
Supercomputing
in Plain English

Distributed Multiprocessing
Henry Neeman, Director

Director, OU Supercomputing Center for Education & Research (OSCER)
Assistant Vice President, Information Technology – Research Strategy Advisor

Associate Professor, College of Engineering
Adjunct Associate Professor, School of Computer Science

University of Oklahoma
Tuesday March 3 2015

Supercomputing in Plain English: Distrib Parallel
Tue March 3 2015 2

This is an experiment!
It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone
bridge to fall back on.

Supercomputing in Plain English: Distrib Parallel
Tue March 3 2015 3

PLEASE MUTE YOURSELF
No matter how you connect, PLEASE MUTE YOURSELF,

so that we cannot hear you.
At OU, we will turn off the sound on all conferencing

technologies.
That way, we won’t have problems with echo cancellation.
Of course, that means we cannot hear questions.
So for questions, you’ll need to send e-mail.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

PLEASE REGISTER
If you haven’t already registered, please do so.

You can find the registration link on the SiPE webpage:

http://www.oscer.ou.edu/education/

Our ability to continue providing Supercomputing in Plain English
depends on being able to show strong participation.

We use our headcounts, institution counts and state counts
(since 2001, over 2000 served, from every US state except RI and
VT, plus 17 other countries, on every continent except Australia
and Antarctica) to improve grant proposals.

Supercomputing in Plain English: Distrib Parallel
Tue March 3 2015 4

http://www.oscer.ou.edu/education/

Download the Slides Beforehand
Before the start of the session, please download the slides from
the Supercomputing in Plain English website:

http://www.oscer.ou.edu/education/

That way, if anything goes wrong, you can still follow along
with just audio.

PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Distrib Parallel
Tue March 3 2015 5

http://www.oscer.ou.edu/education/

Supercomputing in Plain English: Distrib Parallel
Tue March 3 2015 6

H.323 (Polycom etc) #1
If you want to use H.323 videoconferencing – for example,

Polycom – then:
 If you AREN’T registered with the OneNet gatekeeper (which

is probably the case), then:
 Dial 164.58.250.51

 Bring up the virtual keypad.
On some H.323 devices, you can bring up the virtual keypad by typing:

(You may want to try without first, then with; some devices won't work
with the #, but give cryptic error messages about it.)

 When asked for the conference ID, or if there's no response, enter:
0409

 On most but not all H.323 devices, you indicate the end of the ID with:
#

Supercomputing in Plain English: Distrib Parallel
Tue March 3 2015 7

H.323 (Polycom etc) #2
If you want to use H.323 videoconferencing – for example,

Polycom – then:
 If you ARE already registered with the OneNet gatekeeper

(most institutions aren’t), dial:
2500409

Many thanks to James Deaton, Skyler Donahue, Jeremy Wright
and Steven Haldeman of OneNet for providing this.

PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Distrib Parallel
Tue March 3 2015 8

Wowza #1
You can watch from a Windows, MacOS or Linux laptop using

Wowza from the following URL:

http://jwplayer.onenet.net/stream6/sipe.html

Wowza behaves a lot like YouTube, except live.

Many thanks to James Deaton, Skyler Donahue, Jeremy Wright
and Steven Haldeman of OneNet for providing this.

PLEASE MUTE YOURSELF.

http://jwplayer.onenet.net/stream6/sipe.html

Wowza #2
Wowza has been tested on multiple browsers on each of:
 Windows (7 and 8): IE, Firefox, Chrome, Opera, Safari
 MacOS X: Safari, Firefox
 Linux: Firefox, Opera
We’ve also successfully tested it on devices with:
Android
iOS
However, we make no representations on the likelihood of it
working on your device, because we don’t know which
versions of Android or iOS it mi
PLEASE MUTE YOURSELF.
ght or might not work with.Supercomputing in Plain English: Distrib Parallel

Tue March 3 2015 9

RTMP
If you have a video player that can handle RTMP, you can
watch the Wowza feed that way:
rtmp://stream3.onenet.net/live/mp4:sipe-wowza

Supercomputing in Plain English: Distrib Parallel
Tue March 3 2015 10

rtmp://stream3.onenet.net/live/mp4:sipe-wowza

Supercomputing in Plain English: Distrib Parallel
Tue March 3 2015 11

Toll Free Phone Bridge
IF ALL ELSE FAILS, you can use our toll free phone bridge:

800-832-0736
* 623 2874 #

Please mute yourself and use the phone to listen.
Don’t worry, we’ll call out slide numbers as we go.
Please use the phone bridge ONLY if you cannot connect any

other way: the phone bridge can handle only 100
simultaneous connections, and we have over 500 participants.

Many thanks to OU CIO Loretta Early for providing the toll free
phone bridge.

PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Distrib Parallel
Tue March 3 2015 12

Please Mute Yourself
No matter how you connect, PLEASE MUTE YOURSELF,

so that we cannot hear you.
(For Wowza, you don’t need to do that, because the

information only goes from us to you, not from you to us.)
At OU, we will turn off the sound on all conferencing

technologies.
That way, we won’t have problems with echo cancellation.
Of course, that means we cannot hear questions.
So for questions, you’ll need to send e-mail.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Distrib Parallel
Tue March 3 2015 13

Questions via E-mail Only
Ask questions by sending e-mail to:

sipe2015@gmail.com

All questions will be read out loud and then answered out loud.

PLEASE MUTE YOURSELF.

mailto:sipe2015@gmail.com

Onsite: Talent Release Form
If you’re attending onsite, you MUST do one of the following:
 complete and sign the Talent Release Form,
OR
 sit behind the cameras (where you can’t be seen) and don’t

talk at all.

If you aren’t onsite, then PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Distrib Parallel
Tue March 3 2015 14

TENTATIVE Schedule
Tue Jan 20: Overview: What the Heck is Supercomputing?
Tue Jan 27: The Tyranny of the Storage Hierarchy
Tue Feb 3: Instruction Level Parallelism
Tue Feb 10: Stupid Compiler Tricks
Tue Feb 17: Shared Memory Multithreading
Tue March 3: Distributed Multiprocessing
Tue March 10: Applications and Types of Parallelism
Tue March 17: NO SESSION (OU's Spring Break)
Tue March 24: NO SESSION (Henry has a huge grant proposal due)
Tue March 31: Multicore Madness
Tue Apr 7: High Throughput Computing
Tue Apr 14: GPGPU: Number Crunching in Your Graphics Card
Tue Apr 21: Grab Bag: Scientific Libraries, I/O Libraries,
Visualization

Supercomputing in Plain English: Distrib Parallel
Tue March 3 2015 15

Supercomputing in Plain English: Distrib Parallel
Tue March 3 2015 16

Thanks for helping!
 OU IT

 OSCER operations staff (Brandon George, Dave Akin, Brett
Zimmerman, Josh Alexander, Patrick Calhoun)

 Horst Severini, OSCER Associate Director for Remote &
Heterogeneous Computing

 Debi Gentis, OSCER Coordinator
 Jim Summers
 The OU IT network team

 James Deaton, Skyler Donahue, Jeremy Wright and Steven
Haldeman, OneNet

 Kay Avila, U Iowa
 Stephen Harrell, Purdue U

Supercomputing in Plain English: Distrib Parallel
Tue March 3 2015 17

This is an experiment!
It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone
bridge to fall back on.

PLEASE MUTE YOURSELF.

Coming in 2015!
Linux Clusters Institute workshop May 18-22 2015 @ OU

http://www.linuxclustersinstitute.org/workshops/

Great Plains Network Annual Meeting, May 27-29, Kansas City
Advanced Cyberinfrastructure Research & Education Facilitators (ACI-REF) Virtual

Residency May 31 - June 6 2015
XSEDE2015, July 26-30, St. Louis MO

https://conferences.xsede.org/xsede15

IEEE Cluster 2015, Sep 23-27, Chicago IL
http://www.mcs.anl.gov/ieeecluster2015/

OKLAHOMA SUPERCOMPUTING SYMPOSIUM 2015, Sep 22-23 2015 @ OU
SC13, Nov 15-20 2015, Austin TX

http://sc15.supercomputing.org/

PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Distrib Parallel
Tue March 3 2015 18

http://www.linuxclustersinstitute.org/workshops/
https://conferences.xsede.org/xsede15
http://www.mcs.anl.gov/ieeecluster2015/
http://sc15.supercomputing.org/

Outline
 The Desert Islands Analogy
 Distributed Parallelism
 MPI

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 19

The Desert Islands
Analogy

An Island Hut
 Imagine you’re on an island in a little hut.
 Inside the hut is a desk.
 On the desk is:

 a phone;
 a pencil;
 a calculator;
 a piece of paper with instructions;
 a piece of paper with numbers (data).

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 21

Instructions: What to Do
...

Add the number in slot 27 to the number in slot 239,
and put the result in slot 71.

if the number in slot 71 is equal to the number in slot 118 then
Call 555-0127 and leave a voicemail containing the number in slot 962.

else
Call your voicemail box and collect a voicemail from 555-0063,
and put that number in slot 715.

...

DATA
1. 27.3

2. -491.41
3. 24
4. -1e-05

5. 141.41

6. 0

7. 4167

8. 94.14

9. -518.481
...

Instructions
The instructions are split into two kinds:
 Arithmetic/Logical – for example:

 Add the number in slot 27 to the number in slot 239,
and put the result in slot 71.

 Compare the number in slot 71 to the number in slot
118, to see whether they are equal.

 Communication – for example:
 Call 555-0127 and leave a voicemail containing the

number in slot 962.
 Call your voicemail box and collect a voicemail from

555-0063, and put that number in slot 715.

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 22

Is There Anybody Out There?
If you’re in a hut on an island, you aren’t specifically aware of

anyone else.
Especially, you don’t know whether anyone else is working on

the same problem as you are, and you don’t know who’s at
the other end of the phone line.

All you know is what to do with the voicemails you get, and
what phone numbers to send voicemails to.

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 23

Someone Might Be Out There
Now suppose that Horst is on another island somewhere, in

the same kind of hut, with the same kind of equipment.
Suppose that he has the same list of instructions as you, but a

different set of numbers (both data and phone numbers).
Like you, he doesn’t know whether there’s anyone else

working on his problem.

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 24

Even More People Out There
Now suppose that Bruce and Dee are also in huts on islands.
Suppose that each of the four has the exact same list of

instructions, but different lists of numbers.
And suppose that the phone numbers that people call are each

others’: that is, your instructions have you call Horst, Bruce
and Dee, Horst’s has him call Bruce, Dee and you, and so on.

Then you might all be working together on the same problem.

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 25

All Data Are Private
Notice that you can’t see Horst’s or Bruce’s or Dee’s

numbers, nor can they see yours or each other’s.
Thus, everyone’s numbers are private: there’s no way for

anyone to share numbers, except by leaving them in
voicemails.

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 26

Long Distance Calls: 2 Costs
When you make a long distance phone call, you typically have to

pay two costs:
 Connection charge: the fixed cost of connecting your phone

to someone else’s, even if you’re only connected for a second
 Per-minute charge: the cost per minute of talking, once

you’re connected
If the connection charge is large, then you want to make as few

calls as possible.
See:
http://www.youtube.com/watch?v=8k1UOEYIQRo

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 27

http://www.youtube.com/watch?v=8k1UOEYIQRo

Distributed
Parallelism

Like Desert Islands
Distributed parallelism is very much like the Desert Islands

analogy:
 processes are independent of each other.
 All data are private.
 Processes communicate by passing messages (like

voicemails).
 The cost of passing a message is split into:

 latency (connection time)
 bandwidth (time per byte)

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 29

Latency vs Bandwidth on topdawg
In 2006, a benchmark of the Infiniband interconnect on a large

Linux cluster at the University of Oklahoma revealed:
 Latency – the time for the first bit to show up at the

destination – is about 3 microseconds;
 Bandwidth – the speed of the subsequent bits – is about 5

Gigabits per second.
Thus, on this cluster’s Infiniband:
 the 1st bit of a message shows up in 3 microsec;
 the 2nd bit shows up in 0.2 nanosec.
So latency is 15,000 times worse than bandwidth!

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 30

Latency vs Bandwidth on topdawg
In 2006, a benchmark of the Infiniband interconnect on a large

Linux cluster at the University of Oklahoma revealed:
 Latency – the time for the first bit to show up at the

destination – is about 3 microseconds;
 Bandwidth – the speed of the subsequent bits – is about 5

Gigabits per second.
Latency is 15,000 times worse than bandwidth!
That’s like having a long distance service that charges
 $150 to make a call;
 1¢ per minute – after the first 10 days of the call.

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 31

MPI:
The Message-Passing

Interface

Most of this discussion is from [1] and [2].

What Is MPI?
The Message-Passing Interface (MPI) is a standard for

expressing distributed parallelism via message passing.
MPI consists of a header file, a library of routines and a

runtime environment.
When you compile a program that has MPI calls in it, your

compiler links to a local implementation of MPI, and then
you get parallelism; if the MPI library isn’t available, then the
compile will fail.

MPI can be used in Fortran, C and C++.

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 33

MPI Calls
In C, MPI calls look like:
mpi_error_code = MPI_Funcname(…);

In C++, MPI calls look like:
mpi_error_code = MPI::Funcname(…);

In Fortran, MPI calls look like this:
CALL MPI_Funcname(…, mpi_error_code)

Notice that mpi_error_code is returned by the MPI routine
MPI_Funcname, with a value of MPI_SUCCESS
indicating that MPI_Funcname has worked correctly.

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 34

MPI is an API
MPI is actually just an Application Programming Interface

(API).
An API specifies what a call to each routine should look like,

and how each routine should behave.
An API does not specify how each routine should be

implemented, and sometimes is intentionally vague about
certain aspects of a routine’s behavior.

Each platform can have its own MPI implementation – or
multiple MPI implementations.

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 35

WARNING!
In principle, the MPI standard provides bindings for:
 C
 C++
 Fortran 77
 Fortran 90
In practice, you should do this:
 To use MPI in a C++ code, use the C binding.
 To use MPI in Fortran 90, use the Fortran 77 binding.
This is because the C++ and Fortran 90 bindings are less

popular, and therefore less well tested.

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 36

The 6 Most Important MPI Routines
 MPI_Init starts up the MPI runtime environment at the

beginning of a run.
 MPI_Finalize shuts down the MPI runtime environment

at the end of a run.
 MPI_Comm_size gets the number of processes in a run, Np

(typically called just after MPI_Init).
 MPI_Comm_rank gets the process ID that the current

process uses, which is between 0 and Np-1 inclusive (typically
called just after MPI_Init).

 MPI_Send sends a message from the current process to
some other process (the destination).

 MPI_Recv receives a message on the current process from
some other process (the source).

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 37

More Example MPI Routines
 MPI_Bcast broadcasts a message from one process to all of

the others.
 MPI_Reduce performs a reduction (for example, sum,

maximum) of a variable on all processes, sending the result to a
single process.
NOTE: Here, reduce means turn many values into fewer values.

 MPI_Gather gathers a set of subarrays, one subarray from
each process, into a single large array on a single process.

 MPI_Scatter scatters a single large array on a single process
into subarrays, one subarray sent to each process.

Routines that use all processes at once are known as collective;
routines that involve only a few are known as point-to-point.

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 38

MPI Program Structure (C)
#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>
[other includes]
int main (int argc, char* argv[])
{ /* main */

int my_rank, num_procs, mpi_error_code;
[other declarations]
mpi_error_code =

MPI_Init(&argc, &argv); /* Start up MPI */
mpi_error_code =

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
mpi_error_code =

MPI_Comm_size(MPI_COMM_WORLD, &num_procs);
[actual work goes here]
mpi_error_code = MPI_Finalize(); /* Shut down MPI */

} /* main */

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 39

MPI is SPMD
MPI uses kind of parallelism known as

Single Program, Multiple Data (SPMD).
This means that you have one MPI program – a single

executable – that is executed by all of the processes in an
MPI run.

So, to differentiate the roles of various processes in the MPI
run, you have to have if statements:

if (my_rank == server_rank) {
…

}

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 40

Example: Greetings
1. Start the MPI system.
2. Get the rank and number of processes.
3. If I’m not the server process:

1. Create a greeting string.
2. Send it to the server process.

4. If I am the server process:
1. For each of the client processes:

1. Receive its greeting string.
2. Print its greeting string.

5. Shut down the MPI system.
See [1].

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 41

greeting.c

#include <stdio.h>
#include <string.h>
#include <mpi.h>

int main (int argc, char* argv[])
{ /* main */

const int maximum_message_length = 100;
const int server_rank = 0;
char message[maximum_message_length+1];
MPI_Status status; /* Info about receive status */
int my_rank; /* This process ID */
int num_procs; /* Number of processes in run */
int source; /* Process ID to receive from */
int destination; /* Process ID to send to */
int tag = 0; /* Message ID */
int mpi_error_code; /* Error code for MPI calls */
[work goes here]

} /* main */

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 42

Greetings Startup/Shutdown
[header file includes]
int main (int argc, char* argv[])
{ /* main */

[declarations]
mpi_error_code = MPI_Init(&argc, &argv);
mpi_error_code = MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
mpi_error_code = MPI_Comm_size(MPI_COMM_WORLD, &num_procs);
if (my_rank != server_rank) {

[work of each non-server (worker) process]
} /* if (my_rank != server_rank) */
else {

[work of server process]
} /* if (my_rank != server_rank)…else */
mpi_error_code = MPI_Finalize();

} /* main */

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 43

Greetings Client’s Work
[header file includes]
int main (int argc, char* argv[])
{ /* main */

[declarations]
[MPI startup (MPI_Init etc)]
if (my_rank != server_rank) {

sprintf(message, "Greetings from process #%d!",
my_rank);

destination = server_rank;
mpi_error_code =

MPI_Send(message, strlen(message) + 1, MPI_CHAR,
destination, tag, MPI_COMM_WORLD);

} /* if (my_rank != server_rank) */
else {

[work of server process]
} /* if (my_rank != server_rank)…else */
mpi_error_code = MPI_Finalize();

} /* main */

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 44

Greetings Server’s Work
[header file includes]
int main (int argc, char* argv[])
{ /* main */

[declarations, MPI startup]
if (my_rank != server_rank) {

[work of each client process]
} /* if (my_rank != server_rank) */
else {

for (source = 0; source < num_procs; source++) {
if (source != server_rank) {

mpi_error_code =
MPI_Recv(message, maximum_message_length + 1,

MPI_CHAR, source, tag, MPI_COMM_WORLD,
&status);

fprintf(stderr, "%s\n", message);
} /* if (source != server_rank) */

} /* for source */
} /* if (my_rank != server_rank)…else */
mpi_error_code = MPI_Finalize();

} /* main */

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 45

How an MPI Run Works
 Every process gets a copy of the executable:

Single Program, Multiple Data (SPMD).
 They all start executing it.
 Each looks at its own rank to determine which part of the

problem to work on.
 Each process works completely independently of the other

processes, except when communicating.

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 46

Compiling and Running
% mpicc -o greeting_mpi greeting.c
% mpirun -np 1 greeting_mpi

% mpirun -np 2 greeting_mpi
Greetings from process #1!

% mpirun -np 3 greeting_mpi
Greetings from process #1!
Greetings from process #2!

% mpirun -np 4 greeting_mpi
Greetings from process #1!
Greetings from process #2!
Greetings from process #3!

Note: The compile command and the run command vary from
platform to platform.

This ISN’T how you run MPI on Boomer.

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 47

Why is Rank #0 the Server?
const int server_rank = 0;

By convention, if an MPI program uses a client-server
approach, then the server process has rank (process ID) #0.
Why?

A run must use at least one process but can use multiple
processes.

Process ranks are 0 through Np-1, Np >1 .
Therefore, every MPI run has a process with rank #0.
Note: Every MPI run also has a process with rank Np-1, so you

could use Np-1 as the server instead of 0 … but no one does.

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 48

Does There Have to be a Server?
There DOESN’T have to be a server.
It’s perfectly possible to write an MPI code that has no server

as such.
For example, weather forecasting and other transport codes

typically share most duties equally, and likewise chemistry
and astronomy codes.

In practice, though, most codes use rank #0 to do things like
small scale I/O, since it’s typically more efficient to have
one process read the files and then broadcast the input data
to the other processes, or to gather the output data and write
it to disk.

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 49

Why “Rank?”
Why does MPI use the term rank to refer to process ID?
In general, a process has an identifier that is assigned by the

operating system (for example, Unix), and that is unrelated
to MPI:

% ps
PID TTY TIME CMD

52170812 ttyq57 0:01 tcsh
Also, each processor has an identifier, but an MPI run that

uses fewer than all processors will use an arbitrary subset.
The rank of an MPI process is neither of these.

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 50

Compiling and Running

Recall:
% mpicc -o greeting_mpi greeting.c
% mpirun -np 1 greeting_mpi

% mpirun -np 2 greeting_mpi
Greetings from process #1!

% mpirun -np 3 greeting_mpi
Greetings from process #1!
Greetings from process #2!

% mpirun -np 4 greeting_mpi
Greetings from process #1!
Greetings from process #2!
Greetings from process #3!

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 51

Deterministic Operation?
% mpirun -np 4 greeting_mpi
Greetings from process #1!
Greetings from process #2!
Greetings from process #3!

The order in which the greetings are output is deterministic.
Why?

for (source = 0; source < num_procs; source++) {
if (source != server_rank) {
mpi_error_code =
MPI_Recv(message, maximum_message_length + 1,
MPI_CHAR, source, tag, MPI_COMM_WORLD,
&status);

fprintf(stderr, "%s\n", message);
} /* if (source != server_rank) */

} /* for source */

This loop ignores the order in which messages are received .

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 52

Deterministic Parallelism

for (source = 0; source < num_procs; source++) {
if (source != server_rank) {
mpi_error_code =
MPI_Recv(message, maximum_message_length + 1,
MPI_CHAR, source, tag,
MPI_COMM_WORLD, &status);

fprintf(stderr, "%s\n", message);
} /* if (source != server_rank) */

} /* for source */

Because of the order in which the loop iterations occur, the
greeting messages will be output in non-deterministic order,
regardless of the order in which the greeting messages are
received.

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 53

Nondeterministic Parallelism

for (source = 0; source < num_procs; source++) {
if (source != server_rank) {
mpi_error_code =
MPI_Recv(message, maximum_message_length + 1,
MPI_CHAR, MPI_ANY_SOURCE, tag,
MPI_COMM_WORLD, &status);

fprintf(stderr, "%s\n", message);
} /* if (source != server_rank) */

} /* for source */

Because of this change, the greeting messages will be output in
non-deterministic order, specifically in the order in which
they’re received.

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 54

Message = Envelope + Contents
MPI_Send(message, strlen(message) + 1,

MPI_CHAR, destination, tag,
MPI_COMM_WORLD);

When MPI sends a message, it doesn’t just send the contents; it
also sends an “envelope” describing the contents:

Size (number of elements of data type)
Data type
Source: rank of sending process
Destination: rank of process to receive
Tag (message ID)
Communicator (for example, MPI_COMM_WORLD)

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 55

MPI Data Types
C Fortran

char MPI_CHAR CHARACTER MPI_CHARACTER

int MPI_INT INTEGER MPI_INTEGER

float MPI_FLOAT REAL MPI_REAL

double MPI_DOUBLE DOUBLE
PRECISION

MPI_DOUBLE_PRECISION

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 56

MPI supports several other data types, but most are variations of these, and probably
these are all you’ll use.

Message Tags
My daughter was born in mid-December.
So, if I give her a present in December, how does she know

which of these it’s for?
 Her birthday
 Christmas
 Hanukkah
She knows because of the tag on the present:
 A little cake with candles means birthday
 A little tree or a Santa means Christmas
 A little menorah means Hanukkah

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 57

Message Tags

for (source = 0; source < num_procs; source++) {
if (source != server_rank) {
mpi_error_code =
MPI_Recv(message, maximum_message_length + 1,
MPI_CHAR, source, tag,
MPI_COMM_WORLD, &status);

fprintf(stderr, "%s\n", message);
} /* if (source != server_rank) */

} /* for source */

The greetings are output in deterministic order not because
messages are sent and received in order, but because each has
a tag (message identifier), and MPI_Recv asks for a
specific message (by tag) from a specific source (by rank).

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 58

Parallelism is Nondeterministic

for (source = 0; source < num_procs; source++) {
if (source != server_rank) {
mpi_error_code =
MPI_Recv(message, maximum_message_length + 1,
MPI_CHAR, MPI_ANY_SOURCE, tag,
MPI_COMM_WORLD, &status);

fprintf(stderr, "%s\n", message);
} /* if (source != server_rank) */

} /* for source */

But here the greetings are output in non-deterministic order.

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 59

Communicators
An MPI communicator is a collection of processes that can

send messages to each other.
MPI_COMM_WORLD is the default communicator; it contains

all of the processes. It’s probably the only one you’ll need.
Some libraries create special library-only communicators,

which can simplify keeping track of message tags.

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 60

Broadcasting
What happens if one process has data that everyone else needs

to know?
For example, what if the server process needs to send an input

value to the others?
mpi_error_code =
MPI_Bcast(&length, 1, MPI_INTEGER,

source, MPI_COMM_WORLD);
Note that MPI_Bcast doesn’t use a tag, and that the call is

the same for both the sender and all of the receivers. This is
COUNTERINTUITIVE!

All processes have to call MPI_Bcast at the same time;
everyone waits until everyone is done (synchronization).

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 61

Broadcast Example: Setup
#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>

int main (int argc, char** argv)
{ /* main */
const int server = 0;
const int source = server;
float* array = (float*)NULL;
int length;
int num_procs, my_rank, mpi_error_code;
mpi_error_code = MPI_Init(&argc, &argv);
mpi_error_code = MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
mpi_error_code = MPI_Comm_size(MPI_COMM_WORLD, &num_procs);
[input, allocate, initialize on server only]
[broadcast, output on all processes]
mpi_error_code = MPI_Finalize();

} /* main */

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 62

Broadcast Example: Input
#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>

int main (int argc, char** argv)
{ /* main */
const int server = 0;
const int source = server;
float* array = (float*)NULL;
int length;
int num_procs, my_rank, mpi_error_code;

[MPI startup]
if (my_rank == server) {
scanf("%d", &length);
array = (float*)malloc(sizeof(float) * length);
for (index = 0; index < length; index++) {

array[index] = 0.0;
} /* for index */

} /* if (my_rank == server) */
[broadcast , output on all processes]
[MPI shutdown]

} /* main */

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 63

Broadcast Example: Broadcast
#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>

int main (int argc, char** argv)
{ /* main */
const int server = 0;
const int source = server;
float* array = (float*)NULL;
int length;
int num_procs, my_rank, mpi_error_code;

[MPI startup]
[input, allocate, initialize on server only]
if (num_procs > 1) {
mpi_error_code =
MPI_Bcast(&length, 1, MPI_INTEGER, source, MPI_COMM_WORLD);

if (my_rank != server) {
array = (float*)malloc(sizeof(float) * length);

} /* if (my_rank != server) */
mpi_error_code =
MPI_Bcast(array, length, MPI_INTEGER, source,

MPI_COMM_WORLD);
printf("%d: broadcast length = %d\n", my_rank, length);

} /* if (num_procs > 1) */
mpi_error_code = MPI_Finalize();

} /* main */
Supercomputing in Plain English: Distributed Par

Tue March 3 2015 64

Broadcast Compile & Run
% mpicc -o broadcast broadcast.c
% mpirun -np 4 broadcast
0 : broadcast length = 16777216
1 : broadcast length = 16777216
2 : broadcast length = 16777216
3 : broadcast length = 16777216

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 65

Reductions
A reduction converts an array to a scalar (or, more generally,

converts many values to fewer values).
For example, sum, product, minimum value, maximum value,

Boolean AND, Boolean OR, etc.
Reductions are so common, and so important, that MPI has two

routines to handle them:
MPI_Reduce: sends result to a single specified process
MPI_Allreduce: sends result to all processes (and therefore

takes longer)

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 66

Reduction Example
#include <stdio.h>
#include <stdlib.h>
#include <mpi.h>

int main (int argc, char **argv)
{ /* main */

const int server = 0;
float value, value_sum;
int num_procs, my_rank, mpi_error_code;
mpi_error_code = MPI_Init(&argc, &argv);
mpi_error_code = MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
mpi_error_code = MPI_Comm_size(MPI_COMM_WORLD, &num_procs);
value_sum = 0.0;
value = my_rank * num_procs;
mpi_error_code =

MPI_Reduce (&value, &value_sum, 1, MPI_FLOAT, MPI_SUM,
server, MPI_COMM_WORLD);

printf("%d: reduce value_sum = %d\n", my_rank, value_sum);
mpi_error_code =

MPI_Allreduce(&value, &value_sum, 1, MPI_FLOAT, MPI_SUM,
MPI_COMM_WORLD);

printf("%d: allreduce value_sum = %d\n", my_rank, value_sum);
mpi_error_code = MPI_Finalize();

} /* main */

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 67

Compiling and Running
% mpicc -o reduce reduce.c
% mpirun -np 4 reduce
3: reduce value_sum = 0
1: reduce value_sum = 0
0: reduce value_sum = 24
2: reduce value_sum = 0
0: allreduce value_sum = 24
1: allreduce value_sum = 24
2: allreduce value_sum = 24
3: allreduce value_sum = 24

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 68

Why Two Reduction Routines?
MPI has two reduction routines because of the high cost of

each communication.
If only one process needs the result, then it doesn’t make sense

to pay the cost of sending the result to all processes.
But if all processes need the result, then it may be cheaper to

reduce to all processes than to reduce to a single process and
then broadcast to all.

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 69

Non-blocking Communication
MPI allows a process to start a send, then go on and do work

while the message is in transit.
This is called non-blocking or immediate communication.
Here, “immediate” refers to the fact that the call to the MPI

routine returns immediately rather than waiting for the
communication to complete.

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 70

Immediate Send
mpi_error_code =

MPI_Isend(array, size, MPI_FLOAT,
destination, tag, communicator, &request);

Likewise:
mpi_error_code =

MPI_Irecv(array, size, MPI_FLOAT,
source, tag, communicator, &request);

This call starts the send/receive, but the send/receive won’t be
complete until:

MPI_Wait(request, status);

What’s the advantage of this?

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 71

Communication Hiding
In between the call to MPI_Isend/Irecv and the call to
MPI_Wait, both processes can do work!

If that work takes at least as much time as the communication,
then the cost of the communication is effectively zero, since
the communication won’t affect how much work gets done.

This is called communication hiding.

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 72

Rule of Thumb for Hiding
When you want to hide communication:
 as soon as you calculate the data, send it;
 don’t receive it until you need it.
That way, the communication has the maximal amount of time

to happen in background (behind the scenes).

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 73

TENTATIVE Schedule
Tue Jan 20: Overview: What the Heck is Supercomputing?
Tue Jan 27: The Tyranny of the Storage Hierarchy
Tue Feb 3: Instruction Level Parallelism
Tue Feb 10: Stupid Compiler Tricks
Tue Feb 17: Shared Memory Multithreading
Tue March 3: Distributed Multiprocessing
Tue March 3: Applications and Types of Parallelism
Tue March 10: Multicore Madness
Tue March 17: NO SESSION (OU's Spring Break)
Tue March 24: NO SESSION (Henry has a huge grant proposal due)
Tue March 31: High Throughput Computing
Tue Apr 7: GPGPU: Number Crunching in Your Graphics Card
Tue Apr 14: Grab Bag: Scientific Libraries, I/O Libraries,
Visualization

Supercomputing in Plain English: Distrib Parallel
Tue March 3 2015 74

Supercomputing in Plain English: Distrib Parallel
Tue March 3 2015 75

Thanks for helping!
 OU IT

 OSCER operations staff (Brandon George, Dave Akin, Brett
Zimmerman, Josh Alexander, Patrick Calhoun)

 Horst Severini, OSCER Associate Director for Remote &
Heterogeneous Computing

 Debi Gentis, OSCER Coordinator
 Jim Summers
 The OU IT network team

 James Deaton, Skyler Donahue, Jeremy Wright and Steven
Haldeman, OneNet

 Kay Avila, U Iowa
 Stephen Harrell, Purdue U

Coming in 2015!
Linux Clusters Institute workshop May 18-22 2015 @ OU

http://www.linuxclustersinstitute.org/workshops/

Great Plains Network Annual Meeting, May 27-29, Kansas City
Advanced Cyberinfrastructure Research & Education Facilitators (ACI-REF) Virtual

Residency May 31 - June 6 2015
XSEDE2015, July 26-30, St. Louis MO

https://conferences.xsede.org/xsede15

IEEE Cluster 2015, Sep 23-27, Chicago IL
http://www.mcs.anl.gov/ieeecluster2015/

OKLAHOMA SUPERCOMPUTING SYMPOSIUM 2015, Sep 22-23 2015 @ OU
SC13, Nov 15-20 2015, Austin TX

http://sc15.supercomputing.org/

Supercomputing in Plain English: Distrib Parallel
Tue March 3 2015 76

http://www.linuxclustersinstitute.org/workshops/
https://conferences.xsede.org/xsede15
http://www.mcs.anl.gov/ieeecluster2015/
http://sc15.supercomputing.org/

77

OK Supercomputing Symposium 2015

2006 Keynote:
Dan Atkins

Head of NSF’s
Office of

Cyberinfrastructure

2004 Keynote:
Sangtae Kim
NSF Shared

Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer & Information
Science & Engineering

Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

2008 Keynote:
José Munoz

Deputy Office
Director/Senior

Scientific Advisor
NSF Office of

Cyberinfrastructure

2009 Keynote:
Douglass Post
Chief Scientist

US Dept of Defense
HPC Modernization

Program

FREE!
Wed Sep 23 2015

@ OU
Over 235 registra2ons already!
Over 152 inhe first day, over

200 in the first week, over 225
in the first month.

Reception/Poster Session
Tue Sep 22 2015 @ OU

Symposium
Wed Sep 23 2015 @ OU

2010 Keynote:
Horst Simon

Deputy Director
Lawrence Berkeley
National Laboratory

Supercomputing in Plain English: Distrib Parallel
Tue March 3 2015

2011 Keynote:
Barry Schneider

Program Manager
National Science

Foundation

2012 Keynote:
Thom Dunning

Director
National Center for

Supercomputing
Applications

2015 Keynote:
John Shalf

Dept Head CS
Lawrence

Berkeley Lab
CTO, NERSC

2014 Keynote:
Irene Qualters

Division Director
Advanced

Cyberinfarstructure
Division, NSF

Thanks for your
attention!

Questions?
www.oscer.ou.edu

http://www.oscer.ou.edu/

References

Supercomputing in Plain English: Distributed Par
Tue March 3 2015 79

[1] P.S. Pacheco, Parallel Programming with MPI, Morgan Kaufmann
Publishers, 1997.

[2] W. Gropp, E. Lusk and A. Skjellum, Using MPI: Portable Parallel
Programming with the Message-Passing Interface, 2nd ed. MIT
Press, 1999.

	Supercomputing�in Plain English�Distributed Multiprocessing
	This is an experiment!
	PLEASE MUTE YOURSELF
	PLEASE REGISTER
	Download the Slides Beforehand
	H.323 (Polycom etc) #1
	H.323 (Polycom etc) #2
	Wowza #1
	Wowza #2
	RTMP
	Toll Free Phone Bridge
	Please Mute Yourself
	Questions via E-mail Only
	Onsite: Talent Release Form
	TENTATIVE Schedule
	Thanks for helping!
	This is an experiment!
	Coming in 2015!
	Outline
	The Desert Islands �Analogy
	An Island Hut
	Instructions
	Is There Anybody Out There?
	Someone Might Be Out There
	Even More People Out There
	All Data Are Private
	Long Distance Calls: 2 Costs
	Distributed Parallelism
	Like Desert Islands
	Latency vs Bandwidth on topdawg
	Latency vs Bandwidth on topdawg
	MPI:�The Message-Passing Interface
	What Is MPI?
	MPI Calls
	MPI is an API
	WARNING!
	The 6 Most Important MPI Routines
	More Example MPI Routines
	MPI Program Structure (C)
	MPI is SPMD
	Example: Greetings
	greeting.c
	Greetings Startup/Shutdown
	Greetings Client’s Work
	Greetings Server’s Work
	How an MPI Run Works
	Compiling and Running
	Why is Rank #0 the Server?
	Does There Have to be a Server?
	Why “Rank?”
	Compiling and Running
	Deterministic Operation?
	Deterministic Parallelism
	Nondeterministic Parallelism
	Message = Envelope + Contents
	MPI Data Types
	Message Tags
	Message Tags
	Parallelism is Nondeterministic
	Communicators
	Broadcasting
	Broadcast Example: Setup
	Broadcast Example: Input
	Broadcast Example: Broadcast
	Broadcast Compile & Run
	Reductions
	Reduction Example
	Compiling and Running
	Why Two Reduction Routines?
	Non-blocking Communication
	Immediate Send
	Communication Hiding
	Rule of Thumb for Hiding
	TENTATIVE Schedule
	Thanks for helping!
	Coming in 2015!
	OK Supercomputing Symposium 2015
	Thanks for your attention!���Questions?�www.oscer.ou.edu
	References

