
SupercomputingSupercomputing
in Plain Englishin Plain English

Part X: GPGPU:Part X: GPGPU:
Number Crunching Inside Your GPUNumber Crunching Inside Your GPU

Henry Neeman, Director
OU Supercomputing Center for Education & Research

University of Oklahoma Information Technology
Tuesday April 28 2009

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 2

This is an experiment!
It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone
bridge to fall back on.

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 3

Access Grid
This week’s Access Grid (AG) venue: Cactus.

If you aren’t sure whether you have AG, you probably don’t.
Tue Apr 28 Cactus

Tue May 5 Titan
Many thanks to

John Chapman of
U Arkansas for
setting these up

for us.

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 4

H.323 (Polycom etc)
If you want to use H.323 videoconferencing – for example,

Polycom – then dial
69.77.7.203##12345

any time after 2:00pm. Please connect early, at least today.
For assistance, contact Andy Fleming of KanREN/Kan-ed

(afleming@kanren.net or 785-230-2513).
KanREN/Kan-ed’s H.323 system can handle up to 40

simultaneous H.323 connections. If you cannot connect, it
may be that all 40 are already in use.

Many thanks to Andy and KanREN/Kan-ed for providing
H.323 access.

http://www.kanren.net/
mailto:afleming@kanren.net

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 5

iLinc
We have unlimited simultaneous iLinc connections available.
If you’re already on the SiPE e-mail list, then you should

already have an e-mail about iLinc. Your personal URL will
always be the same.

If you want to use iLinc, please follow the directions in the
iLinc e-mail.

For iLinc, you MUST use either Windows (XP strongly
preferred) or MacOS X with Internet Explorer.

To use iLinc, you’ll need to download a client program to your
PC. It’s free, and setup should take only a few minutes.

Many thanks to Katherine Kantardjieff of California State U
Fullerton for providing the iLinc licenses.

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 6

QuickTime Broadcaster
If you cannot connect via the Access Grid, H.323 or iLinc,

then you can connect via QuickTime:
rtsp://129.15.254.141/test_hpc09.sdp

We recommend using QuickTime Player for this, because
we’ve tested it successfully.

We recommend upgrading to the latest version at:
http://www.apple.com/quicktime/

When you run QuickTime Player, traverse the menus
File -> Open URL

Then paste in the rstp URL into the textbox, and click OK.
Many thanks to Kevin Blake of OU for setting up QuickTime

Broadcaster for us.

http://www.apple.com/quicktime/

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 7

Phone Bridge
If all else fails, you can call into our toll free phone bridge:

1-866-285-7778, access code 6483137#
Please mute yourself and use the phone to listen.
Don’t worry, we’ll call out slide numbers as we go.
Please use the phone bridge ONLY if you cannot connect any

other way: the phone bridge is charged per connection per
minute, so our preference is to minimize the number of
connections.

Many thanks to Amy Apon and U Arkansas for providing the
toll free phone bridge.

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 8

Please Mute Yourself
No matter how you connect, please mute yourself, so that we

cannot hear you.
At OU, we will turn off the sound on all conferencing

technologies.
That way, we won’t have problems with echo cancellation.
Of course, that means we cannot hear questions.
So for questions, you’ll need to send some kind of text.

Also, if you’re on iLinc: SIT ON YOUR HANDS!
Please DON’T touch ANYTHING!

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 9

Questions via Text: iLinc or E-mail
Ask questions via text, using one of the following:

iLinc’s text messaging facility;
e-mail to sipe2009@gmail.com.

All questions will be read out loud and then answered out loud.

mailto:sipe2009@gmail.com

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 10

Thanks for helping!
OSCER operations staff (Brandon George, Dave Akin, Brett
Zimmerman, Josh Alexander)
OU Research Campus staff (Patrick Calhoun, Josh Maxey,
Gabe Wingfield)
Kevin Blake, OU IT (videographer)
Katherine Kantardjieff, CSU Fullerton
John Chapman and Amy Apon, U Arkansas
Andy Fleming, KanREN/Kan-ed
This material is based upon work supported by the National
Science Foundation under Grant No. OCI-0636427, “CI-
TEAM Demonstration: Cyberinfrastructure Education for
Bioinformatics and Beyond.”

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 11

This is an experiment!
It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone
bridge to fall back on.

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 12

Supercomputing Exercises
Want to do the “Supercomputing in Plain English” exercises?

The first several exercises are already posted at:
http://www.oscer.ou.edu/education.php

If you don’t yet have a supercomputer account, you can get
a temporary account, just for the “Supercomputing in Plain
English” exercises, by sending e-mail to:

hneeman@ou.edu

Please note that this account is for doing the exercises only,
and will be shut down at the end of the series.

http://www.oscer.ou.edu/education.php
mailto:hneeman@ou.edu

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 13

OK Supercomputing Symposium 2009

2006 Keynote:
Dan Atkins

Head of NSF’s
Office of
Cyber-

infrastructure

2004 Keynote:
Sangtae Kim
NSF Shared

Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer &
Information
Science &
Engineering

Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

FREE! Wed Oct 7 2009 @ OU
Over 235 registrations already!

Over 150 in the first day, over 200 in the first week, over
225 in the first month.

2008 Keynote:
José Munoz

Deputy Office
Director/ Senior

Scientific Advisor
Office of Cyber-

infrastructure
National Science

Foundation

2009 Keynote:
Ed Seidel
Director

NSF Office of
Cyber-

infrastructure

http://symposium2009.oscer.ou.edu/

Parallel Programming Workshop
FREE! Tue Oct 6 2009 @ OU

Sponsored by SC09 Education Program
FREE! Symposium Wed Oct 7 2009 @ OU

Registration
is OPEN!

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 14

SC09 Summer Workshops
This coming summer, the SC09 Education Program, part of the

SC09 (Supercomputing 2009) conference, is planning to
hold two weeklong supercomputing-related workshops in
Oklahoma, for FREE (except you pay your own transport):
At OSU Sun May 17 – the May 23:
FREE Computational Chemistry for Chemistry Educators
(2010 TENTATIVE: Computational Biology)
At OU Sun Aug 9 – Sat Aug 15:
FREE Parallel Programming & Cluster Computing

We’ll alert everyone when the details have been ironed out and
the registration webpage opens.

Please note that you must apply for a seat, and acceptance
CANNOT be guaranteed.

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 15

SC09 Summer Workshops
1. May 17-23: Oklahoma State U: Computational Chemistry
2. May 25-30: Calvin Coll (MI): Intro to Computational Thinking
3. June 7-13: U Cal Merced: Computational Biology
4. June 7-13: Kean U (NJ): Parallel Progrmg & Cluster Comp
5. June 14-20: Widener U (PA): Computational Physics
6. July 5-11: Atlanta U Ctr: Intro to Computational Thinking
7. July 5-11: Louisiana State U: Parallel Progrmg & Cluster Comp
8. July 12-18: U Florida: Computational Thinking Grades 6-12
9. July 12-18: Ohio Supercomp Ctr: Computational Engineering
10. Aug 2- 8: U Arkansas: Intro to Computational Thinking
11. Aug 9-15: U Oklahoma: Parallel Progrmg & Cluster Comp

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 16

Outline
What is GPGPU?
GPU Programming
Digging Deeper: CUDA on NVIDIA
CUDA Thread Hierarchy and Memory Hierarchy
CUDA Example: Matrix-Matrix Multiply

What is GPGPU?

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 18

Accelerators
No, not this

http://gizmodo.com/5032891/nissans-eco-gas-pedal-fights-back-to-help-you-save-gas

http://gizmodo.com/5032891/nissans-eco-gas-pedal-fights-back-to-help-you-save-gas

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 19

Accelerators
In HPC, an accelerator is hardware component whose role is
to speed up some aspect of the computing workload.
In the olden days (1980s), supercomputers sometimes had
array processors, which did vector operations on arrays,
and PCs sometimes had floating point accelerators: little
chips that did the floating point calculations in hardware
rather than software.
More recently, Field Programmable Gate Arrays (FPGAs)
allow reprogramming deep into the hardware.

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 20

Why Accelerators are Good
Accelerators are good because:

they make your code run faster.

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 21

Why Accelerators are Bad
Accelerators are bad because:

they’re expensive;
they’re hard to program;
your code on them isn’t portable to other accelerators, so
the labor you invest in programming them has a very short
half-life.

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 22

The King of the Accelerators
The undisputed champion of accelerators is:

the graphics processing unit.
http://www.amd.com/us-en/assets/content_type/DigitalMedia/46928a_01_ATI-FirePro_V8700_angled_low_res.gif

http://images.nvidia.com/products/quadro_fx_5800/Quadro_FX5800_low_3qtr.png

http://www.gamecyte.com/wp-content/uploads/2009/01/ibm-sony-toshiba-cell.jpg

http://www.amd.com/us-en/assets/content_type/DigitalMedia/46928a_01_ATI-FirePro_V8700_angled_low_res.gif
http://images.nvidia.com/products/quadro_fx_5800/Quadro_FX5800_low_3qtr.png
http://www.gamecyte.com/wp-content/uploads/2009/01/ibm-sony-toshiba-cell.jpg

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 23

Why GPU?
Graphics Processing Units (GPUs) were originally
designed to accelerate graphics tasks like image rendering.
They became very very popular with videogamers, because
they’ve produced better and better images, and lightning
fast.
And, prices have been extremely good, ranging from three
figures at the low end to four figures at the high end.

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 24

GPUs are Popular
Chips are expensive to design (hundreds of millions of $$$),
expensive to build the factory for (billions of $$$), but
cheap to produce.
In 2006 – 2007, GPUs sold at a rate of about 80 million
cards per year, generating about $20 billion per year in
revenue.
http://www.xbitlabs.com/news/video/display/20080404234228_Shipments_of_Discrete_Graphi

cs_Cards_on_the_Rise_but_Prices_Down_Jon_Peddie_Research.html

This means that the GPU companies have been able to
recoup the huge fix costs.

http://www.xbitlabs.com/news/video/display/20080404234228_Shipments_of_Discrete_Graphics_Cards_on_the_Rise_but_Prices_Down_Jon_Peddie_Research.html
http://www.xbitlabs.com/news/video/display/20080404234228_Shipments_of_Discrete_Graphics_Cards_on_the_Rise_but_Prices_Down_Jon_Peddie_Research.html

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 25

GPU Do Arithmetic
GPUs mostly do stuff like rendering images.
This is done through mostly floating point arithmetic – the
same stuff people use supercomputing for!

GPU Programming

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 27

Hard to Program?
In the olden days – that is, until just the last few years –
programming GPUs meant either:

using a graphics standard like OpenGL (which is mostly
meant for rendering), or
getting fairly deep into the graphics rendering pipeline.

To use a GPU to do general purpose number crunching, you
had to make your number crunching pretend to be graphics.
This was hard. So most people didn’t bother.

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 28

Easy to Program?
More recently, GPU manufacturers have worked hard to make

GPUs easier to use for general purpose computing.
This is known as General Purpose Graphics Processing Units.

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 29

How to Program a GPU
Proprietary programming language or extensions

NVIDIA: CUDA (C/C++)
AMD/ATI: StreamSDK/Brook+ (C/C++)

OpenCL (Open Computing Language): an industry standard
for doing number crunching on GPUs.
Portland Group Fortran and C compilers with accelerator
directives.

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 30

NVIDIA CUDA
NVIDIA proprietary
Formerly known as “Compute Unified Device Architecture”
Extensions to C to allow better control of GPU capabilities
Modest extensions but major rewriting of the code
No Fortran version available

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 31

CUDA Example Part 1
// example1.cpp : Defines the entry point for the console applicati

on.
//

#include "stdafx.h"

#include <stdio.h>
#include <cuda.h>

// Kernel that executes on the CUDA device
__global__ void square_array(float *a, int N)
{
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx<N) a[idx] = a[idx] * a[idx];

}

http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/

http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 32

CUDA Example Part 2
// main routine that executes on the host
int main(void)
{
float *a_h, *a_d; // Pointer to host & device arrays
const int N = 10; // Number of elements in arrays
size_t size = N * sizeof(float);
a_h = (float *)malloc(size); // Allocate array on host
cudaMalloc((void **) &a_d, size); // Allocate array on device
// Initialize host array and copy it to CUDA device
for (int i=0; i<N; i++) a_h[i] = (float)i;
cudaMemcpy(a_d, a_h, size, cudaMemcpyHostToDevice);
// Do calculation on device:
int block_size = 4;
int n_blocks = N/block_size + (N%block_size == 0 ? 0:1);
square_array <<< n_blocks, block_size >>> (a_d, N);
// Retrieve result from device and store it in host array
cudaMemcpy(a_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);
// Print results
for (int i=0; i<N; i++) printf("%d %f\n", i, a_h[i]);
// Cleanup
free(a_h); cudaFree(a_d);

}

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 33

AMD/ATI Brook+
AMD/ATI proprietary
Formerly known as “Close to Metal” (CTM)
Extensions to C to allow better control of GPU capabilities
No Fortran version available

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 34

Brook+ Example Part 1
float4 matmult_kernel (int y, int x, int k,

float4 M0[], float4 M1[])
{

float4 total = 0;
for (int c = 0; c < k / 4; c++)
{

total += M0[y][c] * M1[x][c];
}
return total;

}

http://developer.amd.com/gpu_assets/Stream_Computing_Overview.pdf

http://developer.amd.com/gpu_assets/Stream_Computing_Overview.pdf

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 35

Brook+ Example Part 2
void matmult (float4 A[], float4 B’[], float4 C[])
{

for (int i = 0; i < n; i++)
{

for (j = 0; j < m / 4; j+)
{

launch_thread{
C[i][j] =

matmult_kernel(j, i, k, A, B’);}
}

}
sync_threads{}

}

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 36

OpenCL
Open Computing Language
Open standard developed by the Khronos Group, which is a
consortium of many companies (including NVIDIA, AMD
and Intel, but also lots of others)
Initial version of OpenCL standard released in Dec 2008.
Many companies will create their own implementations.
Apple expects to be first to market, with an OpenCL
implementation included in Mac OS X v10.6 (“Snow
Leopard”), expected in 2009.

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 37

OpenCL Example Part 1
// create a compute context with GPU device
context = clCreateContextFromType(0, CL_DEVICE_TYPE_GPU, NULL, NULL,

NULL);
// create a work-queue
queue = clCreateWorkQueue(context, NULL, NULL, 0);
// allocate the buffer memory objects
memobjs[0] =

clCreateBuffer(context,
CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
sizeof(float)*2*num_entries, srcA);

memobjs[1] =
clCreateBuffer(context, CL_MEM_READ_WRITE,

sizeof(float)*2*num_entries, NULL);
// create the compute program
program =

clCreateProgramFromSource(context, 1, &fft1D_1024_kernel_src, NULL);
// build the compute program executable
clBuildProgramExecutable(program, false, NULL, NULL);
// create the compute kernel
kernel = clCreateKernel(program, "fft1D_1024");

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 38

OpenCL Example Part 2
// create N-D range object with work-item dimensions
global_work_size[0] = n;
local_work_size[0] = 64;
range = clCreateNDRangeContainer(context, 0, 1, global_work_size,

local_work_size);
// set the args values
clSetKernelArg(kernel, 0, (void *)&memobjs[0], sizeof(cl_mem), NULL);
clSetKernelArg(kernel, 1, (void *)&memobjs[1], sizeof(cl_mem), NULL);
clSetKernelArg(kernel, 2, NULL,

sizeof(float)*(local_work_size[0]+1)*16, NULL);
clSetKernelArg(kernel, 3, NULL,

sizeof(float)*(local_work_size[0]+1)*16, NULL);
// execute kernel
clExecuteKernel(queue, kernel, NULL, range, NULL, 0, NULL);

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 39

OpenCL Example Part 3
// This kernel computes FFT of length 1024. The 1024 length FFT
// is decomposed into calls to a radix 16 function, another
// radix 16 function and then a radix 4 function
kernel void fft1D_1024 (

global float2 *in, __global float2 *out,
local float *sMemx, __local float *sMemy)

{
int tid = get_local_id(0);
int blockIdx = get_group_id(0) * 1024 + tid;
float2 data[16];
// starting index of data to/from global memory
in = in + blockIdx;
out = out + blockIdx;
globalLoads(data, in, 64); // coalesced global reads

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 40

OpenCL Example Part 4
fftRadix16Pass(data); // in-place radix-16 pass
twiddleFactorMul(data, tid, 1024, 0);
// local shuffle using local memory
localShuffle(data, sMemx, sMemy, tid,

(((tid & 15) * 65) + (tid >> 4)));
fftRadix16Pass(data); // in-place radix-16 pass
twiddleFactorMul(data, tid, 64, 4); // twiddle factor multiplication
localShuffle(data, sMemx, sMemy, tid,

(((tid >> 4) * 64) + (tid & 15)));
// four radix-4 function calls
fftRadix4Pass(data);
fftRadix4Pass(data + 4);
fftRadix4Pass(data + 8);
fftRadix4Pass(data + 12);
// coalesced global writes
globalStores(data, out, 64);

}

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 41

Portland Group Accelerator Directives
Proprietary directives in Fortran and C
Similar to OpenMP in structure
Currently in beta release
If the compiler doesn’t understand these directives, it
ignores them, so the same code can work with an accelerator
or without, and with the PGI compilers or other compilers.
In principle, this will be able to work on a variety of
accelerators, but the first instance will be NVIDIA; PGI
recently announced a deal with AMD/ATI.
The directives tell the compiler what parts of the code
happen in the accelerator; the rest happens in the regular
hardware.

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 42

PGI Accelerator Example
!$acc region

do k = 1,n1
do i = 1,n3

c(i,k) = 0.0
do j = 1,n2

c(i,k) = c(i,k) +
& a(i,j) * b(j,k)

enddo
enddo

enddo
!$acc end region

http://www.pgroup.com/resources/accel.htm

http://www.pgroup.com/resources/accel.htm

Digging Deeper:
CUDA on NVIDIA

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 44

NVIDIA Tesla
NVIDIA now offers a GPU platform named Tesla.
It consists of their highest end graphics card, minus the
video out connector.
This cuts the cost of the GPU card roughly in half: Quadro
FX 5800 is ~$3000, Tesla C1060 is ~$1500.

http://images.nvidia.com/products/tesla_c1060/
Tesla_c1060_3qtr_low.png

http://images.nvidia.com/products/tesla_c1060/Tesla_c1060_3qtr_low.png
http://images.nvidia.com/products/tesla_c1060/Tesla_c1060_3qtr_low.png

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 45

NVIDIA Tesla C1060 Card Specs
240 GPU cores
1.296 GHz
Single precision floating point performance: 933 GFLOPs
(3 single precision flops per clock per core)
Double precision floating point performance: 78 GFLOPs
(0.25 double precision flops per clock per core)
Internal RAM: 4 GB
Internal RAM speed: 102 GB/sec (compared 21-25 GB/sec
for regular RAM)
Has to be plugged into a PCIe slot (at most 8 GB/sec)

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 46

NVIDIA Tesla S1070 Server Specs
4 C1060 cards inside a 1U server (looks like a Sooner node)
Available in both 1.296 GHz and 1.44 GHz
Single Precision (SP) floating point performance:
3732 GFLOPs (1.296 GHz) or 4147 GFLOPs (1.44 GHz)
Double Precision (DP) floating point performance:
311 GFLOPs (1.296 GHz) or 345 GFLOPs (1.44 GHz)
Internal RAM: 16 GB total (4 GB per GPU card)
Internal RAM speed: 408 GB/sec aggregate
Has to be plugged into two PCIe slots (at most 16 GB/sec)

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 47

Compare x86 vs S1070
Let’s compare the best dual socket x86 server today vs S1070.

Dual socket, Intel
2.66 hex core

NVIDIA Tesla S1070

Peak DP FLOPs 128 GFLOPs DP 345 GFLOPs DP (2.7x)

Peak SP FLOPS 256 GFLOPs SP 4147 GFLOPs SP (16.2x)

Peak RAM BW 17 GB/sec 408 GB/sec (24x)

Peak PCIe BW N/A 16 GB/sec

Needs x86 server to
attach to?

No Yes

Power/Heat ~400 W ~800 W + ~400 W (3x)

Code portable? Yes No (CUDA)
Yes (PGI, OpenCL)

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 48

Compare x86 vs S1070
Here are some interesting measures:

Dual socket, Intel
2.66 hex core

NVIDIA Tesla S1070

DP GFLOPs/Watt ~0.3 GFLOPs/Watt ~0.3 GFLOPs/Watt (same)

SP GFLOPS/Watt 0.64 GFLOPs/Watt ~3.5 GFLOPs (~5x)

DP GFLOPs/sq ft ~340 GFLOPs/sq ft ~460 GFLOPs/sq ft (1.3x)

SP GFLOPs/sq ft ~680 GFLOPs/sq ft ~5500 GFLOPs/sq ft (8x)

Racks per PFLOP
DP

244 racks/PFLOP
DP

181 racks/PFLOP (3/4)
DP

Racks per PFLOP
SP

122 racks/PFLOP
SP

15 racks/PFLOP (1/8)
SP

OU’s Sooner is 65 TFLOPs SP, which is 1 rack of S1070.

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 49

What Are the Downsides?
You have to rewrite your code into CUDA or OpenCL or
PGI accelerator directives.

CUDA: Proprietary, C/C++ only
OpenCL: portable but cumbersome
PGI accelerator directives: not clear whether you can
have most of the code live inside the GPUs.

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 50

Programming for Performance
The biggest single performance bottleneck on GPU cards today

is the PCIe slot:
PCIe 2.0 x16: 8 GB/sec
1600 MHz Front Side Bus: 25 GB/sec
GDDR3 GPU card RAM: 102 GB/sec per card

Your goal:
At startup, move the data from x86 server RAM into GPU
RAM.
Do almost all the work inside the GPU.
Use the x86 server only for I/O and message passing, to
minimize the amount of data moved through the PCIe slot.

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 51

Does CUDA Help?

Example Applications URL Speedup
Seismic Database 66x – 100x

Mobile Phone Antenna Simulation 45x
Molecular Dynamics 21x – 100x
Neuron Simulation 100x
MRI Processing 245x – 415x

Atmospheric Cloud Simulation 50x

http://www.headwave.com
http://www.accelware.com

http://www.ks.uiuc.edu/Research/vmd
http://www.evolvedmachines.com
http://bic-test.beckman.uiuc.edu

http://www.cs.clemson.edu/~jesteel/clouds.html

http://www.nvidia.com/object/IO_43499.html

http://www.nvidia.com/object/IO_43499.html

CUDA Thread Hierarchy and
Memory Hierarchy

Some of these slides provided by Paul Gray, University of Northern Iowa

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009

Source: Nvidia CUDA Programming Guide

CPU vs GPU Layout

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 54

Buzzword: Kernel
In CUDA, a kernel is code (typically a function) that can be

run inside the GPU.
Typically, the kernel code operates in lock-step on the stream

processors inside the GPU.

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 55

Buzzword: Thread
In CUDA, a thread is an execution of a kernel with a given

index.
Each thread uses its index to access a specific subset of the

elements of a target array, such that the collection of all
threads cooperatively processes the entire data set.

So these are very much like threads in the OpenMP or pthreads
sense – they even have shared variables and private
variables.

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 56

Buzzword: Block
In CUDA, a block is a group of threads.

Just like OpenMP threads, these could execute concurrently
or independently, and in no particular order.
Threads can be coordinated somewhat, using the
_syncthreads() function as a barrier, making all threads stop
at a certain point in the kernel before moving on en mass.
(This is like what happens at the end of an OpenMP loop.)

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 57

Buzzword: Grid
In CUDA, a grid is a group of (thread) blocks, with no

synchronization at all among the blocks.

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009

Grids map to GPUs
Blocks map to the
MultiProcessors (MP) ‏

Blocks are never split across
MPs, but an MP can have
multiple blocks

Threads map to Stream
Processors (SP)‏
Warps are groups of (32)
threads that execute
simultaneously

Image Source:
Nvidia CUDA Programming Guide

NVIDIA GPU Hierarchy

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009

blockIdx.x, blockIdx.y, blockIdx.z are built-in
variables that returns the block ID in the x-axis, y-axis and z-axis
of the block that is executing the given block of code.
threadIdx.x, threadIdx.y, threadidx.z are

built-in variables that return the thread ID in the x-axis, y-axis and
z-axis of the thread that is being executed by this stream processor
in this particular block.

So, you can express your collection of blocks, and your collection of
threads within a block, as a 1D array, a 2D array or a 3D array.

These can be helpful when thinking of your data as 2D or 3D.

CUDA Built-in Variables

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 60

__global__ Keyword
In CUDA, if a function is declared with the __global__

keyword, that means that it’s intended to be executed inside
the GPU.

In CUDA, the term for the GPU is device, and the term for the
x86 server is host.

So, a kernel runs on a device, while the main function and so
on run on the host.

Note that a host can play host to multiple devices; for example,
an S1070 server contains 4 C1060 GPU cards, and if a
single host has two PCIe slots, then both of the PCIe plugs
of the S1070 can be plugged into that same host.

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 61

Copying Data from Host to Device
If data need to move from the host (where presumably the data

are initially input or generated), then a copy has to exist in
both places.

Typically, what’s copied are arrays, though of course you can
also copy a scalar (the address of which is treated as an
array of length 1).

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 62

CUDA Memory Hierarchy #1
CUDA has a hierarchy of

several kinds of memory:
Host memory (x86 server)
Device memory (GPU)

Global: visible to all threads
in all blocks –
largest, slowest
Shared: visible to all threads
in a particular block –
medium size, medium speed
Local: visible only to a
particular thread –
smallest, fastest

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 63

CUDA Memory Hierarchy #2
CUDA has a hierarchy of

several kinds of memory:
Host memory (x86 server)
Device memory (GPU)

Constant: visible to all
threads in all blocks;
read only
Texture: visible to all
threads in all blocks;
read only

CUDA Example:
Matrix-Matrix Multiply

http://developer.download.nvidia.com/compute/cuda/sdk/
website/Linear_Algebra.html#matrixMul

http://developer.download.nvidia.com/compute/cuda/sdk/website/Linear_Algebra.html#matrixMul
http://developer.download.nvidia.com/compute/cuda/sdk/website/Linear_Algebra.html#matrixMul

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 65

Matrix-Matrix Multiply Main Part 1
float* host_A;
float* host_B;
float* host_B;
float* device_A;
float* device_B;
float* device_C;

host_A = (float*) malloc(mem_size_A);
host_B = (float*) malloc(mem_size_B);
host_C = (float*) malloc(mem_size_C);

cudaMalloc((void**) &device_A, mem_size_A);
cudaMalloc((void**) &device_B, mem_size_B);
cudamalloc((void**) &device_C, mem_size_C);

// Set up the initial values of A and B here.

// Henry says: I’ve oversimplified this a bit from
// the original example code.

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 66

Matrix-Matrix Multiply Main Part 2
// copy host memory to device
cudaMemcpy(device_A, host_A, mem_size_A,

cudaMemcpyHostToDevice);
cudaMemcpy(device_B, host_B, mem_size_B,

cudaMemcpyHostToDevice);
// setup execution parameters
dim3 threads(BLOCK_SIZE, BLOCK_SIZE);
dim3 grid(WC / threads.x, HC / threads.y);

// execute the kernel
matrixMul<<< grid, threads >>>(device_C,

device_A, device_B, WA, WB);

// copy result from device to host
cudaMemcpy(host_C, device_C, mem_size_C,

cudaMemcpyDeviceToHost);

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 67

Matrix Matrix Multiply Kernel Part 1
__global__ void matrixMul(float* C, float* A, float* B, int wA, int wB)
{

// Block index
int bx = blockIdx.x;
int by = blockIdx.y;

// Thread index
int tx = threadIdx.x;
int ty = threadIdx.y;

// Index of the first sub-matrix of A processed by the block
int aBegin = wA * BLOCK_SIZE * by;

// Index of the last sub-matrix of A processed by the block
int aEnd = aBegin + wA - 1;

// Step size used to iterate through the sub-matrices of A
int aStep = BLOCK_SIZE;

// Index of the first sub-matrix of B processed by the block
int bBegin = BLOCK_SIZE * bx;

// Step size used to iterate through the sub-matrices of B
int bStep = BLOCK_SIZE * wB;

// Csub is used to store the element of the block sub-matrix
// that is computed by the thread
float Csub = 0;

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 68

Matrix Matrix Multiply Kernel Part 2
// Loop over all the sub-matrices of A and B
// required to compute the block sub-matrix
for (int a = aBegin, b = bBegin;

a <= aEnd;
a += aStep, b += bStep) {

// Declaration of the shared memory array As used to
// store the sub-matrix of A
__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];

// Declaration of the shared memory array Bs used to
// store the sub-matrix of B
__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

// Load the matrices from device memory
// to shared memory; each thread loads
// one element of each matrix
AS(ty, tx) = A[a + wA * ty + tx];
BS(ty, tx) = B[b + wB * ty + tx];

// Synchronize to make sure the matrices are loaded
__syncthreads();

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 69

Matrix Matrix Multiply Kernel Part 3
// Multiply the two matrices together;
// each thread computes one element
// of the block sub-matrix
for (int k = 0; k < BLOCK_SIZE; ++k)

Csub += AS(ty, k) * BS(k, tx);

// Synchronize to make sure that the preceding
// computation is done before loading two new
// sub-matrices of A and B in the next iteration
__syncthreads();

}

// Write the block sub-matrix to device memory;
// each thread writes one element
int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
C[c + wB * ty + tx] = Csub;

}

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 70

Would We Really Do It This Way?
We wouldn’t really do matrix-matrix multiply this way.
NVIDIA has developed a CUDA implementation of the BLAS

libraries, which include a highly tuned matrix-matrix
multiply routine.

(We’ll learn about BLAS next time.)
There’s also a CUDA FFT library, if your code needs Fast

Fourier Transforms.

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 71

But What If I Have a Fortran Code?
Here are your options for Fortran:

Rewrite part or all of your code in C or C++.
Use the PGI accelerator directives.

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 72

OK Supercomputing Symposium 2009

2006 Keynote:
Dan Atkins

Head of NSF’s
Office of
Cyber-

infrastructure

2004 Keynote:
Sangtae Kim
NSF Shared

Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer &
Information
Science &
Engineering

Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

FREE! Wed Oct 7 2009 @ OU
Over 235 registrations already!

Over 150 in the first day, over 200 in the first week, over
225 in the first month.

2008 Keynote:
José Munoz

Deputy Office
Director/ Senior

Scientific Advisor
Office of Cyber-

infrastructure
National Science

Foundation

2009 Keynote:
Ed Seidel
Director

NSF Office of
Cyber-

infrastructure

http://symposium2009.oscer.ou.edu/

Parallel Programming Workshop
FREE! Tue Oct 6 2009 @ OU

Sponsored by SC09 Education Program
FREE! Symposium Wed Oct 7 2009 @ OU

Registration
is OPEN!

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 73

SC09 Summer Workshops
This coming summer, the SC09 Education Program, part of the

SC09 (Supercomputing 2009) conference, is planning to
hold two weeklong supercomputing-related workshops in
Oklahoma, for FREE (except you pay your own transport):
At OSU Sun May 17 – the May 23:
FREE Computational Chemistry for Chemistry Educators
(2010 TENTATIVE: Computational Biology)
At OU Sun Aug 9 – Sat Aug 15:
FREE Parallel Programming & Cluster Computing

We’ll alert everyone when the details have been ironed out and
the registration webpage opens.

Please note that you must apply for a seat, and acceptance
CANNOT be guaranteed.

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 74

SC09 Summer Workshops
1. May 17-23: Oklahoma State U: Computational Chemistry
2. May 25-30: Calvin Coll (MI): Intro to Computational Thinking
3. June 7-13: U Cal Merced: Computational Biology
4. June 7-13: Kean U (NJ): Parallel, Distributed & Grid
5. June 14-20: Widener U (PA): Computational Physics
6. July 5-11: Atlanta U Ctr: Intro to Computational Thinking
7. July 5-11: Louisiana State U: Parallel, Distributed & Grid
8. July 12-18: U Florida: Computational Thinking Pre-college
9. July 12-18: Ohio Supercomp Ctr: Computational Engineering
10. Aug 2- 8: U Arkansas: Intro to Computational Thinking
11. Aug 9-15: U Oklahoma: Parallel, Distributed & Grid

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 75

To Learn More Supercomputing
http://www.oscer.ou.edu/education.php

http://www.oscer.ou.edu/education.php

Supercomputing in Plain English: GPGPU
Tuesday April 28 2009 76

Thanks for helping!
OSCER operations staff (Brandon George, Dave Akin, Brett
Zimmerman, Josh Alexander)
OU Research Campus staff (Patrick Calhoun, Josh Maxey,
Gabe Wingfield)
Kevin Blake, OU IT (videographer)
Katherine Kantardjieff, CSU Fullerton
John Chapman and Amy Apon, U Arkansas
Andy Fleming, KanREN/Kan-ed
This material is based upon work supported by the National
Science Foundation under Grant No. OCI-0636427, “CI-
TEAM Demonstration: Cyberinfrastructure Education for
Bioinformatics and Beyond.”

Thanks for your
attention!

Questions?

	Supercomputing�in Plain English�Part X: GPGPU:�Number Crunching Inside Your GPU
	This is an experiment!
	Access Grid
	H.323 (Polycom etc)
	iLinc
	QuickTime Broadcaster
	Phone Bridge
	Please Mute Yourself
	Questions via Text: iLinc or E-mail
	Thanks for helping!
	This is an experiment!
	Supercomputing Exercises
	OK Supercomputing Symposium 2009
	SC09 Summer Workshops
	SC09 Summer Workshops
	Outline
	What is GPGPU?
	Accelerators
	Accelerators
	Why Accelerators are Good
	Why Accelerators are Bad
	The King of the Accelerators
	Why GPU?
	GPUs are Popular
	GPU Do Arithmetic
	GPU Programming
	Hard to Program?
	Easy to Program?
	How to Program a GPU
	NVIDIA CUDA
	CUDA Example Part 1
	CUDA Example Part 2
	AMD/ATI Brook+
	Brook+ Example Part 1
	Brook+ Example Part 2
	OpenCL
	OpenCL Example Part 1
	OpenCL Example Part 2
	OpenCL Example Part 3
	OpenCL Example Part 4
	Portland Group Accelerator Directives
	PGI Accelerator Example
	Digging Deeper:�CUDA on NVIDIA
	NVIDIA Tesla
	NVIDIA Tesla C1060 Card Specs
	NVIDIA Tesla S1070 Server Specs
	Compare x86 vs S1070
	Compare x86 vs S1070
	What Are the Downsides?
	Programming for Performance
	Does CUDA Help?
	CUDA Thread Hierarchy and Memory Hierarchy
	Buzzword: Kernel
	Buzzword: Thread
	Buzzword: Block
	Buzzword: Grid
	NVIDIA GPU Hierarchy
	CUDA Built-in Variables
	__global__ Keyword
	Copying Data from Host to Device
	CUDA Memory Hierarchy #1
	CUDA Memory Hierarchy #2
	CUDA Example:�Matrix-Matrix Multiply
	Matrix-Matrix Multiply Main Part 1
	Matrix-Matrix Multiply Main Part 2
	Matrix Matrix Multiply Kernel Part 1
	Matrix Matrix Multiply Kernel Part 2
	Matrix Matrix Multiply Kernel Part 3
	Would We Really Do It This Way?
	But What If I Have a Fortran Code?
	OK Supercomputing Symposium 2009
	SC09 Summer Workshops
	SC09 Summer Workshops
	To Learn More Supercomputing
	Thanks for helping!
	Thanks for your attention!��Questions?

