

But what if the value that you want to output is a real number
with lots of significant digits?
1.3456789E+23

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 36

Data Output as Text
1.3456789E+23

When you output data as text, each character takes 1 byte.
So if you output a number with lots of digits, then you’re

outputting lots of bytes.
For example, the above number takes 13 bytes to output as

text.
Jargon: Text is sometimes called ASCII (American Standard

Code for Information Interchange).

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 37

Output Data in Binary
Inside the computer, a single precision real number (Fortran
REAL, C/C++ float) typically requires 4 bytes, and a
double precision number (DOUBLE PRECISION or
double) typically requires 8.

That’s less than 13.
Since I/O is very expensive, it’s better to output 4 or 8 bytes than

13 or more.
Happily, Fortran, C and C++ allow you to output data as binary

(internal representation) rather than as text.

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 38

Binary Output Problems
When you output data as binary rather than as text, you output

substantially fewer bytes, so you save time (since I/O is
very expensive) and you save disk space.

But, you pay two prices:
Readability: Humans can’t read binary.
Portability: Different kinds of computers have different
ways of internally representing numbers.

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 39

Binary Readability: No Problem
Readability of binary data isn’t a problem in scientific

computing, because:
You can always write a little program to read in the binary
data and display its text equivalent.
If you have lots and lots of data (i.e., MBs or GBs), you
wouldn’t want to look at all of it anyway.

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 40

Binary Portability: Big Problem
Binary data portability is a very big problem in scientific

computing, because data that’s output on one kind of
computer may not be readable on another, and so:
You can’t output the data on one kind of computer and then
use them (e.g., visualize, analyze) on another kind.
Some day the kind of computer that output the data will be
obsolete, so there may be no computer in the world that can
input it, and thus the data are lost.

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 41

Portable Binary Data
The HPC community noticed this problem some years ago, and

so a number of portable binary data formats were developed.
The two most popular are:

HDF (Hierarchical Data Format) from the National Center
for Supercomputing Applications:
http://hdf.ncsa.uiuc.edu

NetCDF (Network Common Data Form) from Unidata:
http://www.unidata.ucar.edu/packages/netcdf

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 42

Advantages of Portable I/O
Portable binary I/O packages:

give you portable binary I/O;
have simple, clear APIs;
are available for free;
run on most platforms;
allow you to annotate your data (e.g., put into the file the
variable names, units, experiment name, grid description,
etc).

Also, HDF allows distributed parallel I/O.

Scientific
Visualization

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 44

Too Many Numbers
A typical scientific code outputs lots and lots of data.

For example, the ARPS weather forecasting code, running a
5 day forecast over the continental U.S. with a resolution of
1 km horizontal and 0.25 km vertical outputting data for every
hour would produce about 10 terabytes (1013 bytes).

No one can look at that many numbers.

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 45

A Picture is Worth …

… millions of numbers.

This is Comet
Shoemaker-Levy 9,
which hit Jupiter in
1994; the image is
from 35 seconds after
hitting Jupiter’s inner
atmosphere.[9]

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 46

Types of Visualization
Contour lines
Slice planes
Isosurfaces
Streamlines
Volume rendering

… and many others.
Note: except for the volume rendering, the following images

were created by Vis5D,[10] which you can download for
free.

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 47

Contour Lines
This image shows contour lines of relative humidity. Each

contour line represents a single humidity value.

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 48

Slice Planes
A slice plane is a single plane passed through a 3D volume.

Typically, it is color coded by mapping some scalar variable
to color (e.g., low vorticity to blue, high vorticity to red).

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 49

Isosurfaces
An isosurface is a surface that has a constant value for some

scalar quantity. This image shows an isosurface of
temperature at 0o Celsius, colored with pressure.

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 50

Streamlines
A streamline traces a vector quantity (e.g., velocity).

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 51

Volume Rendering
A volume rendering is created by mapping some variable

(e.g., energy) to color and another variable (e.g., density) to
opacity.

This image shows the
overall structure of the

universe.[11]

Notice that the image
looks like thick
colored smoke.

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 52

To Learn More Supercomputing
http://www.oscer.ou.edu/education.php

http://www.oscer.ou.edu/education.php

Thanks for your
attention!

Questions?

Supercomputing in Plain English: Grab Bag
Wednesday November 7 2007 54

References
[1] C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh, Basic Linear Algebra Subprograms for FORTRAN

Usage, ACM Trans. Math. Soft., 5 (1979), pp. 308--323.
[2] http://www.netlib.org/blas/
[3] http://math-atlas.sourceforge.net/
[4] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S.

Hammarling, A. McKenney, D. Sorensen, LAPACK Users' Guide, 3rd ed, 1999.
http://www.netlib.org/lapack/

[5] L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry,
A. Petitet, K. Stanley, D. Walker, R. C. Whaley, ScaLAPACK Users' Guide, 1997.
http://www.netlib.org/scalapack/

[6] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, L. Curfman McInnes and B. F. Smith, PETSc home page,
2001. http://www.mcs.anl.gov/petsc

[7] S. Balay, W. D. Gropp. L. Curfman McInnes and B. Smith, PETSc Users Manual, ANL-95/11 - Revision 2.1.0,
Argonne National Laboratory, 2001.

[8] S. Balay, W. D. Gropp, L. Curfman McInnes and B. F. Smith, "Efficient Management of Parallelism in Object
Oriented Numerical Software Libraries", in Modern Software Tools in Scientific Computing, E. Arge, A. M.
Bruaset and H. P. Langtangen, editors, Birkhauser Press, 1997, 163-202.

[9] http://hneeman.oscer.ou.edu/~hneeman/hamr.html
[10] http://www.ssec.wisc.edu/~billh/vis5d.html
[11] Image by Greg Bryan, MIT.

http://www.acm.org/toms/V5.html#v5n3
http://www.netlib.org/blas/
http://math-atlas.sourceforge.net/
http://www.netlib.org/lapack/
http://www.netlib.org/scalapack/
http://www.mcs.anl.gov/petsc
http://hneeman.oscer.ou.edu/~hneeman/hamr.html
http://www.ssec.wisc.edu/~billh/vis5d.html

	Supercomputing in Plain English�Part IX:�Grab Bag
	This is an experiment!
	Access Grid/VRVS
	iLinc
	QuickTime Broadcast
	Phone Bridge
	Google Talk
	This is an experiment!
	Outline
	Scientific Computing Pipeline
	Five Rules of Scientific Computing
	Scientific Libraries
	Preinvented Wheels
	Scientific Libraries
	Solver Libraries
	Solving Systems of Equations
	Solving Do’s
	All About Your Matrix
	Sparse Matrices
	Linear Algebra Libraries
	BLAS
	ATLAS
	Goto BLAS
	ATLAS vs. BLAS Performance
	LAPACK
	LAPACK Example
	LAPACK: A Library and an API
	It’s Good to Be Popular
	LAPACK Performance
	ScaLAPACK
	PETSc
	Pick Your Solver Package
	I/O Libraries
	I/O Challenges
	Storage Formats
	Data Output as Text
	Output Data in Binary
	Binary Output Problems
	Binary Readability: No Problem
	Binary Portability: Big Problem
	Portable Binary Data
	Advantages of Portable I/O
	Scientific Visualization
	Too Many Numbers
	A Picture is Worth …
	Types of Visualization
	Contour Lines
	Slice Planes
	Isosurfaces
	Streamlines
	Volume Rendering
	To Learn More Supercomputing
	Thanks for your attention!��Questions?
	References

