
Supercomputing
in Plain English

GPGPU: Number Crunching in
Your Graphics Card

Henry Neeman, University of Oklahoma
Director, OU Supercomputing Center for Education & Research (OSCER)

Assistant Vice President, Information Technology – Research Strategy Advisor
Associate Professor, Gallogly College of Engineering

Adjunct Associate Professor, School of Computer Science
Tuesday April 24 2018

Supercomputing in Plain English: GPU
Tue Apr 24 2018 2

This is an experiment!
It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the phone bridge
to fall back on.

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

Supercomputing in Plain English: GPU
Tue Apr 24 2018 3

PLEASE MUTE YOURSELF
No matter how you connect, PLEASE MUTE YOURSELF,

so that we cannot hear you.
At OU, we will turn off the sound on all conferencing

technologies.
That way, we won’t have problems with echo cancellation.
Of course, that means we cannot hear questions.
So for questions, you’ll need to send e-mail:

supercomputinginplainenglish@gmail.com

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

mailto:supercomputinginplainenglish@gmail.com

Download the Slides Beforehand
Before the start of the session, please download the slides from
the Supercomputing in Plain English website:

http://www.oscer.ou.edu/education/

That way, if anything goes wrong, you can still follow along
with just audio.

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

Supercomputing in Plain English: GPU
Tue Apr 24 2018 4

http://www.oscer.ou.edu/education/

Supercomputing in Plain English: GPU
Tue Apr 24 2018 5

Zoom
Go to:

http://zoom.us/j/979158478

Many thanks Eddie Huebsch, OU CIO, for providing this.

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

http://zoom.us/j/979158478

Supercomputing in Plain English: GPU
Tue Apr 24 2018 6

YouTube
You can watch from a Windows, MacOS or Linux laptop or an

Android or iOS handheld using YouTube.
Go to YouTube via your preferred web browser or app, and then

search for:
Supercomputing InPlainEnglish

(InPlainEnglish is all one word.)
Many thanks to Skyler Donahue of OneNet for providing this.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

Supercomputing in Plain English: GPU
Tue Apr 24 2018 7

Twitch
You can watch from a Windows, MacOS or Linux laptop or an

Android or iOS handheld using Twitch.
Go to:

http://www.twitch.tv/sipe2018

Many thanks to Skyler Donahue of OneNet for providing this.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

http://www.twitch.tv/sipe2018

Supercomputing in Plain English: GPU
Tue Apr 24 2018 8

Wowza #1
You can watch from a Windows, MacOS or Linux laptop using

Wowza from the following URL:

http://jwplayer.onenet.net/streams/sipe.html

If that URL fails, then go to:

http://jwplayer.onenet.net/streams/sipebackup.html

Many thanks to Skyler Donahue of OneNet for providing this.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

http://jwplayer.onenet.net/streams/sipe.html
http://jwplayer.onenet.net/streams/sipebackup.html

Wowza #2
Wowza has been tested on multiple browsers on each of:
 Windows 10: IE, Firefox, Chrome, Opera, Safari
 MacOS: Safari, Firefox
 Linux: Firefox, Opera
We’ve also successfully tested it via apps on devices with:
 Android
 iOS
Many thanks to Skyler Donahue of OneNet for providing this.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

Supercomputing in Plain English: GPU
Tue Apr 24 2018 9

Supercomputing in Plain English: GPU
Tue Apr 24 2018 10

Toll Free Phone Bridge
IF ALL ELSE FAILS, you can use our US TOLL phone bridge:

405-325-6688
684 684 #

NOTE: This is for US call-ins ONLY.
PLEASE MUTE YOURSELF and use the phone to listen.
Don’t worry, we’ll call out slide numbers as we go.
Please use the phone bridge ONLY IF you cannot connect any

other way: the phone bridge can handle only 100 simultaneous
connections, and we have over 1000 participants.

Many thanks to OU CIO Eddie Huebsch for providing the
phone bridge..

Supercomputing in Plain English: GPU
Tue Apr 24 2018 11

Please Mute Yourself
No matter how you connect, PLEASE MUTE YOURSELF,

so that we cannot hear you.
(For YouTube, Twitch and Wowza, you don’t need to do that,

because the information only goes from us to you, not from
you to us.)

At OU, we will turn off the sound on all conferencing
technologies.

That way, we won’t have problems with echo cancellation.
Of course, that means we cannot hear questions.
So for questions, you’ll need to send e-mail.
PLEASE MUTE YOURSELF.

Supercomputing in Plain English: GPU
Tue Apr 24 2018 12

Questions via E-mail Only
Ask questions by sending e-mail to:

supercomputinginplainenglish@gmail.com

All questions will be read out loud and then answered out loud.

DON’T USE CHAT OR VOICE FOR QUESTIONS!

No one will be monitoring any of the chats, and if we can hear
your question, you’re creating an echo cancellation problem.

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

mailto:supercomputinginplainenglish@gmail.com

Onsite: Talent Release Form
If you’re attending onsite, you MUST do one of the following:
 complete and sign the Talent Release Form,
OR
 sit behind the cameras (where you can’t be seen) and don’t

talk at all.

If you aren’t onsite, then PLEASE MUTE YOURSELF.

Supercomputing in Plain English: GPU
Tue Apr 24 2018 13

TENTATIVE Schedule
Tue Jan 23: Storage: What the Heck is Supercomputing?
Tue Jan 30: The Tyranny of the Storage Hierarchy Part I
Tue Feb 6: The Tyranny of the Storage Hierarchy Part II
Tue Feb 13: Instruction Level Parallelism
Tue Feb 20: Stupid Compiler Tricks
Tue Feb 27: Multicore Multithreading
Tue March 6: Distributed Multiprocessing
Tue March 13: NO SESSION (Henry business travel)
Tue March 20: NO SESSION (OU's Spring Break)
Tue March 27: Applications and Types of Parallelism
Tue Apr 3: Multicore Madness
Tue Apr 10: NO SESSION (Henry business travel)
Tue Apr 17: High Throughput Computing
Tue Apr 24: GPU: Number Crunching in Your Graphics Card
Tue May 1: Grab Bag: Scientific Libraries, I/O Libraries, Visualization

Supercomputing in Plain English: GPU
Tue Apr 24 2018 14

Supercomputing in Plain English: GPU
Tue Apr 24 2018 15

Thanks for helping!
 OU IT

 OSCER operations staff (Dave Akin, Patrick Calhoun, Kali
McLennan, Jason Speckman, Brett Zimmerman)

 OSCER Research Computing Facilitators (Jim Ferguson,
Horst Severini)

 Debi Gentis, OSCER Coordinator
 Kyle Dudgeon, OSCER Manager of Operations
 Ashish Pai, Managing Director for Research IT Services
 The OU IT network team
 OU CIO Eddie Huebsch

 OneNet: Skyler Donahue
 Oklahoma State U: Dana Brunson

Supercomputing in Plain English: GPU
Tue Apr 24 2018 16

This is an experiment!
It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the phone bridge
to fall back on.

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

Coming in 2018!
 Linux Clusters Institute workshops

http://www.linuxclustersinstitute.org/workshops/
 Introductory HPC Cluster System Administration: May 14-18 2018 @ U Nebraska, Lincoln NE USA
 Intermediate HPC Cluster System Administration: Aug 13-17 2018 @ Yale U, New Haven CT USA

 Great Plains Network Annual Meeting: details coming soon
 Advanced Cyberinfrastructure Research & Education Facilitators (ACI-REF) Virtual

Residency Aug 5-10 2018, U Oklahoma, Norman OK USA
 PEARC 2018, July 22-27, Pittsburgh PA USA

https://www.pearc18.pearc.org/

 IEEE Cluster 2018, Sep 10-13, Belfast UK
https://cluster2018.github.io

 OKLAHOMA SUPERCOMPUTING SYMPOSIUM 2018, Sep 25-26 2018 @ OU
 SC18 supercomputing conference, Nov 11-16 2018, Dallas TX USA

http://sc18.supercomputing.org/

Supercomputing in Plain English: GPU
Tue Apr 24 2018 17

http://www.linuxclustersinstitute.org/workshops/
https://www.pearc18.pearc.org/
https://cluster2018.github.io/
http://sc18.supercomputing.org/

Supercomputing in Plain English: GPU
Tue Apr 24 2018 18

Outline
 What is GPGPU?
 GPU Programming
 Digging Deeper: CUDA on NVIDIA
 CUDA Thread Hierarchy and Memory Hierarchy
 CUDA Example: Matrix-Matrix Multiply

What is GPGPU?

Supercomputing in Plain English: GPU
Tue Apr 24 2018 20

Accelerators
No, not this

http://gizmodo.com/5032891/nissans-eco-gas-pedal-fights-back-to-help-you-save-gas

http://gizmodo.com/5032891/nissans-eco-gas-pedal-fights-back-to-help-you-save-gas

Supercomputing in Plain English: GPU
Tue Apr 24 2018 21

Accelerators
 In HPC, an accelerator is hardware component whose role is

to speed up some aspect of the computing workload.
 In the olden days (1980s), supercomputers sometimes had

array processors, which did vector operations on arrays,
and PCs sometimes had floating point accelerators:
little chips that did the floating point calculations
in hardware rather than software.

 More recently, Field Programmable Gate Arrays (FPGAs)
allow reprogramming deep into the hardware.

Supercomputing in Plain English: GPU
Tue Apr 24 2018 22

Why Accelerators are Good
Accelerators are good because:
 they make your code run faster.

Supercomputing in Plain English: GPU
Tue Apr 24 2018 23

Why Accelerators are Bad
Accelerators are bad because:
 they’re expensive (though often cheaper per unit of

computing speed);
 they can be hard to program;
 your code on them may not be portable to other

accelerators, so the labor you invest in programming them
can have a very short half-life.

Supercomputing in Plain English: GPU
Tue Apr 24 2018 24

The King of the Accelerators
The undisputed champion of accelerators is:

the graphics processing unit.
https://www.amd.com/en/products/professional-graphics/radeon-pro-ssg

https://www.nvidia.com/en-us/data-center/tesla-v100/

https://www.xcelerit.com/computing-benchmarks/insights/benchmarks-intel-xeon-phi-knl-vs-broadwell-cpu/

https://www.amd.com/en/products/professional-graphics/radeon-pro-ssg
https://www.nvidia.com/en-us/data-center/tesla-v100/
https://www.xcelerit.com/computing-benchmarks/insights/benchmarks-intel-xeon-phi-knl-vs-broadwell-cpu/

Supercomputing in Plain English: GPU
Tue Apr 24 2018 25

What does 1 TFLOPs Look Like?

boomer.oscer.ou.edu
In service 2002-5: 11 racks

2002: Row
1997: Room

ASCI RED[13]

Sandia National Lab NVIDIA Kepler K20[15]

Intel MIC Xeon PHI[16]

2012: Card

AMD FirePro W9000[14]

CPU
Chip
2017

https://www.top500.org/static/media/uploads/.thumbnails/epyc-vs-xeon.jpg/epyc-vs-xeon-742x382.jpg

AMD EPYC

Intel Skylake

1 TFLOPs: trillion calculations per second

https://www.top500.org/static/media/uploads/.thumbnails/epyc-vs-xeon.jpg/epyc-vs-xeon-742x382.jpg

Supercomputing in Plain English: GPU
Tue Apr 24 2018 26

Why GPU?
 Graphics Processing Units (GPUs) were originally designed

to accelerate graphics tasks like image rendering.
 They became very very popular with videogamers, because

they’ve produced better and better images, and lightning fast.
 And, prices have been extremely good, ranging from

three figures at the low end to four figures at the high end.

Supercomputing in Plain English: GPU
Tue Apr 24 2018 27

GPUs are Popular
 Chips are expensive to design (hundreds of millions of $$$),

expensive to build the factory for (billions of $$$),
but cheap to produce.

 For example, in calendar year 2017, NVIDIA sold
~$5.7B of GPUs, which was ~80% of their total revenue.
https://marketrealist.com/2017/08/data-center-nvidias-key-growth-driver-fiscal-2018

 This means that the GPU companies have been able to
recoup the huge fixed costs.

https://marketrealist.com/2017/08/data-center-nvidias-key-growth-driver-fiscal-2018

Supercomputing in Plain English: GPU
Tue Apr 24 2018 28

GPUs Do Arithmetic
 GPUs mostly do stuff like rendering images.
 This is done through mostly floating point arithmetic –

the same stuff people use supercomputing for!

GPU Programming

Supercomputing in Plain English: GPU
Tue Apr 24 2018 30

Hard to Program?
 In the olden days – that is, until just the last ten years or so –

programming GPUs meant either:
 using a graphics standard like OpenGL (which is mostly meant for

rendering), or
 getting fairly deep into the graphics rendering pipeline.

 To use a GPU to do general purpose number crunching,
you had to make your number crunching pretend to be graphics.

 This was hard. So most people didn’t bother.

Supercomputing in Plain English: GPU
Tue Apr 24 2018 31

Easy to Program?
More recently, GPU manufacturers have worked hard to make

GPUs easier to use for general purpose computing.
This is known as General Purpose Graphics Processing Units

(GPGPU).

Intel MIC
 Also known as Xeon Phi.
 Not a graphics card.
 But, has similar structure to a graphics card, just without the

graphics.
 Based on x86: can use a lot of the same tools as CPU.
 Current series: “Knights Landing” (model numbers 72xx)

 Comes in chip form only (not card), for single socket server.
 64 to 72 x86 cores, each with 512-bit vector widths (8-way double

precision floating point vectors), 2 Fused Multiply-Add units per
core, so up to 32 DP floating point calculations per core per cycle.

 16 GB MCDRAM @ 400+ GB/sec.
 Server can have up to 384 GB RAM @ 102.4 GB/sec.
 Peak 2.6624 to 3.4560 TFLOPs per card.

https://en.wikipedia.org/wiki/Xeon_Phi

Supercomputing in Plain English: GPU
Tue Apr 24 2018 32

https://en.wikipedia.org/wiki/Xeon_Phi

Supercomputing in Plain English: GPU
Tue Apr 24 2018 33

How to Program a GPU
 Proprietary programming language or extensions

 NVIDIA: CUDA (C/C++)
 OpenCL (Open Computing Language): an industry standard

for doing number crunching on GPUs.
 OpenACC accelerator directives for NVIDIA and AMD
 OpenMP version 4.x includes accelerator and vectorization

directives (works well with Intel Xeon Phi).

Supercomputing in Plain English: GPU
Tue Apr 24 2018 34

NVIDIA CUDA
 NVIDIA proprietary
 Formerly known as “Compute Unified Device Architecture”
 Extensions to C to allow better control of GPU capabilities
 Modest extensions but major rewriting of the code
 Portland Group Inc (PGI) has released a Fortran

implementation of CUDA available in their Fortran
compiler.
 PGI is now part of NVIDIA.

Supercomputing in Plain English: GPU
Tue Apr 24 2018 35

CUDA Example Part 1
// example1.cpp : Defines the entry point for the console applicati

on.
//

#include "stdafx.h"

#include <stdio.h>
#include <cuda.h>

// Kernel that executes on the CUDA device
__global__ void square_array(float *a, int N)
{
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx<N) a[idx] = a[idx] * a[idx];

}

http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/

http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/

Supercomputing in Plain English: GPU
Tue Apr 24 2018 36

CUDA Example Part 2
// main routine that executes on the host
int main(void)
{
float *a_h, *a_d; // Pointer to host & device arrays
const int N = 10; // Number of elements in arrays
size_t size = N * sizeof(float);
a_h = (float *)malloc(size); // Allocate array on host
cudaMalloc((void **) &a_d, size); // Allocate array on device
// Initialize host array and copy it to CUDA device
for (int i=0; i<N; i++) a_h[i] = (float)i;
cudaMemcpy(a_d, a_h, size, cudaMemcpyHostToDevice);
// Do calculation on device:
int block_size = 4;
int n_blocks = N/block_size + (N%block_size == 0 ? 0:1);
square_array <<< n_blocks, block_size >>> (a_d, N);
// Retrieve result from device and store it in host array
cudaMemcpy(a_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);
// Print results
for (int i=0; i<N; i++) printf("%d %f\n", i, a_h[i]);
// Cleanup
free(a_h); cudaFree(a_d);

}

Supercomputing in Plain English: GPU
Tue Apr 24 2018 37

OpenCL
 Open Computing Language
 Open standard developed by the Khronos Group, which is a

consortium of many companies (including NVIDIA, AMD
and Intel, but also lots of others)

https://www.khronos.org/opencl/

 Initial version of OpenCL standard released in Dec 2008.
 Many companies have created their own implementations.
 Currently on version 2.2 (released May 12 2017).

https://www.khronos.org/opencl/

Supercomputing in Plain English: GPU
Tue Apr 24 2018 38

OpenCL Example Part 1
// create a compute context with GPU device
context =
clCreateContextFromType(NULL, CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// create a command queue
queue = clCreateCommandQueue(context, NULL, 0, NULL);
// allocate the buffer memory objects
memobjs[0] = clCreateBuffer(context,

CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
sizeof(float)*2*num_entries, srcA, NULL);

memobjs[1] = clCreateBuffer(context,
CL_MEM_READ_WRITE,
sizeof(float)*2*num_entries, NULL, NULL);

// create the compute program
program = clCreateProgramWithSource(context, 1, &fft1D_1024_kernel_src,

NULL, NULL);

http://en.wikipedia.org/wiki/OpenCL

Supercomputing in Plain English: GPU
Tue Apr 24 2018 39

OpenCL Example Part 2
// build the compute program executable
clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
// create the compute kernel
kernel = clCreateKernel(program, "fft1D_1024", NULL);
// set the args values
clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&memobjs[0]);
clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&memobjs[1]);
clSetKernelArg(kernel, 2, sizeof(float)*(local_work_size[0]+1)*16, NULL);
clSetKernelArg(kernel, 3, sizeof(float)*(local_work_size[0]+1)*16, NULL);
// create N-D range object with work-item dimensions and execute kernel
global_work_size[0] = num_entries; local_work_size[0] = 64;
clEnqueueNDRangeKernel(queue, kernel, 1, NULL,

global_work_size, local_work_size, 0, NULL, NULL);

Supercomputing in Plain English: GPU
Tue Apr 24 2018 40

OpenCL Example Part 3
// This kernel computes FFT of length 1024. The 1024 length FFT is
// decomposed into calls to a radix 16 function, another radix 16
// function and then a radix 4 function
__kernel void fft1D_1024 (__global float2 *in, __global float2 *out,

__local float *sMemx, __local float *sMemy) {
int tid = get_local_id(0);
int blockIdx = get_group_id(0) * 1024 + tid;
float2 data[16];

// starting index of data to/from global memory
in = in + blockIdx;
out = out + blockIdx;
globalLoads(data, in, 64); // coalesced global reads
fftRadix16Pass(data); // in-place radix-16 pass
twiddleFactorMul(data, tid, 1024, 0);

Supercomputing in Plain English: GPU
Tue Apr 24 2018 41

OpenCL Example Part 4
// local shuffle using local memory
localShuffle(data, sMemx, sMemy, tid, (((tid & 15) * 65) + (tid >>
4)));
fftRadix16Pass(data); // in-place radix-16 pass
twiddleFactorMul(data, tid, 64, 4); // twiddle factor multiplication
localShuffle(data, sMemx, sMemy, tid, (((tid >> 4) * 64) + (tid &
15)));
// four radix-4 function calls
fftRadix4Pass(data); // radix-4 function number 1
fftRadix4Pass(data + 4); // radix-4 function number 2
fftRadix4Pass(data + 8); // radix-4 function number 3
fftRadix4Pass(data + 12); // radix-4 function number 4
// coalesced global writes
globalStores(data, out, 64);

}

Supercomputing in Plain English: GPU
Tue Apr 24 2018 42

OpenACC
 Open standard for expressing accelerator parallelism.
 Fortran and C.
 Similar to OpenMP in structure: uses directives.
 If the compiler doesn’t understand the directives, it ignores them,

so the same code can work:
 with accelerators or without accelerators;
 with compilers that do understand OpenACC and

with compilers that don’t understand OpenACC.
 The OpenACC directives tell the compiler which parts of the

code happen in the accelerator (and some details about how to
run them in the accelerator).
 The parts of the code that don’t have OpenACC directives

happen in the regular server CPU/RAM hardware.

OpenACC Compiler Directives
 Developed by NVIDIA, Cray, PGI, CAPS
 Available in PGI compilers for general cluster user, and

in Cray compilers for use on Crays.
 Also some less commonly used and experimental compilers.

http://en.wikipedia.org/wiki/OpenACC

Supercomputing in Plain English: GPU
Tue Apr 24 2018 43

http://en.wikipedia.org/wiki/OpenACC

OpenACC Example Part 1 (C)
#include <stdio.h>
#include <stdlib.h>
void vecaddgpu(float *restrict r, float *a, float *b, int n)
{
#pragma acc kernels loop copyin(a[0:n],b[0:n]) copyout(r[0:n])
for(int i = 0; i < n; ++i)
r[i] = a[i] + b[i];

}

/* http://www.pgroup.com/doc/openacc_gs.pdf */

Supercomputing in Plain English: GPU
Tue Apr 24 2018 44

http://www.pgroup.com/doc/openacc_gs.pdf

OpenACC Example Part 2 (C)
int main(int argc, char* argv[]){
int n; /* vector length */
float * a; /* input vector 1 */
float * b; /* input vector 2 */
float * r; /* output vector */
float * e; /* expected output values */
int i, errs;

if(argc > 1) n = atoi(argv[1]);
else n = 100000; /* default vector length */
if(n <= 0) n = 100000;
a = (float*)malloc(n*sizeof(float));
b = (float*)malloc(n*sizeof(float));
r = (float*)malloc(n*sizeof(float));
e = (float*)malloc(n*sizeof(float));
for(i = 0; i < n; ++i){
a[i] = (float)(i+1);
b[i] = (float)(1000*i);

}

Supercomputing in Plain English: GPU
Tue Apr 24 2018 45

OpenACC Example Part 3 (C)
/* compute on the GPU */
vecaddgpu(r, a, b, n);
/* compute on the host to compare */
for(i = 0; i < n; ++i) e[i] = a[i] + b[i];
/* compare results */
errs = 0;
for(i = 0; i < n; ++i){
if(r[i] != e[i]){
++errs;

}
}
printf("%d errors found\n", errs);
return errs;

}

Supercomputing in Plain English: GPU
Tue Apr 24 2018 46

OpenACC Example Part 1 (F90)
module vecaddmod
implicit none
contains
subroutine vecaddgpu(r, a, b, n)
real, dimension(:) :: r, a, b
integer :: n
integer :: i

!$acc kernels loop copyin(a(1:n),b(1:n)) copyout(r(1:n))
do i = 1, n
r(i) = a(i) + b(i)

enddo
end subroutine

end module

! http://www.pgroup.com/doc/openacc_gs.pdf

Supercomputing in Plain English: GPU
Tue Apr 24 2018 47

http://www.pgroup.com/doc/openacc_gs.pdf

OpenACC Example Part 2 (F90)
program main
use vecaddmod
implicit none
integer :: n, i, errs, argcount
real, dimension(:), allocatable :: a, b, r, e
character*10 :: arg1
argcount = command_argument_count()
n = 1000000 ! default value
if(argcount = 1)then
call get_command_argument(1, arg1)
read(arg1, '(i)') n
if(n <= 0) n = 100000

endif
allocate(a(n), b(n), r(n), e(n))
do i = 1, n
a(i) = i
b(i) = 1000*i

enddo

Supercomputing in Plain English: GPU
Tue Apr 24 2018 48

OpenACC Example Part 3 (F90)
! compute on the GPU
call vecaddgpu(r, a, b, n)
! compute on the host to compare
do i = 1, n
e(i) = a(i) + b(i)

enddo
! compare results
errs = 0
do i = 1, n
if(r(i) /= e(i))then
errs = errs + 1

endif
enddo
print *, errs, ' errors found'
if(errs) call exit(errs)

end program

Supercomputing in Plain English: GPU
Tue Apr 24 2018 49

OpenMP 4.x Accelerator Directives
 OpenMP’s 4.5 standard was released in 2015.
 It has both accelerator directives and vectorization directives.
 It’s the lingua franca of the Intel MIC accelerator.

Supercomputing in Plain English: GPU
Tue Apr 24 2018 50

OpenMP Accelerator Example (F90)
! snippet from the hand-coded subprogram...
!dir$ attributes offload:mic :: my_sgemm
subroutine my_sgemm(d,a,b)
real, dimension(:,:) :: a, b, d
!$omp parallel do
do j=1, n

do i=1, n
d(i,j) = 0.0
do k=1, n
d(i,j) = d(i,j)+a(i,k)*b(k,j)

enddo
enddo

enddo
end subroutine
http://www.cac.cornell.edu/education/training/ParallelFall2012/OpenMPNov2012.pdf

Supercomputing in Plain English: GPU
Tue Apr 24 2018 51

http://www.cac.cornell.edu/education/training/ParallelFall2012/OpenMPNov2012.pdf

Digging Deeper:
CUDA on NVIDIA

Supercomputing in Plain English: GPU
Tue Apr 24 2018 53

NVIDIA Tesla
 NVIDIA offers a GPU platform named Tesla.
 It consists essentially of their highest end graphics card,

minus the video out connector.

Supercomputing in Plain English: GPU
Tue Apr 24 2018 54

NVIDIA Tesla V100 Card Specs
 5120 GPU cores
 1455 GHz turbo clock speed
 Double precision (FP64) floating point performance:

117 TFLOPs (32 double precision flop per cycle per core)
 Single precision (FP32) floating point performance:

114 TFLOPs (64 single precision flops per cycle per core)
 Half precision (FP16) floating point performance:

112 TFLOPs (512 half precision flops per cycle per core)
 Internal RAM: 16 GB, 900 GB/sec (vs ~200 GB/sec for

regular RAM)
 Has to be plugged into a PCIe slot (32 GB/sec per GPU card)
http://www.nvidia.com/content/PDF/Volta-Datasheet.pdf
https://en.wikipedia.org/wiki/Nvidia_Tesla

http://www.nvidia.com/content/PDF/Volta-Datasheet.pdf
https://en.wikipedia.org/wiki/Nvidia_Tesla

Supercomputing in Plain English: GPU
Tue Apr 24 2018 55

Compare Top x86 vs NVIDIA V100
Let’s compare the best dual socket x86 server today vs V100.

Dual socket, Intel
8180 28-core

NVIDIA Tesla V100
dual cards in an x86 server

Peak DP FLOPs 3.0464 TFLOPs DP 14 TFLOPs DP (4.6x)

Peak SP FLOPs 6.0928 TFLOPs SP 28 TFLOPs SP (4.6x)
Peak HP FLOPs N/A 224 TFLOPs HP

Peak RAM BW ~200 GB/sec ~1800 GB/sec (9x)

Peak PCIe BW N/A 32 GB/sec

Needs x86 server to be
part of?

Is x86 server Yes

Power/Heat ~400 W 2 × 250 W + ~400 W (~2.25x)

Code portable? Yes Yes (OpenACC, OpenCL)

Supercomputing in Plain English: GPU
Tue Apr 24 2018 56

Compare Top x86 vs NVIDIA V100
Here are some interesting measures:

Dual socket, Intel
8180 28-core

NVIDIA Tesla V100
dual cards in an x86 server

DP GFLOPs/Watt ~7.6 GFLOPs/Watt ~15.6 GFLOPs/Watt (~2x)

SP GFLOPS/Watt ~15.2 GFLOPs/Watt ~31.1 GFLOPs/Watt (~2x)

DP TFLOPs/sq ft ~19.3 TFLOPs/sq ft ~44.3 TFLOPs/sq ft (2.3x)

SP TFLOPs/sq ft ~38.6 TFLOPs/sq ft ~88.6 TFLOPs/sq ft (2.3x)

Racks per PFLOP DP 9 racks/PFLOP DP 4 racks/PFLOP DP (44%)

Racks per PFLOP SP 5 racks/PFLOP SP 2 racks/PFLOP SP (40%)

Supercomputing in Plain English: GPU
Tue Apr 24 2018 57

What Are the Downsides?
 You have to rewrite your code into CUDA or OpenCL or

PGI accelerator directives (or maybe OpenMP).
 CUDA: Proprietary
 OpenCL: portable but cumbersome
 OpenACC, OpenMP 4.x: portable, but which to choose?

Supercomputing in Plain English: GPU
Tue Apr 24 2018 58

Programming for Performance
The biggest single performance bottleneck on GPU cards today

is the PCIe slot:
 PCI 3.0 x16: 16 GB/sec
 2666 MHz current architectures: up to ~200 GB/sec per

server
 Accelerator card RAM: 900 GB/sec per card
Your goal:
 At startup, move the data from x86 server RAM into

accelerator RAM.
 Do almost all the work inside the accelerator.
 Use the x86 server only for I/O and message passing, to

minimize the amount of data moved through the PCIe slot.
NOTE: This DOESN’T apply to current Intel MIC.

Machine Learning
on Accelerators

Supercomputing in Plain English: GPU
Tue Apr 24 2018

What is Machine Learning?
 Machine Learning is the part of Artificial Intelligence (AI)

that involves a computer “learning” how to produce a good output,
or action, given a set of inputs.
 How do humans react when a basketball is heading toward us?
 How about a truck?
 How do we decide which gallon of milk to buy?
 Or where to get the best haircut?

 For Machine Learning to be appropriate, there must exist
three conditions:
1. There must exist a large data set of inputs and outputs.
2. There must be some sort of pattern in the data set.
3. It must be difficult for humans to discern a mathematical pattern to

the data.
 If the above three conditions are not met, applying

Machine Learning through structured inference learning is futile.

Supercomputing in Plain English: GPU
Tue Apr 24 2018

Machine Learning Components
 Components of Machine Learning include:

 Data for the Machine Learning algorithm
 Output (or Decision)
 Structured learning component, which is performed by

the Machine Learning algorithm to understand the pattern of
the Data input to produce Output (or Decision).

 The expression that the Machine Learning formulates is called
the Mapping Function.

 The Mapping Function is used to learn the Target Function,
which is the ultimate output of Machine Learning, and
presumably is not a function that can be solved perfectly by
mathematics.

Supercomputing in Plain English: GPU
Tue Apr 24 2018

What Does Machine Learning Give Us?
 Machine Learning ultimately provides us an estimate of a

predictive model that best generalizes to particular type of data.
 The Data used to teach the model is critical. The larger and

cleaner the dataset is, the better the estimate of a predictive
model will be.

 Because the requirements for effective use of Machine
Learning, it is not an analysis methodology that is in any way
universal.

Supercomputing in Plain English: GPU
Tue Apr 24 2018

Machine Learning and GPGPUs
 Many Machine Learning algorithms do calculations on

fast GPGPUs, using half-precision arithmetic.
 Half Precision (less precise) arithmetic can be use because:

 learning data sets should be (and are) large;
 precision is not nearly as important as the data having a trend, or

pattern;
 a few inaccurate variables in the learning data should be

overwhelmed by data that is accurate.
 Using Half Precision data speeds up GPGPUs communications,

and therefore the total processing time.
 It’s not unusual to find many 4x4 matrix operations in ML code –

so it’s easy to map ML code onto rendering hardware.
Supercomputing in Plain English: GPU

Tue Apr 24 2018

Why 4x4 matrices?
 GPUs were designed to solve 4x4 matrices very fast and

in parallel, to serve their original purpose of doing very fast
3D graphics.
 Using 4x4 matrices, you can describe rotation, translation

(moving things around) and scaling (making things bigger or
smaller) at the same time, vital for calculating the “next color”
of a pixel.

 Programmers writing the linear algebra part of their ML
system are rewarded with increased performance if they can
translate it to as much 4x4 matrix algebra as possible.

 The other parts of ML systems generally involve statistical
and probability calculations, which are not nearly as quick
on GPUs.

Supercomputing in Plain English: GPU
Tue Apr 24 2018

TENTATIVE Schedule
Tue Jan 23: Storage: What the Heck is Supercomputing?
Tue Jan 30: The Tyranny of the Storage Hierarchy Part I
Tue Feb 6: The Tyranny of the Storage Hierarchy Part II
Tue Feb 13: Instruction Level Parallelism
Tue Feb 20: Stupid Compiler Tricks
Tue Feb 27: Multicore Multithreading
Tue March 6: Distributed Multiprocessing
Tue March 13: NO SESSION (Henry business travel)
Tue March 20: NO SESSION (OU's Spring Break)
Tue March 27: Applications and Types of Parallelism
Tue Apr 3: Multicore Madness
Tue Apr 10: NO SESSION (Henry business travel)
Tue Apr 17: High Throughput Computing
Tue Apr 24: GPU: Number Crunching in Your Graphics Card
Tue May 1: Grab Bag: Scientific Libraries, I/O Libraries, Visualization

Supercomputing in Plain English: GPU
Tue Apr 24 2018 66

Supercomputing in Plain English: GPU
Tue Apr 24 2018 67

Thanks for helping!
 OU IT

 OSCER operations staff (Dave Akin, Patrick Calhoun, Kali
McLennan, Jason Speckman, Brett Zimmerman)

 OSCER Research Computing Facilitators (Jim Ferguson,
Horst Severini)

 Debi Gentis, OSCER Coordinator
 Kyle Dudgeon, OSCER Manager of Operations
 Ashish Pai, Managing Director for Research IT Services
 The OU IT network team
 OU CIO Eddie Huebsch

 OneNet: Skyler Donahue
 Oklahoma State U: Dana Brunson

Supercomputing in Plain English: GPU
Tue Apr 24 2018 68

This is an experiment!
It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the phone bridge
to fall back on.

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

Coming in 2018!
 Linux Clusters Institute workshops

http://www.linuxclustersinstitute.org/workshops/
 Introductory HPC Cluster System Administration: May 14-18 2018 @ U Nebraska, Lincoln NE USA
 Intermediate HPC Cluster System Administration: Aug 13-17 2018 @ Yale U, New Haven CT USA

 Great Plains Network Annual Meeting: details coming soon
 Advanced Cyberinfrastructure Research & Education Facilitators (ACI-REF) Virtual

Residency Aug 5-10 2018, U Oklahoma, Norman OK USA
 PEARC 2018, July 22-27, Pittsburgh PA USA

https://www.pearc18.pearc.org/

 IEEE Cluster 2018, Sep 10-13, Belfast UK
https://cluster2018.github.io

 OKLAHOMA SUPERCOMPUTING SYMPOSIUM 2018, Sep 25-26 2018 @ OU
 SC18 supercomputing conference, Nov 11-16 2018, Dallas TX USA

http://sc18.supercomputing.org/

Supercomputing in Plain English: GPU
Tue Apr 24 2018 69

http://www.linuxclustersinstitute.org/workshops/
https://www.pearc18.pearc.org/
https://cluster2018.github.io/
http://sc18.supercomputing.org/

Thanks for your
attention!

Questions?
www.oscer.ou.edu

http://www.oscer.ou.edu/

Supercomputing in Plain English: GPU
Tue Apr 24 2018 71

Does CUDA Help?

Example Applications URL Speedup
Seismic Database 66x – 100x

Mobile Phone Antenna Simulation 45x
Molecular Dynamics 21x – 100x
Neuron Simulation 100x
MRI Processing 245x – 415x

Atmospheric Cloud Simulation 50x

http://www.headwave.com
http://www.accelware.com

http://www.ks.uiuc.edu/Research/vmd
http://www.evolvedmachines.com
http://bic-test.beckman.uiuc.edu

http://www.cs.clemson.edu/~jesteel/clouds.html

http://www.nvidia.com/object/IO_43499.html

http://www.nvidia.com/object/IO_43499.html

CUDA
Thread Hierarchy and

Memory Hierarchy

Some of these slides provided by Paul Gray, University of Northern Iowa

Supercomputing in Plain English: GPU
Tue Apr 24 2018

Source: NVIDIA CUDA Programming Guide

CPU vs GPU Layout

Supercomputing in Plain English: GPU
Tue Apr 24 2018 74

Buzzword: Kernel
In CUDA, a kernel is code (typically a function) that can be

run inside the GPU.
Typically, the kernel code operates in lock-step on the stream

processors inside the GPU.

Supercomputing in Plain English: GPU
Tue Apr 24 2018 75

Buzzword: Thread
In CUDA, a thread is an execution of a kernel with a given

index.
Each thread uses its index to access a specific subset of the

elements of a target array, such that the collection of all
threads cooperatively processes the entire data set.

So these are very much like threads in the OpenMP or pthreads
sense – they even have shared variables and private
variables.

Supercomputing in Plain English: GPU
Tue Apr 24 2018 76

Buzzword: Block
In CUDA, a block is a group of threads.
 Just like OpenMP threads, these could execute concurrently

or independently, and in no particular order.
 Threads can be coordinated somewhat, using the
_syncthreads() function as a barrier, making all
threads stop at a certain point in the kernel before moving
on en mass. (This is like what happens at the end of an
OpenMP loop.)

Supercomputing in Plain English: GPU
Tue Apr 24 2018 77

Buzzword: Grid
In CUDA, a grid is a group of (thread) blocks, with no

synchronization at all among the blocks.

Supercomputing in Plain English: GPU
Tue Apr 24 2018

 Grids map to GPUs
 Blocks map to the

MultiProcessors (MP)
 Blocks are never split across

MPs, but an MP can have
multiple blocks

 Threads map to Stream
Processors (SP)

 Warps are groups of (32)
threads that execute
simultaneously

Image Source:
NVIDIA CUDA Programming Guide

NVIDIA GPU Hierarchy

Supercomputing in Plain English: GPU
Tue Apr 24 2018

 blockIdx.x, blockIdx.y, blockIdx.z are built-in
variables that returns the block ID in the x-axis, y-axis and z-
axis of the block that is executing the given block of code.

 threadIdx.x, threadIdx.y, threadidx.z are
built-in variables that return the thread ID in the x-axis, y-axis
and z-axis of the thread that is being executed by this stream
processor in this particular block.

So, you can express your collection of blocks, and your
collection of threads within a block, as a 1D array, a 2D array
or a 3D array.

These can be helpful when thinking of your data as 2D or 3D.

CUDA Built-in Variables

Supercomputing in Plain English: GPU
Tue Apr 24 2018 80

__global__ Keyword
In CUDA, if a function is declared with the __global__

keyword, that means that it’s intended to be executed inside
a GPU.

In CUDA, the term for the GPU is device, and the term for the
x86 server is host.

So, a kernel runs on a device, while the main function,
and so on, run on the host.

Note that a host can play host to multiple devices; for example,
an S2050 server contains 4 C2050 GPU cards, and if a
single host has two PCIe slots, then both of the PCIe plugs
of the S2050 can be plugged into that same host.

Supercomputing in Plain English: GPU
Tue Apr 24 2018 81

Copying Data from Host to Device
If data need to move from the host (where presumably the data

are initially input or generated), then a copy has to exist in
both places.

Typically, what’s copied are arrays, though of course you can
also copy a scalar (the address of which is treated as an
array of length 1).

Supercomputing in Plain English: GPU
Tue Apr 24 2018 82

CUDA Memory Hierarchy #1
CUDA has a hierarchy of

several kinds of memory:
 Host memory (x86 server)
 Device memory (GPU)

 Global: visible to all threads
in all blocks –
largest, slowest

 Shared: visible to all threads
in a particular block –
medium size, medium speed

 Local: visible only to a
particular thread –
smallest, fastest

Supercomputing in Plain English: GPU
Tue Apr 24 2018 83

CUDA Memory Hierarchy #2
CUDA has a hierarchy of

several kinds of memory:
 Host memory (x86 server)
 Device memory (GPU)

 Constant: visible to all
threads in all blocks;
read only

 Texture: visible to all
threads in all blocks;
read only

CUDA Example:
Matrix-Matrix

Multiply

http://developer.download.nvidia.com/compute/cuda/sdk/
website/Linear_Algebra.html#matrixMul

http://developer.download.nvidia.com/compute/cuda/sdk/website/Linear_Algebra.html#matrixMul

Supercomputing in Plain English: GPU
Tue Apr 24 2018 85

Matrix-Matrix Multiply Main Part 1
float* host_A;
float* host_B;
float* host_B;
float* device_A;
float* device_B;
float* device_C;

host_A = (float*) malloc(mem_size_A);
host_B = (float*) malloc(mem_size_B);
host_C = (float*) malloc(mem_size_C);

cudaMalloc((void**) &device_A, mem_size_A);
cudaMalloc((void**) &device_B, mem_size_B);
cudamalloc((void**) &device_C, mem_size_C);

// Set up the initial values of A and B here.

// Henry says: I’ve oversimplified this a bit from
// the original example code.

Supercomputing in Plain English: GPU
Tue Apr 24 2018 86

Matrix-Matrix Multiply Main Part 2
// copy host memory to device
cudaMemcpy(device_A, host_A, mem_size_A,

cudaMemcpyHostToDevice);
cudaMemcpy(device_B, host_B, mem_size_B,

cudaMemcpyHostToDevice);
// setup execution parameters
dim3 threads(BLOCK_SIZE, BLOCK_SIZE);
dim3 grid(WC / threads.x, HC / threads.y);

// execute the kernel
matrixMul<<< grid, threads >>>(device_C,

device_A, device_B, WA, WB);

// copy result from device to host
cudaMemcpy(host_C, device_C, mem_size_C,

cudaMemcpyDeviceToHost);

Supercomputing in Plain English: GPU
Tue Apr 24 2018 87

Matrix Matrix Multiply Kernel Part 1
__global__ void matrixMul(float* C, float* A, float* B, int wA, int wB)
{

// Block index
int bx = blockIdx.x;
int by = blockIdx.y;

// Thread index
int tx = threadIdx.x;
int ty = threadIdx.y;

// Index of the first sub-matrix of A processed by the block
int aBegin = wA * BLOCK_SIZE * by;

// Index of the last sub-matrix of A processed by the block
int aEnd = aBegin + wA - 1;

// Step size used to iterate through the sub-matrices of A
int aStep = BLOCK_SIZE;

// Index of the first sub-matrix of B processed by the block
int bBegin = BLOCK_SIZE * bx;

// Step size used to iterate through the sub-matrices of B
int bStep = BLOCK_SIZE * wB;

// Csub is used to store the element of the block sub-matrix
// that is computed by the thread
float Csub = 0;

Supercomputing in Plain English: GPU
Tue Apr 24 2018 88

Matrix Matrix Multiply Kernel Part 2
// Loop over all the sub-matrices of A and B
// required to compute the block sub-matrix
for (int a = aBegin, b = bBegin;

a <= aEnd;
a += aStep, b += bStep) {

// Declaration of the shared memory array As used to
// store the sub-matrix of A
__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];

// Declaration of the shared memory array Bs used to
// store the sub-matrix of B
__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

// Load the matrices from device memory
// to shared memory; each thread loads
// one element of each matrix
AS(ty, tx) = A[a + wA * ty + tx];
BS(ty, tx) = B[b + wB * ty + tx];

// Synchronize to make sure the matrices are loaded
__syncthreads();

Supercomputing in Plain English: GPU
Tue Apr 24 2018 89

Matrix Matrix Multiply Kernel Part 3
// Multiply the two matrices together;
// each thread computes one element
// of the block sub-matrix
for (int k = 0; k < BLOCK_SIZE; ++k)

Csub += AS(ty, k) * BS(k, tx);

// Synchronize to make sure that the preceding
// computation is done before loading two new
// sub-matrices of A and B in the next iteration
__syncthreads();

}

// Write the block sub-matrix to device memory;
// each thread writes one element
int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
C[c + wB * ty + tx] = Csub;

}

Supercomputing in Plain English: GPU
Tue Apr 24 2018 90

Would We Really Do It This Way?
We wouldn’t really do matrix-matrix multiply this way.
NVIDIA has developed a CUDA implementation of the BLAS

libraries, which include a highly tuned matrix-matrix
multiply routine.

(We’ll learn about BLAS next time.)
There’s also a CUDA FFT library, if your code needs Fast

Fourier Transforms.

Thanks for your
attention!

Questions?
www.oscer.ou.edu

http://www.oscer.ou.edu/

TENTATIVE Schedule
Tue Jan 23: Storage: What the Heck is Supercomputing?
Tue Jan 30: The Tyranny of the Storage Hierarchy Part I
Tue Feb 6: The Tyranny of the Storage Hierarchy Part II
Tue Feb 13: Instruction Level Parallelism
Tue Feb 20: Stupid Compiler Tricks
Tue Feb 27: Multicore Multithreading
Tue March 6: Distributed Multiprocessing
Tue March 13: NO SESSION (Henry business travel)
Tue March 20: NO SESSION (OU's Spring Break)
Tue March 27: Applications and Types of Parallelism
Tue Apr 3: Multicore Madness
Tue Apr 10: NO SESSION (Henry business travel)
Tue Apr 17: High Throughput Computing
Tue Apr 24: GPU: Number Crunching in Your Graphics Card
Tue May 1: Grab Bag: Scientific Libraries, I/O Libraries, Visualization

Supercomputing in Plain English: GPU
Tue Apr 24 2018 92

Supercomputing in Plain English: GPU
Tue Apr 24 2018 93

Thanks for helping!
 OU IT

 OSCER operations staff (Dave Akin, Patrick Calhoun, Kali
McLennan, Jason Speckman, Brett Zimmerman)

 OSCER Research Computing Facilitators (Jim Ferguson,
Horst Severini)

 Debi Gentis, OSCER Coordinator
 Kyle Dudgeon, OSCER Manager of Operations
 Ashish Pai, Managing Director for Research IT Services
 The OU IT network team
 OU CIO Eddie Huebsch

 OneNet: Skyler Donahue
 Oklahoma State U: Dana Brunson

Supercomputing in Plain English: GPU
Tue Apr 24 2018 94

This is an experiment!
It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the phone bridge
to fall back on.

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

Coming in 2018!
 Linux Clusters Institute workshops

http://www.linuxclustersinstitute.org/workshops/
 Introductory HPC Cluster System Administration: May 14-18 2018 @ U Nebraska, Lincoln NE USA
 Intermediate HPC Cluster System Administration: Aug 13-17 2018 @ Yale U, New Haven CT USA

 Great Plains Network Annual Meeting: details coming soon
 Advanced Cyberinfrastructure Research & Education Facilitators (ACI-REF) Virtual

Residency Aug 5-10 2018, U Oklahoma, Norman OK USA
 PEARC 2018, July 22-27, Pittsburgh PA USA

https://www.pearc18.pearc.org/

 IEEE Cluster 2018, Sep 10-13, Belfast UK
https://cluster2018.github.io

 OKLAHOMA SUPERCOMPUTING SYMPOSIUM 2018, Sep 25-26 2018 @ OU
 SC18 supercomputing conference, Nov 11-16 2018, Dallas TX USA

http://sc18.supercomputing.org/

Supercomputing in Plain English: GPU
Tue Apr 24 2018 95

http://www.linuxclustersinstitute.org/workshops/
https://www.pearc18.pearc.org/
https://cluster2018.github.io/
http://sc18.supercomputing.org/

Thanks for your
attention!

Questions?
www.oscer.ou.edu

http://www.oscer.ou.edu/

	Supercomputing�in Plain English�GPGPU: Number Crunching in�Your Graphics Card
	This is an experiment!
	PLEASE MUTE YOURSELF
	Download the Slides Beforehand
	Zoom
	YouTube
	Twitch
	Wowza #1
	Wowza #2
	Toll Free Phone Bridge
	Please Mute Yourself
	Questions via E-mail Only
	Onsite: Talent Release Form
	TENTATIVE Schedule
	Thanks for helping!
	This is an experiment!
	Coming in 2018!
	Outline
	What is GPGPU?
	Accelerators
	Accelerators
	Why Accelerators are Good
	Why Accelerators are Bad
	The King of the Accelerators
	What does 1 TFLOPs Look Like?
	Why GPU?
	GPUs are Popular
	GPUs Do Arithmetic
	GPU Programming
	Hard to Program?
	Easy to Program?
	Intel MIC
	How to Program a GPU
	NVIDIA CUDA
	CUDA Example Part 1
	CUDA Example Part 2
	OpenCL
	OpenCL Example Part 1
	OpenCL Example Part 2
	OpenCL Example Part 3
	OpenCL Example Part 4
	OpenACC
	OpenACC Compiler Directives
	OpenACC Example Part 1 (C)
	OpenACC Example Part 2 (C)
	OpenACC Example Part 3 (C)
	OpenACC Example Part 1 (F90)
	OpenACC Example Part 2 (F90)
	OpenACC Example Part 3 (F90)
	OpenMP 4.x Accelerator Directives
	OpenMP Accelerator Example (F90)
	Digging Deeper:�CUDA on NVIDIA
	NVIDIA Tesla
	NVIDIA Tesla V100 Card Specs
	Compare Top x86 vs NVIDIA V100
	Compare Top x86 vs NVIDIA V100
	What Are the Downsides?
	Programming for Performance
	Machine Learning�on Accelerators
	Slide Number 60
	What is Machine Learning?	
	Machine Learning Components	
	What Does Machine Learning Give Us?
	Machine Learning and GPGPUs
	Why 4x4 matrices?
	TENTATIVE Schedule
	Thanks for helping!
	This is an experiment!
	Coming in 2018!
	Thanks for your attention!���Questions?�www.oscer.ou.edu
	Does CUDA Help?
	CUDA�Thread Hierarchy and Memory Hierarchy
	Slide Number 73
	Buzzword: Kernel
	Buzzword: Thread
	Buzzword: Block
	Buzzword: Grid
	NVIDIA GPU Hierarchy
	CUDA Built-in Variables
	__global__ Keyword
	Copying Data from Host to Device
	CUDA Memory Hierarchy #1
	CUDA Memory Hierarchy #2
	CUDA Example:�Matrix-Matrix Multiply
	Matrix-Matrix Multiply Main Part 1
	Matrix-Matrix Multiply Main Part 2
	Matrix Matrix Multiply Kernel Part 1
	Matrix Matrix Multiply Kernel Part 2
	Matrix Matrix Multiply Kernel Part 3
	Would We Really Do It This Way?
	Thanks for your attention!���Questions?�www.oscer.ou.edu
	TENTATIVE Schedule
	Thanks for helping!
	This is an experiment!
	Coming in 2018!
	Thanks for your attention!���Questions?�www.oscer.ou.edu

