
Supercomputing
in Plain English

Distributed Multiprocessing
Henry Neeman, University of Oklahoma

Director, OU Supercomputing Center for Education & Research (OSCER)
Assistant Vice President, Information Technology – Research Strategy Advisor

Associate Professor, Gallogly College of Engineering
Adjunct Associate Professor, School of Computer Science

Tuesday March 6 2018

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 2

This is an experiment!
It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the phone bridge
to fall back on.

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 3

PLEASE MUTE YOURSELF
No matter how you connect, PLEASE MUTE YOURSELF,

so that we cannot hear you.
At OU, we will turn off the sound on all conferencing

technologies.
That way, we won’t have problems with echo cancellation.
Of course, that means we cannot hear questions.
So for questions, you’ll need to send e-mail:

supercomputinginplainenglish@gmail.com

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

mailto:supercomputinginplainenglish@gmail.com

Download the Slides Beforehand
Before the start of the session, please download the slides from
the Supercomputing in Plain English website:

http://www.oscer.ou.edu/education/

That way, if anything goes wrong, you can still follow along
with just audio.

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 4

http://www.oscer.ou.edu/education/

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 5

Zoom
Go to:

http://zoom.us/j/979158478

Many thanks Eddie Huebsch, OU CIO, for providing this.

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

http://zoom.us/j/979158478

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 6

YouTube
You can watch from a Windows, MacOS or Linux laptop or an

Android or iOS handheld using YouTube.
Go to YouTube via your preferred web browser or app, and then

search for:
Supercomputing InPlainEnglish

(InPlainEnglish is all one word.)
Many thanks to Skyler Donahue of OneNet for providing this.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 7

Twitch
You can watch from a Windows, MacOS or Linux laptop or an

Android or iOS handheld using Twitch.
Go to:

http://www.twitch.tv/sipe2018

Many thanks to Skyler Donahue of OneNet for providing this.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

http://www.twitch.tv/sipe2018

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 8

Wowza #1
You can watch from a Windows, MacOS or Linux laptop using

Wowza from the following URL:

http://jwplayer.onenet.net/streams/sipe.html

If that URL fails, then go to:

http://jwplayer.onenet.net/streams/sipebackup.html

Many thanks to Skyler Donahue of OneNet for providing this.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

http://jwplayer.onenet.net/streams/sipe.html
http://jwplayer.onenet.net/streams/sipebackup.html

Wowza #2
Wowza has been tested on multiple browsers on each of:
 Windows 10: IE, Firefox, Chrome, Opera, Safari
 MacOS: Safari, Firefox
 Linux: Firefox, Opera
We’ve also successfully tested it via apps on devices with:
 Android
 iOS
Many thanks to Skyler Donahue of OneNet for providing this.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 9

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 10

Toll Free Phone Bridge
IF ALL ELSE FAILS, you can use our US TOLL phone bridge:

405-325-6688
684 684 #

NOTE: This is for US call-ins ONLY.
PLEASE MUTE YOURSELF and use the phone to listen.
Don’t worry, we’ll call out slide numbers as we go.
Please use the phone bridge ONLY IF you cannot connect any

other way: the phone bridge can handle only 100 simultaneous
connections, and we have over 1000 participants.

Many thanks to OU CIO Eddie Huebsch for providing the
phone bridge..

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 11

Please Mute Yourself
No matter how you connect, PLEASE MUTE YOURSELF,

so that we cannot hear you.
(For YouTube, Twitch and Wowza, you don’t need to do that,

because the information only goes from us to you, not from
you to us.)

At OU, we will turn off the sound on all conferencing
technologies.

That way, we won’t have problems with echo cancellation.
Of course, that means we cannot hear questions.
So for questions, you’ll need to send e-mail.
PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 12

Questions via E-mail Only
Ask questions by sending e-mail to:

supercomputinginplainenglish@gmail.com

All questions will be read out loud and then answered out loud.

DON’T USE CHAT OR VOICE FOR QUESTIONS!

No one will be monitoring any of the chats, and if we can hear
your question, you’re creating an echo cancellation problem.

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

mailto:supercomputinginplainenglish@gmail.com

Onsite: Talent Release Form
If you’re attending onsite, you MUST do one of the following:
 complete and sign the Talent Release Form,
OR
 sit behind the cameras (where you can’t be seen) and don’t

talk at all.

If you aren’t onsite, then PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 13

TENTATIVE Schedule
Tue Jan 23: Storage: What the Heck is Supercomputing?
Tue Jan 30: The Tyranny of the Storage Hierarchy Part I
Tue Feb 6: The Tyranny of the Storage Hierarchy Part II
Tue Feb 13: Instruction Level Parallelism
Tue Feb 20: Stupid Compiler Tricks
Tue Feb 27: Distributed Par Multithreading
Tue March 6: Distributed Multiprocessing
Tue March 13: NO SESSION (Henry business travel)
Tue March 20: NO SESSION (OU's Spring Break)
Tue March 27: Applications and Types of Parallelism
Tue Apr 3: Multicore Madness
Tue Apr 10: High Throughput Computing
Tue Apr 17: NO SESSION (Henry business travel)
Tue Apr 24: GPGPU: Number Crunching in Your Graphics Card
Tue May 1: Grab Bag: Scientific Libraries, I/O Libraries, Visualization

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 14

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 15

Thanks for helping!
 OU IT

 OSCER operations staff (Dave Akin, Patrick Calhoun, Kali
McLennan, Jason Speckman, Brett Zimmerman)

 OSCER Research Computing Facilitators (Jim Ferguson,
Horst Severini)

 Debi Gentis, OSCER Coordinator
 Kyle Dudgeon, OSCER Manager of Operations
 Ashish Pai, Managing Director for Research IT Services
 The OU IT network team
 OU CIO Eddie Huebsch

 OneNet: Skyler Donahue
 Oklahoma State U: Dana Brunson

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 16

This is an experiment!
It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the phone bridge
to fall back on.

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

Coming in 2018!
 Coalition for Advancing Digital Research & Education (CADRE) Conference:

Apr 17-18 2018 @ Oklahoma State U, Stillwater OK USA
https://hpcc.okstate.edu/cadre-conference

 Linux Clusters Institute workshops
http://www.linuxclustersinstitute.org/workshops/

 Introductory HPC Cluster System Administration: May 14-18 2018 @ U Nebraska, Lincoln NE USA
 Intermediate HPC Cluster System Administration: Aug 13-17 2018 @ Yale U, New Haven CT USA

 Great Plains Network Annual Meeting: details coming soon
 Advanced Cyberinfrastructure Research & Education Facilitators (ACI-REF) Virtual

Residency Aug 5-10 2018, U Oklahoma, Norman OK USA
 PEARC 2018, July 22-27, Pittsburgh PA USA

https://www.pearc18.pearc.org/

 IEEE Cluster 2018, Sep 10-13, Belfast UK
https://cluster2018.github.io

 OKLAHOMA SUPERCOMPUTING SYMPOSIUM 2018, Sep 25-26 2018 @ OU
 SC18 supercomputing conference, Nov 11-16 2018, Dallas TX USA

http://sc18.supercomputing.org/

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 17

https://hpcc.okstate.edu/cadre-conference
http://www.linuxclustersinstitute.org/workshops/
https://www.pearc18.pearc.org/
https://cluster2018.github.io/
http://sc18.supercomputing.org/

Outline
 The Desert Islands Analogy
 Distributed Parallelism
 MPI

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 18

The Desert Islands
Analogy

An Island Hut
 Imagine you’re on an island in a little hut.
 Inside the hut is a desk.
 On the desk is:

 a phone;
 a pencil;
 a calculator;
 a piece of paper with instructions;
 a piece of paper with numbers (data).

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 20

Instructions: What to Do
...

Add the number in slot 27 to the number in slot 239,
and put the result in slot 71.

if the number in slot 71 is equal to the number in slot 118 then
Call 555-0127 and leave a voicemail containing the number in slot 962.

else
Call your voicemail box and collect a voicemail from 555-0063,
and put that number in slot 715.

...

DATA
1. 27.3

2. -491.41
3. 24
4. -1e-05

5. 141.41

6. 0

7. 4167

8. 94.14

9. -518.481
...

Instructions
The instructions are split into two kinds:
 Arithmetic/Logical – for example:

 Add the number in slot 27 to the number in slot 239,
and put the result in slot 71.

 Compare the number in slot 71 to the number in slot
118, to see whether they are equal.

 Communication – for example:
 Call 555-0127 and leave a voicemail containing the

number in slot 962.
 Call your voicemail box and collect a voicemail from

555-0063, and put that number in slot 715.

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 21

Is There Anybody Out There?
If you’re in a hut on an island, you aren’t specifically aware of

anyone else.
Especially, you don’t know whether anyone else is working on

the same problem as you are, and you don’t know who’s at
the other end of the phone line.

All you know is what to do with the voicemails you get, and
what phone numbers to send voicemails to.

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 22

Someone Might Be Out There
Now suppose that Horst is on another island somewhere, in

the same kind of hut, with the same kind of equipment.
Suppose that he has the same list of instructions as you, but a

different set of numbers (both data and phone numbers).
Like you, he doesn’t know whether there’s anyone else

working on his problem.

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 23

Even More People Out There
Now suppose that Bruce and Dee are also in huts on islands.
Suppose that each of the four has the exact same list of

instructions, but different lists of numbers.
And suppose that the phone numbers that people call are each

others’: that is, your instructions have you call Horst, Bruce
and Dee, Horst’s has him call Bruce, Dee and you, and so on.

Then you might all be working together on the same problem.

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 24

All Data Are Private
Notice that you can’t see Horst’s or Bruce’s or Dee’s

numbers, nor can they see yours or each other’s.
Thus, everyone’s numbers are private: there’s no way for

anyone to share numbers, except by leaving them in
voicemails.

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 25

Long Distance Calls: 2 Costs
When you make a long distance phone call, you typically have to

pay two costs:
 Connection charge: the fixed cost of connecting your phone

to someone else’s, even if you’re only connected for a second
 Per-minute charge: the cost per minute of talking, once

you’re connected
If the connection charge is large, then you want to make as few

calls as possible.
See:
http://www.youtube.com/watch?v=8k1UOEYIQRo

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 26

http://www.youtube.com/watch?v=8k1UOEYIQRo

Distributed
Parallelism

Like Desert Islands
Distributed parallelism is very much like the Desert Islands

analogy:
 processes are independent of each other.
 All data are private.
 Processes communicate by passing messages (like

voicemails).
 The cost of passing a message is split into:

 latency (connection time)
 bandwidth (time per byte)

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 28

Latency vs Bandwidth on Schooner
In 2018, a benchmark of the Infiniband interconnect on

the University of Oklahoma’s Linux cluster revealed:
 Latency – the time for the first bit to show up at

the destination – is ~1.26 microseconds;
 Bandwidth – the speed of the subsequent bits –

is ~37.2 Gigabits per second (~0.027 nanosec per bit).
Thus, on OU’s cluster Infiniband:
 the first bit of a message shows up in ~1260 nanosec;
 the last bit of a message shows up in ~0.027 nanosec.
So latency is ~47,000 times worse than bandwidth!

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 29

Latency vs Bandwidth on Schooner
In 2018, a benchmark of the Infiniband interconnect on

the University of Oklahoma’s Linux cluster revealed:
 Latency – the time for the first bit to show up at

the destination – is ~1.26 microseconds;
 Bandwidth – the speed of the subsequent bits –

is ~37.2 Gigabits per second (~0.027 nanosec per bit).
Thus, on OU’s cluster Infiniband:
 the first bit of a message shows up in ~1260 nanosec;
 the last bit of a message shows up in ~0.027 nanosec.
So latency is ~47,000 times worse than bandwidth!
That’s like having a long distance service that charges:
 $470 to make a call at all, regardless of duration;
 1¢ per minute – after the first 33 days on the call.

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 30

MPI:
The Message-Passing

Interface

Most of this discussion is from [1] and [2].

What Is MPI?
The Message-Passing Interface (MPI) is a standard for expressing

distributed parallelism via message passing.
MPI consists of a header file, a library of routines and

a runtime environment.
When you compile a program that has MPI calls in it,

your compiler links to a local implementation of MPI,
and then you get parallelism; if the MPI library isn’t available,
then the compile will fail.

MPI can be used in Fortran, C and C++.
There are also unofficial bindings for MATLAB, Python, R and a

few others, but these aren’t part of the official MPI standard.

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 32

MPI Calls
In C, MPI calls look like:
mpi_error_code = MPI_Funcname(…);

In Fortran, MPI calls look like this:
CALL MPI_Funcname(…, mpi_error_code)

Notice that mpi_error_code is returned by the MPI routine
MPI_Funcname, with a value of MPI_SUCCESS
indicating that MPI_Funcname has worked correctly.

In C++, MPI calls look like:
mpi_error_code = MPI::Funcname(…);

But, the C++ binding has been deprecated, so DON’T USE IT.
Instead, use the C binding, above.

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 33

MPI is an API
MPI is actually just an Application Programming Interface (API).
An API specifies what a call to each routine should look like,

and how each routine should behave.
An API does not specify how each routine should be implemented,

and sometimes is intentionally vague about certain aspects of
a routine’s behavior.

Each platform can have its own MPI implementation –
or multiple MPI implementations.

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 34

Example MPI Implementations
 MPICH2 (http://www.mpich.org)
 OpenMPI (https://www.open-mpi.org)
 Intel MPI (https://software.intel.com/en-us/intel-mpi-library)
 Microsoft MPI (https://msdn.microsoft.com/en-

us/library/bb524831(v=vs.85).aspx)
 IBM Platform MPI

(https://www.ibm.com/support/knowledgecenter/en/SSF4ZA_9.1.3/pmpi
_welcome/pmpi_9.1.3.html)

 IBM Parallel Operating Environment
(https://www.ibm.com/support/knowledgecenter/SSFK3V_2.3.0/com.ib
m.cluster.pe.v2r3.pe400.doc/am106_mpibeo.htm)

 Cray Message Passing Toolkit (https://pubs.cray.com/content/S-
2529/17.05/xctm-series-programming-environment-user-guide-1705-s-
2529/mpt)

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 35

http://www.mpich.org/
https://www.open-mpi.org/
https://software.intel.com/en-us/intel-mpi-library
https://msdn.microsoft.com/en-us/library/bb524831(v=vs.85).aspx)
https://www.ibm.com/support/knowledgecenter/en/SSF4ZA_9.1.3/pmpi_welcome/pmpi_9.1.3.html
https://www.ibm.com/support/knowledgecenter/SSFK3V_2.3.0/com.ibm.cluster.pe.v2r3.pe400.doc/am106_mpibeo.htm)
https://pubs.cray.com/content/S-2529/17.05/xctm-series-programming-environment-user-guide-1705-s-2529/mpt

WARNING!
In principle, the MPI standard provides bindings for:
 C
 C++ (deprecated)
 Fortran 77
 Fortran 90
In practice, you should do this:
 To use MPI in a C++ code, use the C binding.
 To use MPI in Fortran 90, use the Fortran 77 binding.
This is because the C++ and Fortran 90 bindings are

less popular, and therefore less well tested.

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 36

The 6 Most Important MPI Routines
 MPI_Init starts up the MPI runtime environment at the

beginning of a run.
 MPI_Finalize shuts down the MPI runtime environment

at the end of a run.
 MPI_Comm_size gets the number of processes in a run, Np

(typically called just after MPI_Init).
 MPI_Comm_rank gets the process ID that the current

process uses, which is between 0 and Np-1 inclusive (typically
called just after MPI_Init).

 MPI_Send sends a message from the current process to
some other process (the destination).

 MPI_Recv receives a message on the current process from
some other process (the source).

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 37

More Example MPI Routines
 MPI_Bcast broadcasts a message from one process to all of

the others.
 MPI_Reduce performs a reduction (for example, sum,

maximum) of a variable on all processes, sending the result to a
single process.
NOTE: Here, reduce means turn many values into fewer values.

 MPI_Gather gathers a set of subarrays, one subarray from
each process, into a single large array on a single process.

 MPI_Scatter scatters a single large array on a single process
into subarrays, one subarray sent to each process.

Routines that use all processes at once are known as collective;
routines that involve only a few are known as point-to-point.

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 38

MPI Program Structure (C)
#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>
[other includes]
int main (int argc, char* argv[])
{ /* main */

int my_rank, num_procs, mpi_error_code;
[other declarations]
mpi_error_code =

MPI_Init(&argc, &argv); /* Start up MPI */
mpi_error_code =

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
mpi_error_code =

MPI_Comm_size(MPI_COMM_WORLD, &num_procs);
[actual work goes here]
mpi_error_code = MPI_Finalize(); /* Shut down MPI */

} /* main */

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 39

MPI is SPMD
MPI uses kind of parallelism known as

Single Program, Multiple Data (SPMD).
This means that you have one MPI program –

a single executable – that is executed by all of the processes
in an MPI run.

So, to differentiate the roles of various processes in the MPI
run, you have to have if statements:

if (my_rank == server_rank) {
…

}

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 40

Example: Hello World
1. Start the MPI system.
2. Get this process’s rank, and the number of processes.
3. Output “Hello world” along with the rank and number of

processes.
4. Shut down the MPI system.

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 41

Example: Hello World Code (C)
#include <stdio.h>
#include <stdlib.h>
#include "mpi.h"

int main (int argc, char** argv)
{ /* main */

int number_of_processes;
int my_rank;
int mpi_error_code;

mpi_error_code = MPI_Init(&argc, &argv);
mpi_error_code = MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
mpi_error_code = MPI_Comm_size(MPI_COMM_WORLD, &number_of_processes);
printf("%d of %d: Hello, world!\n", my_rank, number_of_processes);
mpi_error_code = MPI_Finalize();

} /* main */

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 42

Example: Hello World Code (F90)
PROGRAM hello_world_mpi

IMPLICIT NONE
INCLUDE "mpif.h"
INTEGER :: number_of_processes, my_rank
INTEGER :: mpi_error_code

CALL MPI_Init(mpi_error_code)
CALL MPI_Comm_rank(MPI_COMM_WORLD, number_of_processes, &

& mpi_error_code)
CALL MPI_Comm_size(MPI_COMM_WORLD, my_rank, &

& mpi_error_code)
PRINT *, my_rank, " of ", number_of_processes, &

& ": Hello, world!"
CALL MPI_Finalize(mpi_error_code)

END PROGRAM hello_world_mpi

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 43

Example: Hello World Output
2 of 20: Hello, world!

4 of 20: Hello, world!

8 of 20: Hello, world!

10 of 20: Hello, world!

14 of 20: Hello, world!

15 of 20: Hello, world!

16 of 20: Hello, world!

17 of 20: Hello, world!

18 of 20: Hello, world!

0 of 20: Hello, world!

1 of 20: Hello, world!

3 of 20: Hello, world!

5 of 20: Hello, world!

6 of 20: Hello, world!

7 of 20: Hello, world!

9 of 20: Hello, world!

11 of 20: Hello, world!

12 of 20: Hello, world!

13 of 20: Hello, world!

19 of 20: Hello, world!

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 44

Example: Greetings
1. Start the MPI system.
2. Get this process’s rank, and the number of processes.
3. If I’m not the server process:

1. Create a greeting string.
2. Send it to the server process.

4. If I am the server process:
1. For each of the client processes:

1. Receive its greeting string.
2. Print its greeting string.

5. Shut down the MPI system.
See [1].

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 45

greeting.c

#include <stdio.h>
#include <string.h>
#include <mpi.h>

int main (int argc, char* argv[])
{ /* main */

const int maximum_message_length = 100;
const int server_rank = 0;
char message[maximum_message_length+1];
MPI_Status status; /* Info about receive status */
int my_rank; /* This process ID */
int num_procs; /* Number of processes in run */
int source; /* Process ID to receive from */
int destination; /* Process ID to send to */
int tag = 0; /* Message ID */
int mpi_error_code; /* Error code for MPI calls */
[work goes here]

} /* main */

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 46

Greetings Startup/Shutdown
[header file includes]
int main (int argc, char* argv[])
{ /* main */

[declarations]
mpi_error_code = MPI_Init(&argc, &argv);
mpi_error_code = MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
mpi_error_code = MPI_Comm_size(MPI_COMM_WORLD, &num_procs);
if (my_rank != server_rank) {

[work of each non-server (worker) process]
} /* if (my_rank != server_rank) */
else {

[work of server process]
} /* if (my_rank != server_rank)…else */
mpi_error_code = MPI_Finalize();

} /* main */

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 47

Greetings Client’s Work
[header file includes]
int main (int argc, char* argv[])
{ /* main */

[declarations]
[MPI startup (MPI_Init etc)]
if (my_rank != server_rank) {

sprintf(message, "Greetings from process #%d!",
my_rank);

destination = server_rank;
mpi_error_code =

MPI_Send(message, strlen(message) + 1, MPI_CHAR,
destination, tag, MPI_COMM_WORLD);

} /* if (my_rank != server_rank) */
else {

[work of server process]
} /* if (my_rank != server_rank)…else */
mpi_error_code = MPI_Finalize();

} /* main */

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 48

Greetings Server’s Work
[header file includes]
int main (int argc, char* argv[])
{ /* main */

[declarations, MPI startup]
if (my_rank != server_rank) {

[work of each client process]
} /* if (my_rank != server_rank) */
else {

for (source = 0; source < num_procs; source++) {
if (source != server_rank) {

mpi_error_code =
MPI_Recv(message, maximum_message_length + 1,

MPI_CHAR, source, tag, MPI_COMM_WORLD,
&status);

fprintf(stderr, "%s\n", message);
} /* if (source != server_rank) */

} /* for source */
} /* if (my_rank != server_rank)…else */
mpi_error_code = MPI_Finalize();

} /* main */

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 49

How an MPI Run Works
 Every process gets a copy of the executable:

Single Program, Multiple Data (SPMD).
 They all start executing it.
 Each looks at its own rank to determine which part of the

problem to work on.
 Each process works completely independently of the other

processes, except when communicating.

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 50

Compiling and Running
% mpicc -o greeting_mpi greeting.c
% mpirun -np 1 greeting_mpi

% mpirun -np 2 greeting_mpi
Greetings from process #1!

% mpirun -np 3 greeting_mpi
Greetings from process #1!
Greetings from process #2!

% mpirun -np 4 greeting_mpi
Greetings from process #1!
Greetings from process #2!
Greetings from process #3!

Note: The compile command and the run command vary from
platform to platform.

This ISN’T how you run MPI on Schooner.

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 51

Why is Rank #0 the Server?
const int server_rank = 0;

By convention, if an MPI program uses a client-server approach,
then the server process has rank (process ID) #0. Why?

A run must use at least one process but can use multiple processes.
Process ranks are 0 through Np-1, for Np >1 ,

where Np is the number of processes in the run.
Therefore, every MPI run has a process with rank #0.
Note: Every MPI run also has a process with rank Np-1, so you

could use Np-1 as the server instead of 0 … but no one does.

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 52

Does There Have to be a Server?
There DOESN’T have to be a server.
It’s perfectly possible to write an MPI code that has no server

as such.
For example, weather forecasting and other transport codes

typically share most duties equally, and likewise chemistry
and astronomy codes.

In practice, though, most codes use rank #0 to do things like
small scale I/O, since it’s typically more efficient
to have one process read small files and then
broadcast small input data to the other processes, or
to gather the output data and write it to disk.

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 53

Why “Rank?”
Why does MPI use the term rank to refer to process ID?
In general, a process has an identifier that is assigned by the

operating system (for example, Unix), and that is unrelated
to MPI:

% ps
PID TTY TIME CMD

52170812 ttyq57 0:01 tcsh
Also, each processor has an identifier, but an MPI run that

uses fewer than all processors will use an arbitrary subset.
The rank of an MPI process is neither of these.

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 54

Compiling and Running

Recall:
% mpicc -o greeting_mpi greeting.c
% mpirun -np 1 greeting_mpi

% mpirun -np 2 greeting_mpi
Greetings from process #1!

% mpirun -np 3 greeting_mpi
Greetings from process #1!
Greetings from process #2!

% mpirun -np 4 greeting_mpi
Greetings from process #1!
Greetings from process #2!
Greetings from process #3!

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 55

Deterministic Operation?
% mpirun -np 4 greeting_mpi
Greetings from process #1!
Greetings from process #2!
Greetings from process #3!

The order in which the greetings are output is deterministic.
Why?

for (source = 0; source < num_procs; source++) {
if (source != server_rank) {
mpi_error_code =
MPI_Recv(message, maximum_message_length + 1,
MPI_CHAR, source, tag, MPI_COMM_WORLD,
&status);

fprintf(stderr, "%s\n", message);
} /* if (source != server_rank) */

} /* for source */

This loop ignores the order in which messages are received .

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 56

Deterministic Parallelism
for (source = 0; source < num_procs; source++) {
if (source != server_rank) {
mpi_error_code =
MPI_Recv(message, maximum_message_length + 1,
MPI_CHAR, source, tag,
MPI_COMM_WORLD, &status);

fprintf(stderr, "%s\n", message);
} /* if (source != server_rank) */

} /* for source */
Because of the order in which the loop iterations occur, the

greeting messages will be output in deterministic order,
regardless of the order in which the greeting messages are
received.

In principle, the run could pause for a long time, waiting for
one client process’s message to arrive at the server process.

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 57

Nondeterministic Parallelism
for (source = 0; source < num_procs; source++) {
if (source != server_rank) {
mpi_error_code =
MPI_Recv(message, maximum_message_length + 1,
MPI_CHAR, MPI_ANY_SOURCE, tag,
MPI_COMM_WORLD, &status);

fprintf(stderr, "%s\n", message);
} /* if (source != server_rank) */

} /* for source */

Because of this change, the greeting messages will be output in
non-deterministic order, specifically in the order in which
they’re received.

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 58

Message = Envelope + Contents
MPI_Send(message, strlen(message) + 1,

MPI_CHAR, destination, tag,
MPI_COMM_WORLD);

When MPI sends a message, it doesn’t just send the contents;
it also sends an “envelope” describing the contents:

Size (number of elements of the message’s data type)
Data type
Source: rank of sending process
Destination: rank of process to receive
Tag (message ID)
Communicator (for example, MPI_COMM_WORLD)

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 59

MPI Data Types
C Fortran

char MPI_CHAR CHARACTER MPI_CHARACTER

int MPI_INT INTEGER MPI_INTEGER

float MPI_FLOAT REAL MPI_REAL

double MPI_DOUBLE DOUBLE
PRECISION

MPI_DOUBLE_PRECISION

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 60

MPI supports several other data types, but most are variations
on these, and probably these are all you’ll use.

Message Tags
My daughter was born in mid-December.
So, if I give her a present in December, how does she know

which of these it’s for?
 Her birthday
 Christmas
 Hanukkah
She knows because of the tag on the present:
 A little cake with candles means birthday
 A little tree or a Santa means Christmas
 A little menorah means Hanukkah

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 61

Message Tags

for (source = 0; source < num_procs; source++) {
if (source != server_rank) {
mpi_error_code =
MPI_Recv(message, maximum_message_length + 1,
MPI_CHAR, source, tag,
MPI_COMM_WORLD, &status);

fprintf(stderr, "%s\n", message);
} /* if (source != server_rank) */

} /* for source */

The greetings are output in deterministic order,
not because messages are sent and received in order,
but because each has a tag (message identifier), and
MPI_Recv asks for a specific message (by tag)
from a specific source (by rank).

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 62

Parallelism is Nondeterministic

for (source = 0; source < num_procs; source++) {
if (source != server_rank) {
mpi_error_code =
MPI_Recv(message, maximum_message_length + 1,
MPI_CHAR, MPI_ANY_SOURCE, tag,
MPI_COMM_WORLD, &status);

fprintf(stderr, "%s\n", message);
} /* if (source != server_rank) */

} /* for source */

But here the greetings are output in non-deterministic order.

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 63

Communicators
An MPI communicator is a collection of processes that can

send messages to each other.
MPI_COMM_WORLD is the default communicator;

it contains all of the processes in the current run.
It’s probably the only one you’ll need in most cases.

Some libraries create special library-only communicators,
which can simplify keeping track of message tags.

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 64

Broadcasting
What happens if one process has data that everyone else

needs to know?
For example, what if the server process needs to send

an input value to the others?
mpi_error_code =
MPI_Bcast(&length, 1, MPI_INTEGER,

source, MPI_COMM_WORLD);
Note that MPI_Bcast doesn’t use a tag, and that

the call is the same for both the sender and all of the receivers.
This is COUNTERINTUITIVE!

All processes have to call MPI_Bcast at the same time;
everyone waits until everyone is done (synchronization).

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 65

Broadcast Example: Setup
#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>

int main (int argc, char** argv)
{ /* main */
const int server = 0;
const int source = server;
float* array = (float*)NULL;
int length;
int num_procs, my_rank, mpi_error_code;
mpi_error_code = MPI_Init(&argc, &argv);
mpi_error_code = MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
mpi_error_code = MPI_Comm_size(MPI_COMM_WORLD, &num_procs);
[input, allocate, initialize on server only]
[broadcast, output on all processes]
mpi_error_code = MPI_Finalize();

} /* main */

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 66

Broadcast Example: Input
#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>

int main (int argc, char** argv)
{ /* main */
const int server = 0;
const int source = server;
float* array = (float*)NULL;
int length;
int num_procs, my_rank, mpi_error_code;

[MPI startup]
if (my_rank == server) {
scanf("%d", &length);
array = (float*)malloc(sizeof(float) * length);
for (index = 0; index < length; index++) {

array[index] = 0.0;
} /* for index */

} /* if (my_rank == server) */
[broadcast , output on all processes]
[MPI shutdown]

} /* main */

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 67

Broadcast Example: Broadcast
#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>

int main (int argc, char** argv)
{ /* main */
const int server = 0;
const int source = server;
float* array = (float*)NULL;
int length;
int num_procs, my_rank, mpi_error_code;

[MPI startup]
[input, allocate, initialize on server only]
if (num_procs > 1) {
mpi_error_code =
MPI_Bcast(&length, 1, MPI_INTEGER, source, MPI_COMM_WORLD);

if (my_rank != server) {
array = (float*)malloc(sizeof(float) * length);

} /* if (my_rank != server) */
mpi_error_code =
MPI_Bcast(array, length, MPI_INTEGER, source,

MPI_COMM_WORLD);
printf("%d: broadcast length = %d\n", my_rank, length);

} /* if (num_procs > 1) */
mpi_error_code = MPI_Finalize();

} /* main */
Supercomputing in Plain English: Distributed Par

Tue March 6 2018 68

Broadcast Compile & Run
% mpicc -o broadcast broadcast.c
% mpirun -np 4 broadcast
0 : broadcast length = 16777216
1 : broadcast length = 16777216
2 : broadcast length = 16777216
3 : broadcast length = 16777216

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 69

Reductions
A reduction converts an array to a scalar (or, more generally,

converts many values to fewer values).
For example, sum, product, minimum value, maximum value,

Boolean AND, Boolean OR, etc.
Reductions are so common, and so important, that MPI has two

routines to handle them:
MPI_Reduce: sends result to a single specified process
MPI_Allreduce: sends result to all processes (and therefore

takes longer)

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 70

Reduction Example
#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>

int main (int argc, char **argv)
{ /* main */

const int server = 0;
float value, value_sum;
int num_procs, my_rank, mpi_error_code;
mpi_error_code = MPI_Init(&argc, &argv);
mpi_error_code = MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
mpi_error_code = MPI_Comm_size(MPI_COMM_WORLD, &num_procs);
value_sum = 0.0;
value = my_rank * num_procs;
mpi_error_code =

MPI_Reduce (&value, &value_sum, 1, MPI_FLOAT, MPI_SUM,
server, MPI_COMM_WORLD);

printf("%d: reduce value_sum = %d\n", my_rank, value_sum);
mpi_error_code =

MPI_Allreduce(&value, &value_sum, 1, MPI_FLOAT, MPI_SUM,
MPI_COMM_WORLD);

printf("%d: allreduce value_sum = %d\n", my_rank, value_sum);
mpi_error_code = MPI_Finalize();

} /* main */

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 71

Compiling and Running
% mpicc -o reduce reduce.c
% mpirun -np 4 reduce
3: reduce value_sum = 0
1: reduce value_sum = 0
0: reduce value_sum = 24
2: reduce value_sum = 0
0: allreduce value_sum = 24
1: allreduce value_sum = 24
2: allreduce value_sum = 24
3: allreduce value_sum = 24

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 72

Why Two Reduction Routines?
MPI has two reduction routines because of the high cost of

each communication.
If only one process needs the result, then it doesn’t make sense

to pay the cost of sending the result to all processes.
But if all processes need the result, then it may be cheaper to

reduce to all processes than to reduce to a single process and
then broadcast to all.

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 73

Non-blocking Communication
MPI allows a process to start a send, then go on and do work

while the message is in transit.
This is called non-blocking or immediate communication.
Here, “immediate” refers to the fact that the call to

the MPI routine returns immediately rather than waiting for
the communication to complete.

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 74

Immediate Send
mpi_error_code =

MPI_Isend(array, size, MPI_FLOAT,
destination, tag, communicator, &request);

Likewise:
mpi_error_code =

MPI_Irecv(array, size, MPI_FLOAT,
source, tag, communicator, &request);

This call starts the send/receive, but the send/receive won’t be
complete until:

MPI_Wait(request, status);

What’s the advantage of this?

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 75

Communication Hiding
In between the call to MPI_Isend/Irecv and the call to
MPI_Wait, both processes can do work!

If that work takes at least as much time as the communication,
then the cost of the communication is effectively zero, since
the communication won’t affect how much work gets done.

This is called communication hiding.

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 76

Rule of Thumb for Hiding
When you want to hide communication:
 as soon as you calculate the data, send it;
 don’t receive it until you need it.
That way, the communication has the maximal amount of time

to happen in background (behind the scenes).

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 77

TENTATIVE Schedule
Tue Jan 23: Storage: What the Heck is Supercomputing?
Tue Jan 30: The Tyranny of the Storage Hierarchy Part I
Tue Feb 6: The Tyranny of the Storage Hierarchy Part II
Tue Feb 13: Instruction Level Parallelism
Tue Feb 20: Stupid Compiler Tricks
Tue Feb 27: Distributed Par Multithreading
Tue March 6: Distributed Multiprocessing
Tue March 13: NO SESSION (Henry business travel)
Tue March 20: NO SESSION (OU's Spring Break)
Tue March 27: Applications and Types of Parallelism
Tue Apr 3: Multicore Madness
Tue Apr 10: High Throughput Computing
Tue Apr 17: NO SESSION (Henry business travel)
Tue Apr 24: GPGPU: Number Crunching in Your Graphics Card
Tue May 1: Grab Bag: Scientific Libraries, I/O Libraries, Visualization

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 78

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 79

Thanks for helping!
 OU IT

 OSCER operations staff (Dave Akin, Patrick Calhoun, Kali
McLennan, Jason Speckman, Brett Zimmerman)

 OSCER Research Computing Facilitators (Jim Ferguson,
Horst Severini)

 Debi Gentis, OSCER Coordinator
 Kyle Dudgeon, OSCER Manager of Operations
 Ashish Pai, Managing Director for Research IT Services
 The OU IT network team
 OU CIO Eddie Huebsch

 OneNet: Skyler Donahue
 Oklahoma State U: Dana Brunson

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 80

This is an experiment!
It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the phone bridge
to fall back on.

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

Coming in 2018!
 Coalition for Advancing Digital Research & Education (CADRE) Conference:

Apr 17-18 2018 @ Oklahoma State U, Stillwater OK USA
https://hpcc.okstate.edu/cadre-conference

 Linux Clusters Institute workshops
http://www.linuxclustersinstitute.org/workshops/

 Introductory HPC Cluster System Administration: May 14-18 2018 @ U Nebraska, Lincoln NE USA
 Intermediate HPC Cluster System Administration: Aug 13-17 2018 @ Yale U, New Haven CT USA

 Great Plains Network Annual Meeting: details coming soon
 Advanced Cyberinfrastructure Research & Education Facilitators (ACI-REF) Virtual

Residency Aug 5-10 2018, U Oklahoma, Norman OK USA
 PEARC 2018, July 22-27, Pittsburgh PA USA

https://www.pearc18.pearc.org/

 IEEE Cluster 2018, Sep 10-13, Belfast UK
https://cluster2018.github.io

 OKLAHOMA SUPERCOMPUTING SYMPOSIUM 2018, Sep 25-26 2018 @ OU
 SC18 supercomputing conference, Nov 11-16 2018, Dallas TX USA

http://sc18.supercomputing.org/

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 81

https://hpcc.okstate.edu/cadre-conference
http://www.linuxclustersinstitute.org/workshops/
https://www.pearc18.pearc.org/
https://cluster2018.github.io/
http://sc18.supercomputing.org/

Thanks for your
attention!

Questions?
www.oscer.ou.edu

http://www.oscer.ou.edu/

References

Supercomputing in Plain English: Distributed Par
Tue March 6 2018 83

[1] P.S. Pacheco, Parallel Programming with MPI, Morgan Kaufmann
Publishers, 1997.

[2] W. Gropp, E. Lusk and A. Skjellum, Using MPI: Portable Parallel
Programming with the Message-Passing Interface, 2nd ed. MIT
Press, 1999.

	Supercomputing�in Plain English�Distributed Multiprocessing
	This is an experiment!
	PLEASE MUTE YOURSELF
	Download the Slides Beforehand
	Zoom
	YouTube
	Twitch
	Wowza #1
	Wowza #2
	Toll Free Phone Bridge
	Please Mute Yourself
	Questions via E-mail Only
	Onsite: Talent Release Form
	TENTATIVE Schedule
	Thanks for helping!
	This is an experiment!
	Coming in 2018!
	Outline
	The Desert Islands �Analogy
	An Island Hut
	Instructions
	Is There Anybody Out There?
	Someone Might Be Out There
	Even More People Out There
	All Data Are Private
	Long Distance Calls: 2 Costs
	Distributed Parallelism
	Like Desert Islands
	Latency vs Bandwidth on Schooner
	Latency vs Bandwidth on Schooner
	MPI:�The Message-Passing Interface
	What Is MPI?
	MPI Calls
	MPI is an API
	Example MPI Implementations
	WARNING!
	The 6 Most Important MPI Routines
	More Example MPI Routines
	MPI Program Structure (C)
	MPI is SPMD
	Example: Hello World
	Example: Hello World Code (C)
	Example: Hello World Code (F90)
	Example: Hello World Output
	Example: Greetings
	greeting.c
	Greetings Startup/Shutdown
	Greetings Client’s Work
	Greetings Server’s Work
	How an MPI Run Works
	Compiling and Running
	Why is Rank #0 the Server?
	Does There Have to be a Server?
	Why “Rank?”
	Compiling and Running
	Deterministic Operation?
	Deterministic Parallelism
	Nondeterministic Parallelism
	Message = Envelope + Contents
	MPI Data Types
	Message Tags
	Message Tags
	Parallelism is Nondeterministic
	Communicators
	Broadcasting
	Broadcast Example: Setup
	Broadcast Example: Input
	Broadcast Example: Broadcast
	Broadcast Compile & Run
	Reductions
	Reduction Example
	Compiling and Running
	Why Two Reduction Routines?
	Non-blocking Communication
	Immediate Send
	Communication Hiding
	Rule of Thumb for Hiding
	TENTATIVE Schedule
	Thanks for helping!
	This is an experiment!
	Coming in 2018!
	Thanks for your attention!���Questions?�www.oscer.ou.edu
	References

