
Supercomputing
in Plain English

GPGPU: Number Crunching
in Your Graphics Card

Henry Neeman, Director
OU Supercomputing Center for Education & Research (OSCER)

University of Oklahoma
Tuesday April 9 2013

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 2

This is an experiment!
It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone
bridge to fall back on.

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 3

H.323 (Polycom etc) #1
If you want to use H.323 videoconferencing – for example,

Polycom – then:
 If you AREN’T registered with the OneNet gatekeeper (which

is probably the case), then:
 Dial 164.58.250.47
 Bring up the virtual keypad.

On some H.323 devices, you can bring up the virtual keypad by typing:

(You may want to try without first, then with; some devices won't work
with the #, but give cryptic error messages about it.)

 When asked for the conference ID, or if there's no response, enter:
0409

 On most but not all H.323 devices, you indicate the end of the ID with:

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 4

H.323 (Polycom etc) #2
If you want to use H.323 videoconferencing – for example,

Polycom – then:
 If you ARE already registered with the OneNet gatekeeper

(most institutions aren’t), dial:
 2500409

Many thanks to Skyler Donahue and Steven Haldeman of OneNet
for providing this.

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 5

Wowza #1
You can watch from a Windows, MacOS or Linux laptop using

Wowza from either of the following URLs:

http://www.onenet.net/technical-resources/video/sipe-stream/

OR
https://vcenter.njvid.net/videos/livestreams/page1/

Wowza behaves a lot like YouTube, except live.

Many thanks to Skyler Donahue and Steven Haldeman of OneNet

and Bob Gerdes of Rutgers U for providing this.

http://www.onenet.net/technical-resources/video/sipe-stream/
https://vcenter.njvid.net/videos/livestreams/page1/

Wowza #2
Wowza has been tested on multiple browsers on each of:
 Windows (7 and 8): IE, Firefox, Chrome, Opera, Safari
 MacOS X: Safari, Firefox
 Linux: Firefox, Opera
We’ve also successfully tested it on devices with:
 Android
 iOS
However, we make no representations on the likelihood of it
working on your device, because we don’t know which
versions of Android or iOS it might or might not work with.

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 6

Wowza #3
If one of the Wowza URLs fails, try switching over to the other
one.

If we lose our network connection between OU and OneNet,
then there may be a slight delay while we set up a direct
connection to Rutgers.

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 7

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 8

Toll Free Phone Bridge
IF ALL ELSE FAILS, you can use our toll free phone bridge:

800-832-0736
* 623 2847 #

Please mute yourself and use the phone to listen.
Don’t worry, we’ll call out slide numbers as we go.
Please use the phone bridge ONLY if you cannot connect any

other way: the phone bridge can handle only 100
simultaneous connections, and we have over 350 participants.

Many thanks to OU CIO Loretta Early for providing the toll free
phone bridge.

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 9

Please Mute Yourself
No matter how you connect, please mute yourself, so that we

cannot hear you.
(For Wowza, you don’t need to do that, because the

information only goes from us to you, not from you to us.)
At OU, we will turn off the sound on all conferencing

technologies.
That way, we won’t have problems with echo cancellation.
Of course, that means we cannot hear questions.
So for questions, you’ll need to send e-mail.

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 10

Questions via E-mail Only
Ask questions by sending e-mail to:

sipe2013@gmail.com

All questions will be read out loud and then answered out loud.

mailto:sipe2013@gmail.com

TENTATIVE Schedule
Tue Jan 22: Overview: What the Heck is Supercomputing?
Tue Jan 29: The Tyranny of the Storage Hierarchy
Tue Feb 5: Instruction Level Parallelism
Tue Feb 12: Stupid Compiler Tricks
Tue Feb 19: Shared Memory Multithreading
Tue Feb 26: Distributed Multiprocessing
Tue March 5: Applications and Types of Parallelism
Tue Apr 9: GPGPU Madness
Tue March 19: NO SESSION (OU's Spring Break)
Tue Apr 9: High Throughput Computing
Tue Apr 9: GPGPU: Number Crunching in Your Graphics Card
Tue Apr 9: Grab Bag: Scientific Libraries, I/O Libraries,
Visualization

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 11

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 12

Supercomputing Exercises #1
Want to do the “Supercomputing in Plain English” exercises?
 The 3rd exercise will be posted soon at:

http://www.oscer.ou.edu/education/
 If you don’t yet have a supercomputer account, you can get

a temporary account, just for the “Supercomputing in Plain
English” exercises, by sending e-mail to:

hneeman@ou.edu
Please note that this account is for doing the exercises only,

and will be shut down at the end of the series. It’s also
available only to those at institutions in the USA.

 This week’s Introductory exercise will teach you how to
compile and run jobs on OU’s big Linux cluster
supercomputer, which is named Boomer.

http://www.oscer.ou.edu/education/
mailto:hneeman@ou.edu

Supercomputing Exercises #2
You’ll be doing the exercises on your own (or you can work
with others at your local institution if you like).
These aren’t graded, but we’re available for questions:

hneeman@ou.edu

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 13

mailto:hneeman@ou.edu

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 14

Thanks for helping!
 OU IT

 OSCER operations staff (Brandon George, Dave Akin, Brett Zimmerman,
Josh Alexander, Patrick Calhoun)

 Horst Severini, OSCER Associate Director for Remote & Heterogeneous
Computing

 Debi Gentis, OU Research IT coordinator
 Kevin Blake, OU IT (videographer)
 Chris Kobza, OU IT (learning technologies)
 Mark McAvoy

 Kyle Keys, OU National Weather Center
 James Deaton, Skyler Donahue and Steven Haldeman, OneNet
 Bob Gerdes, Rutgers U
 Lisa Ison, U Kentucky
 Paul Dave, U Chicago

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 15

This is an experiment!
It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone
bridge to fall back on.

Coming in 2013!
From Computational Biophysics to Systems Biology, May 19-21,

Norman OK
Great Plains Network Annual Meeting, May 29-31, Kansas City
XSEDE2013, July 22-25, San Diego CA
IEEE Cluster 2013, Sep 23-27, Indianapolis IN
OKLAHOMA SUPERCOMPUTING SYMPOSIUM 2013,

Oct 1-2, Norman OK
SC13, Nov 17-22, Denver CO

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 16

17

OK Supercomputing Symposium 2013

2006 Keynote:
Dan Atkins

Head of NSF’s
Office of

Cyberinfrastructure

2004 Keynote:
Sangtae Kim
NSF Shared

Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer & Information
Science & Engineering

Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

2008 Keynote:
José Munoz

Deputy Office
Director/ Senior

Scientific Advisor
NSF Office of

Cyberinfrastructure

2009 Keynote:
Douglass Post
Chief Scientist

US Dept of Defense
HPC Modernization

Program

FREE! Wed Oct 2 2013 @ OU
Over 235 registra2ons already!

Over 150 in the first day, over 200 in the first week,
over 225 in the first month.

http://symposium2013.oscer.ou.edu/

Reception/Poster Session
Tue Oct 1 2013 @ OU

Symposium Wed Oct 2 2013 @ OU

2010 Keynote:
Horst Simon

Deputy Director
Lawrence Berkeley
National Laboratory

2013 Keynote
to be announced!

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013

2011 Keynote:
Barry Schneider

Program Manager
National Science

Foundation

2012 Keynote:
Thom Dunning

Director
National Center for

Supercomputing
Applications

http://symposium2013.oscer.ou.edu/

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 18

Outline
 What is GPGPU?
 GPU Programming
 Digging Deeper: CUDA on NVIDIA
 CUDA Thread Hierarchy and Memory Hierarchy
 CUDA Example: Matrix-Matrix Multiply

What is GPGPU?

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 20

Accelerators
No, not this

http://gizmodo.com/5032891/nissans-eco-gas-pedal-fights-back-to-help-you-save-gas

http://gizmodo.com/5032891/nissans-eco-gas-pedal-fights-back-to-help-you-save-gas

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 21

Accelerators
 In HPC, an accelerator is hardware component whose role is

to speed up some aspect of the computing workload.
 In the olden days (1980s), supercomputers sometimes had

array processors, which did vector operations on arrays,
and PCs sometimes had floating point accelerators: little
chips that did the floating point calculations in hardware
rather than software.

 More recently, Field Programmable Gate Arrays (FPGAs)
allow reprogramming deep into the hardware.

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 22

Why Accelerators are Good
Accelerators are good because:
 they make your code run faster.

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 23

Why Accelerators are Bad
Accelerators are bad because:
 they’re expensive;
 they’re hard to program;
 your code on them may not be portable to other

accelerators, so the labor you invest in programming them
has a very short half-life.

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 24

The King of the Accelerators
The undisputed champion of accelerators is:
 the graphics processing unit.

http://www.amd.com/us-en/assets/content_type/DigitalMedia/46928a_01_ATI-FirePro_V8700_angled_low_res.gif

http://blog.xcelerit.com/benchmarks-nvidia-kepler-vs-fermi/

http://www.overclockers.ua/news/cpu/106612-Knights-Ferry.jpg

http://www.amd.com/us-en/assets/content_type/DigitalMedia/46928a_01_ATI-FirePro_V8700_angled_low_res.gif
http://images.nvidia.com/products/quadro_fx_5800/Quadro_FX5800_low_3qtr.png
http://images.nvidia.com/products/quadro_fx_5800/Quadro_FX5800_low_3qtr.png
http://images.nvidia.com/products/quadro_fx_5800/Quadro_FX5800_low_3qtr.png
http://images.nvidia.com/products/quadro_fx_5800/Quadro_FX5800_low_3qtr.png
http://images.nvidia.com/products/quadro_fx_5800/Quadro_FX5800_low_3qtr.png
http://images.nvidia.com/products/quadro_fx_5800/Quadro_FX5800_low_3qtr.png
http://images.nvidia.com/products/quadro_fx_5800/Quadro_FX5800_low_3qtr.png
http://images.nvidia.com/products/quadro_fx_5800/Quadro_FX5800_low_3qtr.png
http://images.nvidia.com/products/quadro_fx_5800/Quadro_FX5800_low_3qtr.png
http://www.overclockers.ua/news/cpu/106612-Knights-Ferry.jpg

Supercomputing in Plain English: Multicore
Tue March 12 2013 25

What does 1 TFLOPs Look Like?

NVIDIA Kepler K20[15]

Intel MIC Xeon PHI[16]

2012: Card

boomer.oscer.ou.edu
In service 2002-5: 11 racks

2002: Row
1997: Room

ASCI RED[13]

Sandia National Lab

AMD FirePro W9000[14]

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 26

Why GPU?
 Graphics Processing Units (GPUs) were originally

designed to accelerate graphics tasks like image rendering.
 They became very very popular with videogamers, because

they’ve produced better and better images, and lightning
fast.

 And, prices have been extremely good, ranging from three
figures at the low end to four figures at the high end.

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 27

GPUs are Popular
 Chips are expensive to design (hundreds of millions of $$$),

expensive to build the factory for (billions of $$$), but
cheap to produce.

 For example, in the current fiscal year, NVIDIA sold about
$2-3B of GPUs (out of something like $4B total revenue).

 For example, in 2006 – 2007, GPUs sold at a rate of about
80 million cards per year, generating about $20 billion per
year in revenue.
http://www.xbitlabs.com/news/video/display/20080404234228_Shipments_of_Discrete_Graphi

cs_Cards_on_the_Rise_but_Prices_Down_Jon_Peddie_Research.html

 This means that the GPU companies have been able to
recoup the huge fixed costs.

http://www.xbitlabs.com/news/video/display/20080404234228_Shipments_of_Discrete_Graphics_Cards_on_the_Rise_but_Prices_Down_Jon_Peddie_Research.html
http://www.xbitlabs.com/news/video/display/20080404234228_Shipments_of_Discrete_Graphics_Cards_on_the_Rise_but_Prices_Down_Jon_Peddie_Research.html

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 28

GPU Do Arithmetic
 GPUs mostly do stuff like rendering images.
 This is done through mostly floating point arithmetic – the

same stuff people use supercomputing for!

GPU Programming

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 30

Hard to Program?
 In the olden days – that is, until just the last few years –

programming GPUs meant either:
 using a graphics standard like OpenGL (which is mostly

meant for rendering), or
 getting fairly deep into the graphics rendering pipeline.

 To use a GPU to do general purpose number crunching, you
had to make your number crunching pretend to be graphics.

 This was hard. So most people didn’t bother.

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 31

Easy to Program?
More recently, GPU manufacturers have worked hard to make

GPUs easier to use for general purpose computing.
This is known as General Purpose Graphics Processing Units.

Intel MIC
 First production (non-research) model: Xeon Phi.
 Not a graphics card.
 But, has similar structure to a graphics card, just without the

graphics.
 Based on x86: can use a lot of the same tools as CPU.
 61 x86 cores, 512-bit vector widths (8-way double precision

floating point vectors, up to 16 DP floating point
calculations per clock cycle using Fused Multiply-Add).

 8 GB GDDR5 Graphics RAM, 352 GB/sec
 Peak ~1070 GFLOPs per card (i.e., OSCER’s first cluster

supercomputer in 2002).
http://www.tacc.utexas.edu/user-services/user-guides/stampede-user-guide
https://secure-software.intel.com/sites/default/files/article/334766/intel-xeon-phi-
systemsoftwaredevelopersguide.pdf

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 32

http://www.tacc.utexas.edu/user-services/user-guides/stampede-user-guide
https://secure-software.intel.com/sites/default/files/article/334766/intel-xeon-phi-systemsoftwaredevelopersguide.pdf
https://secure-software.intel.com/sites/default/files/article/334766/intel-xeon-phi-systemsoftwaredevelopersguide.pdf

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 33

How to Program a GPU
 Proprietary programming language or extensions

 NVIDIA: CUDA (C/C++)
 AMD/ATI: StreamSDK/Brook+ (C/C++) – defunct

 OpenCL (Open Computing Language): an industry standard
for doing number crunching on GPUs.

 Portland Group Inc (PGI) Fortran and C compilers with
accelerator directives; PGI CUDA Fortran (Fortran 90
equivalent of NVIDIA’s CUDA C).

 OpenACC accelerators directives for NVIDIA and AMD
 OpenMP version 4.0 will include accelerator directives.
 HMPP: directive-based like PGI and OpenMP4 but creates

intermediate CUDA or OpenCL code (so portable).

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 34

NVIDIA CUDA
 NVIDIA proprietary
 Formerly known as “Compute Unified Device Architecture”
 Extensions to C to allow better control of GPU capabilities
 Modest extensions but major rewriting of the code
 Portland Group Inc (PGI) has released a Fortran

implementation of CUDA available in their Fortran
compiler.

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 35

CUDA Example Part 1
// example1.cpp : Defines the entry point for the console applicati

on.
//

#include "stdafx.h"

#include <stdio.h>
#include <cuda.h>

// Kernel that executes on the CUDA device
__global__ void square_array(float *a, int N)
{
 int idx = blockIdx.x * blockDim.x + threadIdx.x;
 if (idx<N) a[idx] = a[idx] * a[idx];
}

http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/

http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/
http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/
http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/
http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/
http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/
http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/
http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/
http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/
http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/
http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/
http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/
http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/
http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 36

CUDA Example Part 2
// main routine that executes on the host
int main(void)
{
 float *a_h, *a_d; // Pointer to host & device arrays
 const int N = 10; // Number of elements in arrays
 size_t size = N * sizeof(float);
 a_h = (float *)malloc(size); // Allocate array on host
 cudaMalloc((void **) &a_d, size); // Allocate array on device
 // Initialize host array and copy it to CUDA device
 for (int i=0; i<N; i++) a_h[i] = (float)i;
 cudaMemcpy(a_d, a_h, size, cudaMemcpyHostToDevice);
 // Do calculation on device:
 int block_size = 4;
 int n_blocks = N/block_size + (N%block_size == 0 ? 0:1);
 square_array <<< n_blocks, block_size >>> (a_d, N);
 // Retrieve result from device and store it in host array
 cudaMemcpy(a_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);
 // Print results
 for (int i=0; i<N; i++) printf("%d %f\n", i, a_h[i]);
 // Cleanup
 free(a_h); cudaFree(a_d);
}

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 37

OpenCL
 Open Computing Language
 Open standard developed by the Khronos Group, which is a

consortium of many companies (including NVIDIA, AMD
and Intel, but also lots of others)

 Initial version of OpenCL standard released in Dec 2008.
 Many companies are creating their own implementations.
 Apple was first to market, with an OpenCL implementation

included in Mac OS X v10.6 (“Snow Leopard”) in 2009.

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 38

OpenCL Example Part 1
// create a compute context with GPU device
context =
 clCreateContextFromType(NULL, CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);
// create a command queue
queue = clCreateCommandQueue(context, NULL, 0, NULL);
// allocate the buffer memory objects
memobjs[0] = clCreateBuffer(context,
 CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
 sizeof(float)*2*num_entries, srcA, NULL);
memobjs[1] = clCreateBuffer(context,
 CL_MEM_READ_WRITE,
 sizeof(float)*2*num_entries, NULL, NULL);
// create the compute program
program = clCreateProgramWithSource(context, 1, &fft1D_1024_kernel_src,
 NULL, NULL);

http://en.wikipedia.org/wiki/OpenCL

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 39

OpenCL Example Part 2
// build the compute program executable
clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
// create the compute kernel
kernel = clCreateKernel(program, "fft1D_1024", NULL);
// set the args values
clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&memobjs[0]);
clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&memobjs[1]);
clSetKernelArg(kernel, 2, sizeof(float)*(local_work_size[0]+1)*16, NULL);
clSetKernelArg(kernel, 3, sizeof(float)*(local_work_size[0]+1)*16, NULL);
// create N-D range object with work-item dimensions and execute kernel
global_work_size[0] = num_entries; local_work_size[0] = 64;
clEnqueueNDRangeKernel(queue, kernel, 1, NULL,
 global_work_size, local_work_size, 0, NULL, NULL);

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 40

OpenCL Example Part 3
// This kernel computes FFT of length 1024. The 1024 length FFT is
// decomposed into calls to a radix 16 function, another radix 16
// function and then a radix 4 function
__kernel void fft1D_1024 (__global float2 *in, __global float2 *out,
 __local float *sMemx, __local float *sMemy) {
 int tid = get_local_id(0);
 int blockIdx = get_group_id(0) * 1024 + tid;
 float2 data[16];

// starting index of data to/from global memory
 in = in + blockIdx;
 out = out + blockIdx;
 globalLoads(data, in, 64); // coalesced global reads
 fftRadix16Pass(data); // in-place radix-16 pass
 twiddleFactorMul(data, tid, 1024, 0);

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 41

OpenCL Example Part 4
 // local shuffle using local memory
 localShuffle(data, sMemx, sMemy, tid, (((tid & 15) * 65) + (tid >>

4)));
 fftRadix16Pass(data); // in-place radix-16 pass
 twiddleFactorMul(data, tid, 64, 4); // twiddle factor multiplication
 localShuffle(data, sMemx, sMemy, tid, (((tid >> 4) * 64) + (tid &

15)));
 // four radix-4 function calls
 fftRadix4Pass(data); // radix-4 function number 1
 fftRadix4Pass(data + 4); // radix-4 function number 2
 fftRadix4Pass(data + 8); // radix-4 function number 3
 fftRadix4Pass(data + 12); // radix-4 function number 4
 // coalesced global writes
 globalStores(data, out, 64);
}

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 42

Portland Group Accelerator Directives
 Proprietary directives in Fortran and C
 Similar to OpenMP in structure
 If the compiler doesn’t understand these directives, it

ignores them, so the same code can work with an accelerator
or without, and with the PGI compilers or other compilers.

 The directives tell the compiler what parts of the code
happen in the accelerator; the rest happens in the regular
hardware.

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 43

PGI Accelerator Example
!$acc region
 do k = 1,n1
 do i = 1,n3
 c(i,k) = 0.0
 do j = 1,n2
 c(i,k) = c(i,k) +
& a(i,j) * b(j,k)
 enddo
 enddo
 enddo
!$acc end region

http://www.pgroup.com/resources/accel.htm

http://www.pgroup.com/resources/accel.htm

OpenACC Compiler Directives
 Open standard for accelerator directives
 Developed by NVIDIA, Cray, PGI, CAPS
 Available in PGI and CAPS compilers for general cluster

user, in Cray compilers for use on Crays

http://en.wikipedia.org/wiki/OpenACC

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 44

http://en.wikipedia.org/wiki/OpenACC

OpenACC Example Part 1 (C)

#include <stdio.h>
#include <stdlib.h>

void vecaddgpu(float *restrict r, float *a, float *b, int n){
 #pragma acc kernels loop copyin(a[0:n],b[0:n]) copyout(r[0:n])
 for(int i = 0; i < n; ++i) r[i] = a[i] + b[i];
}

/* http://www.pgroup.com/doc/openACC_gs.pdf */

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 45

http://www.pgroup.com/doc/openACC_gs.pdf

OpenACC Example Part 2 (C)
int main(int argc, char* argv[]){
 int n; /* vector length */
 float * a; /* input vector 1 */
 float * b; /* input vector 2 */
 float * r; /* output vector */
 float * e; /* expected output values */
 int i, errs;

 if(argc > 1) n = atoi(argv[1]);
 else n = 100000; /* default vector length */
 if(n <= 0) n = 100000;
 a = (float*)malloc(n*sizeof(float));
 b = (float*)malloc(n*sizeof(float));
 r = (float*)malloc(n*sizeof(float));
 e = (float*)malloc(n*sizeof(float));
 for(i = 0; i < n; ++i){
 a[i] = (float)(i+1);
 b[i] = (float)(1000*i);
 }

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 46

OpenACC Example Part 3 (C)
 /* compute on the GPU */
 vecaddgpu(r, a, b, n);
 /* compute on the host to compare */
 for(i = 0; i < n; ++i) e[i] = a[i] + b[i];
 /* compare results */
 errs = 0;
 for(i = 0; i < n; ++i){
 if(r[i] != e[i]){
 ++errs;
 }
 }
 printf(“%d errors found\n”, errs);
 return errs;
}

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 47

OpenACC Example Part 1 (F90)
module vecaddmod
 implicit none
contains
 subroutine vecaddgpu(r, a, b, n)
 real, dimension(:) :: r, a, b
 integer :: n
 integer :: i
!$acc kernels loop copyin(a(1:n),b(1:n)) copyout(r(1:n))
 do i = 1, n
 r(i) = a(i) + b(i)
 enddo
 end subroutine
end module

! http://www.pgroup.com/doc/openACC_gs.pdf

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 48

http://www.pgroup.com/doc/openACC_gs.pdf
http://www.pgroup.com/doc/openACC_gs.pdf

OpenACC Example Part 2 (F90)
program main
 use vecaddmod
 implicit none
 integer :: n, i, errs, argcount
 real, dimension(:), allocatable :: a, b, r, e
 character*10 :: arg1

 argcount = command_argument_count()
 n = 1000000 ! default value
 if(argcount >= 1)then
 call get_command_argument(1, arg1)
 read(arg1, '(i)') n
 if(n <= 0) n = 100000
 endif
 allocate(a(n), b(n), r(n), e(n))
 do i = 1, n
 a(i) = i
 b(i) = 1000*i
 enddo

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 49

OpenACC Example Part 3 (F90)
 ! compute on the GPU
 call vecaddgpu(r, a, b, n)
 ! compute on the host to compare
 do i = 1, n
 e(i) = a(i) + b(i)
 enddo
 ! compare results
 errs = 0
 do i = 1, n
 if(r(i) /= e(i))then
 errs = errs + 1
 endif
 enddo
 print *, errs, ' errors found'
 if(errs) call exit(errs)
end program

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 50

OpenMP 4.0 Accelerator Directives
 OpenMP’s 4.0 standard is very much in discussion.
 It appears certain to end up with accelerator directives.
 It’s the lingua franca of the Intel MIC accelerator.

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 51

OpenMP Accelerator Example (F90)
! snippet from the hand-coded subprogram...
!dir$ attributes offload:mic :: my_sgemm
subroutine my_sgemm(d,a,b)
real, dimension(:,:) :: a, b, d
!$omp parallel do
do j=1, n
 do i=1, n
 d(i,j) = 0.0
 do k=1, n
 d(i,j) = d(i,j)+a(i,k)*b(k,j)
 enddo
 enddo
enddo
end subroutine
http://www.cac.cornell.edu/education/training/ParallelFall2012/OpenMPNov2012.pdf

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 52

http://www.cac.cornell.edu/education/training/ParallelFall2012/OpenMPNov2012.pdf

Digging Deeper:
CUDA on NVIDIA

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 54

NVIDIA Tesla
 NVIDIA offers a GPU platform named Tesla.
 It consists essentially of their highest end graphics card,

minus the video out connector.

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 55

NVIDIA Tesla K20X Card Specs
 2688 GPU cores
 735 MHz
 Single precision floating point performance: 1

3950 GFLOPs (2 single precision flops per clock per core)
 Double precision floating point performance:

1310 GFLOPs (2/3 double precision flop per clock per core)
 Internal RAM: 6 GB DDR5
 Internal RAM speed: 250 GB/sec (compared 60-80 GB/sec

for regular RAM)
 Has to be plugged into a PCIe slot (at most 16 GB/sec per

GPU card)
http://www.nvidia.com/content/tesla/pdf/Tesla-KSeries-Overview-LR.pdf
http://en.wikipedia.org/wiki/Nvidia_Tesla

http://www.nvidia.com/content/tesla/pdf/Tesla-KSeries-Overview-LR.pdf
http://en.wikipedia.org/wiki/Nvidia_Tesla

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 56

Compare Top x86 vs NVIDIA K20X
Let’s compare the best dual socket x86 server today vs K20X.

Dual socket, Intel
3.1 GHz oct-core

NVIDIA Tesla K20X

Peak DP FLOPs 396.8 GFLOPs DP 2620 GFLOPs DP (6.6x)

Peak SP FLOPS 793.6 GFLOPs SP 7900 GFLOPs SP (10x)
Peak RAM BW ~80 GB/sec 500 GB/sec (23x)

Peak PCIe BW N/A 16 GB/sec

Needs x86 server to
attach to?

No Yes

Power/Heat ~350 W 2 * ~235 W + ~400 W (~2.5x)

Code portable? Yes No (CUDA)
Yes (OpenACC, OpenCL)

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 57

Compare x86 vs NVIDIA K20X
Here are some interesting measures:

Dual socket, AMD
2.3 GHz 12-core

NVIDIA Tesla S2050

DP GFLOPs/Watt ~1.1 GFLOPs/Watt ~3 GFLOPs/Watt (~2.7x)

SP GFLOPS/Watt ~2.25 GFLOPs/Watt ~9 GFLOPs/Watt (~1.8x)

DP TFLOPs/sq ft ~1 TFLOPs/sq ft ~7 TFLOPs/sq ft (7x)

SP TFLOPs/sq ft ~2 TFLOPs/sq ft ~21 TFLOPs/sq ft (10.5x)

Racks per PFLOP DP 79 racks/PFLOP DP 24 racks/PFLOP DP (30%)

Racks per PFLOP SP 40 racks/PFLOP SP 8 racks/PFLOP SP (20%)

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 58

What Are the Downsides?
 You have to rewrite your code into CUDA or OpenCL or

PGI accelerator directives (or someday maybe OpenMP).
 CUDA: Proprietary, but maybe portable soon
 OpenCL: portable but cumbersome
 OpenACC, OpenMP 4.0: portable, but which to choose?

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 59

Programming for Performance
The biggest single performance bottleneck on GPU cards today

is the PCIe slot:
 PCIe 2.0 x16: 8 GB/sec, PCI 3.0 x16: 16 GB/sec
 1600 MHz current architectures: up to ~80 GB/sec per

server
 GDDR5 accelerator card RAM: 250 GB/sec per card
Your goal:
 At startup, move the data from x86 server RAM into

accelerator RAM.
 Do almost all the work inside the accelerator.
 Use the x86 server only for I/O and message passing, to

minimize the amount of data moved through the PCIe slot.

Thanks for your
attention!

Questions?

61

OK Supercomputing Symposium 2013

2006 Keynote:
Dan Atkins

Head of NSF’s
Office of

Cyberinfrastructure

2004 Keynote:
Sangtae Kim
NSF Shared

Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer & Information
Science & Engineering

Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

2008 Keynote:
José Munoz

Deputy Office
Director/ Senior

Scientific Advisor
NSF Office of

Cyberinfrastructure

2009 Keynote:
Douglass Post
Chief Scientist

US Dept of Defense
HPC Modernization

Program

FREE! Wed Oct 2 2013 @ OU
Over 235 registra2ons already!

Over 150 in the first day, over 200 in the first week,
over 225 in the first month.

http://symposium2013.oscer.ou.edu/

Reception/Poster Session
Tue Oct 1 2013 @ OU

Symposium Wed Oct 2 2013 @ OU

2010 Keynote:
Horst Simon

Deputy Director
Lawrence Berkeley
National Laboratory

2013 Keynote
to be announced!

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013

2011 Keynote:
Barry Schneider

Program Manager
National Science

Foundation

2012 Keynote:
Thom Dunning

Director
National Center for

Supercomputing
Applications

http://symposium2013.oscer.ou.edu/

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 62

Does CUDA Help?

Example Applications URL Speedup
Seismic Database 66x – 100x

Mobile Phone Antenna Simulation 45x
Molecular Dynamics 21x – 100x
Neuron Simulation 100x
MRI Processing 245x – 415x

Atmospheric Cloud Simulation 50x

http://www.headwave.com
http://www.accelware.com

http://www.ks.uiuc.edu/Research/vmd
http://www.evolvedmachines.com
http://bic-test.beckman.uiuc.edu

http://www.cs.clemson.edu/~jesteel/clouds.html

http://www.nvidia.com/object/IO_43499.html

http://www.nvidia.com/object/IO_43499.html

CUDA
Thread Hierarchy and

Memory Hierarchy

Some of these slides provided by Paul Gray, University of Northern Iowa

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013

Source: NVIDIA CUDA Programming Guide

CPU vs GPU Layout

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 65

Buzzword: Kernel
In CUDA, a kernel is code (typically a function) that can be

run inside the GPU.
Typically, the kernel code operates in lock-step on the stream

processors inside the GPU.

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 66

Buzzword: Thread
In CUDA, a thread is an execution of a kernel with a given

index.
Each thread uses its index to access a specific subset of the

elements of a target array, such that the collection of all
threads cooperatively processes the entire data set.

So these are very much like threads in the OpenMP or pthreads
sense – they even have shared variables and private
variables.

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 67

Buzzword: Block
In CUDA, a block is a group of threads.
 Just like OpenMP threads, these could execute concurrently

or independently, and in no particular order.
 Threads can be coordinated somewhat, using the
_syncthreads() function as a barrier, making all
threads stop at a certain point in the kernel before moving
on en mass. (This is like what happens at the end of an
OpenMP loop.)

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 68

Buzzword: Grid
In CUDA, a grid is a group of (thread) blocks, with no

synchronization at all among the blocks.

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013

 Grids map to GPUs
 Blocks map to the

MultiProcessors (MP)
 Blocks are never split across

MPs, but an MP can have
multiple blocks

 Threads map to Stream
Processors (SP)

 Warps are groups of (32)
threads that execute
simultaneously

Image Source:
NVIDIA CUDA Programming Guide

NVIDIA GPU Hierarchy

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013

 blockIdx.x, blockIdx.y, blockIdx.z are built-in
variables that returns the block ID in the x-axis, y-axis and z-
axis of the block that is executing the given block of code.

 threadIdx.x, threadIdx.y, threadidx.z are
built-in variables that return the thread ID in the x-axis, y-axis
and z-axis of the thread that is being executed by this stream
processor in this particular block.

So, you can express your collection of blocks, and your
collection of threads within a block, as a 1D array, a 2D array
or a 3D array.

These can be helpful when thinking of your data as 2D or 3D.

CUDA Built-in Variables

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 71

__global__ Keyword
In CUDA, if a function is declared with the __global__

keyword, that means that it’s intended to be executed inside
a GPU.

In CUDA, the term for the GPU is device, and the term for the
x86 server is host.

So, a kernel runs on a device, while the main function,
and so on, run on the host.

Note that a host can play host to multiple devices; for example,
an S2050 server contains 4 C2050 GPU cards, and if a
single host has two PCIe slots, then both of the PCIe plugs
of the S2050 can be plugged into that same host.

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 72

Copying Data from Host to Device
If data need to move from the host (where presumably the data

are initially input or generated), then a copy has to exist in
both places.

Typically, what’s copied are arrays, though of course you can
also copy a scalar (the address of which is treated as an
array of length 1).

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 73

CUDA Memory Hierarchy #1
CUDA has a hierarchy of

several kinds of memory:
 Host memory (x86 server)
 Device memory (GPU)

 Global: visible to all threads
in all blocks –
largest, slowest

 Shared: visible to all threads
in a particular block –
medium size, medium speed

 Local: visible only to a
particular thread –
smallest, fastest

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 74

CUDA Memory Hierarchy #2
CUDA has a hierarchy of

several kinds of memory:
 Host memory (x86 server)
 Device memory (GPU)

 Constant: visible to all
threads in all blocks;
read only

 Texture: visible to all
threads in all blocks;
read only

CUDA Example:
Matrix-Matrix

Multiply

http://developer.download.nvidia.com/compute/cuda/sdk/
website/Linear_Algebra.html#matrixMul

http://developer.download.nvidia.com/compute/cuda/sdk/website/Linear_Algebra.html
http://developer.download.nvidia.com/compute/cuda/sdk/website/Linear_Algebra.html

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 76

Matrix-Matrix Multiply Main Part 1
 float* host_A;
 float* host_B;
 float* host_B;
 float* device_A;
 float* device_B;
 float* device_C;

 host_A = (float*) malloc(mem_size_A);
 host_B = (float*) malloc(mem_size_B);
 host_C = (float*) malloc(mem_size_C);

 cudaMalloc((void**) &device_A, mem_size_A);
 cudaMalloc((void**) &device_B, mem_size_B);
 cudamalloc((void**) &device_C, mem_size_C);

 // Set up the initial values of A and B here.

 // Henry says: I’ve oversimplified this a bit from
 // the original example code.

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 77

Matrix-Matrix Multiply Main Part 2
 // copy host memory to device
 cudaMemcpy(device_A, host_A, mem_size_A,
 cudaMemcpyHostToDevice);
 cudaMemcpy(device_B, host_B, mem_size_B,
 cudaMemcpyHostToDevice);
 // setup execution parameters
 dim3 threads(BLOCK_SIZE, BLOCK_SIZE);
 dim3 grid(WC / threads.x, HC / threads.y);

 // execute the kernel
 matrixMul<<< grid, threads >>>(device_C,
 device_A, device_B, WA, WB);

 // copy result from device to host
 cudaMemcpy(host_C, device_C, mem_size_C,
 cudaMemcpyDeviceToHost);

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 78

Matrix Matrix Multiply Kernel Part 1
__global__ void matrixMul(float* C, float* A, float* B, int wA, int wB)
{
 // Block index
 int bx = blockIdx.x;
 int by = blockIdx.y;

 // Thread index
 int tx = threadIdx.x;
 int ty = threadIdx.y;

 // Index of the first sub-matrix of A processed by the block
 int aBegin = wA * BLOCK_SIZE * by;

 // Index of the last sub-matrix of A processed by the block
 int aEnd = aBegin + wA - 1;

 // Step size used to iterate through the sub-matrices of A
 int aStep = BLOCK_SIZE;

 // Index of the first sub-matrix of B processed by the block
 int bBegin = BLOCK_SIZE * bx;

 // Step size used to iterate through the sub-matrices of B
 int bStep = BLOCK_SIZE * wB;

 // Csub is used to store the element of the block sub-matrix
 // that is computed by the thread
 float Csub = 0;

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 79

Matrix Matrix Multiply Kernel Part 2
 // Loop over all the sub-matrices of A and B
 // required to compute the block sub-matrix
 for (int a = aBegin, b = bBegin;
 a <= aEnd;
 a += aStep, b += bStep) {

 // Declaration of the shared memory array As used to
 // store the sub-matrix of A
 __shared__ float As[BLOCK_SIZE][BLOCK_SIZE];

 // Declaration of the shared memory array Bs used to
 // store the sub-matrix of B
 __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

 // Load the matrices from device memory
 // to shared memory; each thread loads
 // one element of each matrix
 AS(ty, tx) = A[a + wA * ty + tx];
 BS(ty, tx) = B[b + wB * ty + tx];

 // Synchronize to make sure the matrices are loaded
 __syncthreads();

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 80

Matrix Matrix Multiply Kernel Part 3
 // Multiply the two matrices together;
 // each thread computes one element
 // of the block sub-matrix
 for (int k = 0; k < BLOCK_SIZE; ++k)
 Csub += AS(ty, k) * BS(k, tx);

 // Synchronize to make sure that the preceding
 // computation is done before loading two new
 // sub-matrices of A and B in the next iteration
 __syncthreads();
 }

 // Write the block sub-matrix to device memory;
 // each thread writes one element
 int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
 C[c + wB * ty + tx] = Csub;
}

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013 81

Would We Really Do It This Way?
We wouldn’t really do matrix-matrix multiply this way.
NVIDIA has developed a CUDA implementation of the BLAS

libraries, which include a highly tuned matrix-matrix
multiply routine.

(We’ll learn about BLAS next time.)
There’s also a CUDA FFT library, if your code needs Fast

Fourier Transforms.

Thanks for your
attention!

Questions?

83

OK Supercomputing Symposium 2013

2006 Keynote:
Dan Atkins

Head of NSF’s
Office of

Cyberinfrastructure

2004 Keynote:
Sangtae Kim
NSF Shared

Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer & Information
Science & Engineering

Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

2008 Keynote:
José Munoz

Deputy Office
Director/ Senior

Scientific Advisor
NSF Office of

Cyberinfrastructure

2009 Keynote:
Douglass Post
Chief Scientist

US Dept of Defense
HPC Modernization

Program

FREE! Wed Oct 2 2013 @ OU
Over 235 registra2ons already!

Over 150 in the first day, over 200 in the first week,
over 225 in the first month.

http://symposium2013.oscer.ou.edu/

Reception/Poster Session
Tue Oct 1 2013 @ OU

Symposium Wed Oct 2 2013 @ OU

2010 Keynote:
Horst Simon

Deputy Director
Lawrence Berkeley
National Laboratory

2013 Keynote
to be announced!

Supercomputing in Plain English: GPGPU
Tue Apr 9 2013

2011 Keynote:
Barry Schneider

Program Manager
National Science

Foundation

2012 Keynote:
Thom Dunning

Director
National Center for

Supercomputing
Applications

http://symposium2013.oscer.ou.edu/

Thanks for your
attention!

Questions?
www.oscer.ou.edu

http://www.oscer.ou.edu/

	Supercomputing�in Plain English�GPGPU: Number Crunching�in Your Graphics Card
	This is an experiment!
	H.323 (Polycom etc) #1
	H.323 (Polycom etc) #2
	Wowza #1
	Wowza #2
	Wowza #3
	Toll Free Phone Bridge
	Please Mute Yourself
	Questions via E-mail Only
	TENTATIVE Schedule
	Supercomputing Exercises #1
	Supercomputing Exercises #2
	Thanks for helping!
	This is an experiment!
	Coming in 2013!
	OK Supercomputing Symposium 2013
	Outline
	What is GPGPU?
	Accelerators
	Accelerators
	Why Accelerators are Good
	Why Accelerators are Bad
	The King of the Accelerators
	What does 1 TFLOPs Look Like?
	Why GPU?
	GPUs are Popular
	GPU Do Arithmetic
	GPU Programming
	Hard to Program?
	Easy to Program?
	Intel MIC
	How to Program a GPU
	NVIDIA CUDA
	CUDA Example Part 1
	CUDA Example Part 2
	OpenCL
	OpenCL Example Part 1
	OpenCL Example Part 2
	OpenCL Example Part 3
	OpenCL Example Part 4
	Portland Group Accelerator Directives
	PGI Accelerator Example
	OpenACC Compiler Directives
	OpenACC Example Part 1 (C)
	OpenACC Example Part 2 (C)
	OpenACC Example Part 3 (C)
	OpenACC Example Part 1 (F90)
	OpenACC Example Part 2 (F90)
	OpenACC Example Part 3 (F90)
	OpenMP 4.0 Accelerator Directives
	OpenMP Accelerator Example (F90)
	Digging Deeper:�CUDA on NVIDIA
	NVIDIA Tesla
	NVIDIA Tesla K20X Card Specs
	Compare Top x86 vs NVIDIA K20X
	Compare x86 vs NVIDIA K20X
	What Are the Downsides?
	Programming for Performance
	Thanks for your attention!���Questions?
	OK Supercomputing Symposium 2013
	Does CUDA Help?
	CUDA�Thread Hierarchy and Memory Hierarchy
	Slide Number 64
	Buzzword: Kernel
	Buzzword: Thread
	Buzzword: Block
	Buzzword: Grid
	NVIDIA GPU Hierarchy
	CUDA Built-in Variables
	__global__ Keyword
	Copying Data from Host to Device
	CUDA Memory Hierarchy #1
	CUDA Memory Hierarchy #2
	CUDA Example:�Matrix-Matrix Multiply
	Matrix-Matrix Multiply Main Part 1
	Matrix-Matrix Multiply Main Part 2
	Matrix Matrix Multiply Kernel Part 1
	Matrix Matrix Multiply Kernel Part 2
	Matrix Matrix Multiply Kernel Part 3
	Would We Really Do It This Way?
	Thanks for your attention!���Questions?
	OK Supercomputing Symposium 2013
	Thanks for your attention!���Questions?�www.oscer.ou.edu

