
Supercomputing

in Plain English

Distributed Multiprocessing

Henry Neeman, Director
OU Supercomputing Center for Education & Research

University of Oklahoma Information Technology
Tuesday March 22 2011

Supercomputing in Plain English: Distributed Par

Tue March 22 2011 2

This is an experiment!

It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!

NO PROMISES!

So, please bear with us. Hopefully everything will work out

well enough.

If you lose your connection, you can retry the same kind of

connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone

bridge to fall back on.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011 3

Access Grid

If you aren’t sure whether you have AG, you probably don’t.

Tue March 22 Axon

Tue March 29 NO WORKSHOP

Tue Apr 5 Axon

Tue Apr 12 Platinum

Tue Apr 19 Mosaic

Tue Apr 26 Monte Carlo

Tue May 3 Helium

Many thanks to

Patrick Calhoun

of OU for setting

these up for us.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011 4

H.323 (Polycom etc)

From an H.323 device (e.g., Polycom, Tandberg, Lifesize, etc):

 If you ARE already registered with the OneNet gatekeeper:

Dial
2500409

 If you AREN'T registered with the OneNet gatekeeper (probably the case):

1. Dial:
164.58.250.47

2. Bring up the virtual keypad.

On some H.323 devices, you can bring up the virtual keypad by typing:
#

3. When asked for the conference ID, enter:
0409

4. On some H.323 devices, you indicate the end of conference ID with:
#

Many thanks to Roger Holder and OneNet for providing this.

http://www.polycom.com/
http://www.tandberg.com/
http://www.lifesize.com/
http://www.onenet.net/
http://www.onenet.net/

H.323 from Internet Explorer

From a Windows PC running Internet Explorer:

1. You MUST have the ability to install software on the PC (or have someone install it for you).

2. Download and install the latest Java Runtime Environment (JRE) from here:
http://www.oracle.com/technetwork/java/javase/downloads/

(Click on the Java Download icon, because that install package includes both the JRE and other

components.)

3. Download and install this video decoder:
http://164.58.250.47/codian_video_decoder.msi

4. Start Internet Explorer.

5. Copy-and-paste this URL into your IE window:
http://164.58.250.47/

6. When that webpage loads, in the upper left, click on “Streaming.”

7. In the textbox labeled Sign-in Name, type your name.

8. In the textbox labeled Conference ID, type this:
0409

9. Click on “Stream this conference.”

10. When that webpage loads, you may see, at the very top, a bar offering you options.

If so, click on it and choose “Install this add-on.”

Supercomputing in Plain English: Distributed Par

Tue March 22 2011 5

http://www.oracle.com/technetwork/java/javase/downloads/
http://164.58.250.47/codian_video_decoder.msi
http://164.58.250.47/

H.323 from XMeeting (MacOS)

From a Mac running MacOS X:

1. Download XMeeting from
http://xmeeting.sourceforge.net/

2. Install XMeeting as follows:

a. Open the .dmg file.

b. Drag XMeeting into the Applications folder.

3. Open XMeeting from Applications.

4. Skip the setup wizard.

5. In the call box, type

164.58.250.47

6. Click the Call button.

7. From the Remote Control window, when prompted to join the conference,

enter :
0409#

Supercomputing in Plain English: Distributed Par

Tue March 22 2011 6

http://xmeeting.sourceforge.net/

Supercomputing in Plain English: Distributed Par

Tue March 22 2011 7

EVO

There’s a quick tutorial on the OSCER education webpage.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011 8

QuickTime Broadcaster

If you cannot connect via the Access Grid, H.323 or iLinc,
then you can connect via QuickTime:

rtsp://129.15.254.141/test_hpc09.sdp

We recommend using QuickTime Player for this, because
we’ve tested it successfully.

We recommend upgrading to the latest version at:

http://www.apple.com/quicktime/

When you run QuickTime Player, traverse the menus

File -> Open URL

Then paste in the rstp URL into the textbox, and click OK.

Many thanks to Kevin Blake of OU for setting up QuickTime
Broadcaster for us.

http://www.apple.com/quicktime/

WebEx

We have only a limited number of WebEx connections, so

please avoid WebEx unless you have NO OTHER WAY

TO CONNECT.

Instructions are available on the OSCER education webpage.

Thanks to Tim Miller of Wake Forest U.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011 9

Supercomputing in Plain English: Distributed Par

Tue March 22 2011 10

Phone Bridge

If all else fails, you can call into our toll free phone bridge:

US: 1-800-832-0736, *6232874#

International: 303-330-0440, *6232874#

Please mute yourself and use the phone to listen.

Don’t worry, we’ll call out slide numbers as we go.

Please use the phone bridge ONLY if you cannot connect any

other way: the phone bridge is charged per connection per

minute, so our preference is to minimize the number of

connections.

Many thanks to Amy Apon and U Arkansas for providing the

previous toll free phone bridge.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011 11

Please Mute Yourself

No matter how you connect, please mute yourself, so that we

cannot hear you.

At OU, we will turn off the sound on all conferencing

technologies.

That way, we won’t have problems with echo cancellation.

Of course, that means we cannot hear questions.

So for questions, you’ll need to send some kind of text.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011 12

Questions via Text: iLinc or E-mail

Ask questions via e-mail to sipe2011@yahoo.com.

All questions will be read out loud and then answered out loud.

mailto:sipe2011@yahoo.com

Supercomputing in Plain English: Distributed Par

Tue March 22 2011 13

Thanks for helping!

 OSCER operations staff: Brandon George, Dave Akin, Brett
Zimmerman, Josh Alexander

 Horst Severini, OSCER Associate Director for Remote &
Heterogeneous Computing

 OU Research Campus staff (Patrick Calhoun, Mark McAvoy)

 Kevin Blake, OU IT (videographer)

 John Chapman, Jeff Pummill and Amy Apon, U Arkansas

 James Deaton and Roger Holder, OneNet

 Tim Miller, Wake Forest U

 Jamie Hegarty Schwettmann, i11 Industries

Supercomputing in Plain English: Distributed Par

Tue March 22 2011 14

This is an experiment!

It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!

NO PROMISES!

So, please bear with us. Hopefully everything will work out

well enough.

If you lose your connection, you can retry the same kind of

connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone

bridge to fall back on.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011 15

Supercomputing Exercises

Want to do the “Supercomputing in Plain English” exercises?

 The first exercise is already posted at:

http://www.oscer.ou.edu/education.php

 If you don’t yet have a supercomputer account, you can get
a temporary account, just for the “Supercomputing in Plain
English” exercises, by sending e-mail to:

hneeman@ou.edu

Please note that this account is for doing the exercises only,
and will be shut down at the end of the series.

 This week’s N-Body exercise will give you experience
parallelizing using MPI.

http://www.oscer.ou.edu/education.php
mailto:hneeman@ou.edu

Mathematica Workshop Tue Apr 5

 OU will be hosting a FREE workshop on Mathematica:
 Tue Apr 5 3:00pm, right after SiPE

 Available live, in person at SRTC or via videoconferencing

 Also will be recorded for playback

 To register, send e-mail containing the information below

to justinsmith@wolfram.com, with:
 your name;

 your e-mail address;

 your institution/company/agency/organization;

 your department/division;

 your status (undergrad, grad student, staff, faculty, professional etc);

 whether you're a current Mathematica user;

 whether you plan to attend in person at OU, live remotely via

videoconferencing, or afterwards by watching the recorded

streaming video.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011 16

mailto:justinsmith@wolfram.com

Undergraduate Petascale Internships
• NSF support for undergraduate internships involving high-performance

computing in science and engineering.

• Provides a stipend ($5k over the year), a two-week intensive high-performance
computing workshop at the National Center for Supercomputing Applications,

and travel to the SC11 supercomputing conference in November.

• This support is intended to allow you to work with a faculty mentor on your
campus. Have your faculty mentor fill out an intern position description at the

link below. There are also some open positions listed on our site.

• Student applications and position descriptions from faculty are due by March
31, 2011. Selections and notifications will be made by April 15.

http://shodor.org/petascale/participation/internships/

http://shodor.org/petascale/participation/internships/

Summer Workshops 2011

 In Summer 2011, there will be several workshops on HPC

and Computational and Data Enabled Science and

Engineering (CDESE) across the US.

 These will be weeklong intensives, running from Sunday

evening through Saturday morning.

 We’re currently working on where and when those

workshops will be held.

 Once we’ve got that worked out, we’ll announce them and

open up the registration website.

 One of them will be held at OU.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011 18

Supercomputing in Plain English: Distributed Par

Tue March 22 2011 19

OK Supercomputing Symposium 2011

2006 Keynote:

Dan Atkins

Head of NSF’s

Office of

Cyberinfrastructure

2004 Keynote:
Sangtae Kim

NSF Shared
Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer & Information
Science & Engineering

Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

2008 Keynote:
José Munoz

Deputy Office
Director/ Senior

Scientific Advisor
NSF Office of

Cyberinfrastructure

2009 Keynote:
Douglass Post
Chief Scientist

US Dept of Defense
HPC Modernization

Program

FREE! Wed Oct 12 2011 @ OU
Over 235 registratons already!

Over 150 in the first day, over 200 in the first week, over
225 in the first month.

http://symposium2011.oscer.ou.edu/

Parallel Programming Workshop

FREE! Tue Oct 11 2011 @ OU
FREE! Symposium Wed Oct 12 2011 @ OU2010 Keynote:

Horst Simon
Deputy Director

Lawrence Berkeley
National Laboratory

?
2011 Keynote

to be

announced

http://symposium2011.oscer.ou.edu/

SC11 Education Program

 At the SC11 supercomputing conference, we’ll hold our

annual Education Program, Sat Nov 12 – Tue Nov 15.

 You can apply to attend, either fully funded by SC11 or

self-funded.

 Henry is the SC11 Education Chair.

 We’ll alert everyone once the registration website opens.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011 20

21

Outline

 The Desert Islands Analogy

 Distributed Parallelism

 MPI

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

The Desert Islands

Analogy

23

An Island Hut

 Imagine you’re on an island in a little hut.

 Inside the hut is a desk.

 On the desk is:

 a phone;

 a pencil;

 a calculator;

 a piece of paper with instructions;

 a piece of paper with numbers (data).

Instructions: What to Do
...

Add the number in slot 27 to the number in slot 239,

and put the result in slot 71.

if the number in slot 71 is equal to the number in slot 118 then

Call 555-0127 and leave a voicemail containing the number in slot 962.

else

Call your voicemail box and collect a voicemail from 555-0063,

and put that number in slot 715.
...

DATA

1. 27.3

2. -491.41

3. 24

4. -1e-05

5. 141.41

6. 0

7. 4167

8. 94.14

9. -518.481

...

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

24

Instructions

The instructions are split into two kinds:
 Arithmetic/Logical – for example:

 Add the number in slot 27 to the number in slot 239,
and put the result in slot 71.

 Compare the number in slot 71 to the number in slot
118, to see whether they are equal.

 Communication – for example:

 Call 555-0127 and leave a voicemail containing the
number in slot 962.

 Call your voicemail box and collect a voicemail from

555-0063, and put that number in slot 715.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

25

Is There Anybody Out There?

If you’re in a hut on an island, you aren’t specifically aware of

anyone else.

Especially, you don’t know whether anyone else is working on

the same problem as you are, and you don’t know who’s at

the other end of the phone line.

All you know is what to do with the voicemails you get, and

what phone numbers to send voicemails to.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

26

Someone Might Be Out There

Now suppose that Horst is on another island somewhere, in

the same kind of hut, with the same kind of equipment.

Suppose that he has the same list of instructions as you, but a

different set of numbers (both data and phone numbers).

Like you, he doesn’t know whether there’s anyone else

working on his problem.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

27

Even More People Out There

Now suppose that Bruce and Dee are also in huts on islands.

Suppose that each of the four has the exact same list of

instructions, but different lists of numbers.

And suppose that the phone numbers that people call are each

others’: that is, your instructions have you call Horst, Bruce

and Dee, Horst’s has him call Bruce, Dee and you, and so on.

Then you might all be working together on the same problem.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

28

All Data Are Private

Notice that you can’t see Horst’s or Bruce’s or Dee’s

numbers, nor can they see yours or each other’s.

Thus, everyone’s numbers are private: there’s no way for

anyone to share numbers, except by leaving them in

voicemails.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

29

Long Distance Calls: 2 Costs

When you make a long distance phone call, you typically have to

pay two costs:

 Connection charge: the fixed cost of connecting your phone

to someone else’s, even if you’re only connected for a second

 Per-minute charge: the cost per minute of talking, once

you’re connected

If the connection charge is large, then you want to make as few

calls as possible.

See:

http://www.youtube.com/watch?v=8k1UOEYIQRo

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

http://www.youtube.com/watch?v=8k1UOEYIQRo

Distributed

Parallelism

31

Like Desert Islands

Distributed parallelism is very much like the Desert Islands

analogy:

 processes are independent of each other.

 All data are private.

 Processes communicate by passing messages (like

voicemails).

 The cost of passing a message is split into:

 latency (connection time)

 bandwidth (time per byte)

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

32

Latency vs Bandwidth on topdawg

In 2006, a benchmark of the Infiniband interconnect on a large
Linux cluster at the University of Oklahoma revealed:

 Latency – the time for the first bit to show up at the
destination – is about 3 microseconds;

 Bandwidth – the speed of the subsequent bits – is about 5
Gigabits per second.

Thus, on this cluster’s Infiniband:

 the 1st bit of a message shows up in 3 microsec;

 the 2nd bit shows up in 0.2 nanosec.

So latency is 15,000 times worse than bandwidth!

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

33

Latency vs Bandwidth on topdawg

In 2006, a benchmark of the Infiniband interconnect on a large
Linux cluster at the University of Oklahoma revealed:

 Latency – the time for the first bit to show up at the
destination – is about 3 microseconds;

 Bandwidth – the speed of the subsequent bits – is about 5
Gigabits per second.

Latency is 15,000 times worse than bandwidth!

That’s like having a long distance service that charges

 $150 to make a call;

 1¢ per minute – after the first 10 days of the call.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

34

Parallelism

Less fish …

More fish!

Parallelism means doing

multiple things at the same

time: you can get more work

done in the same amount of

time.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

35

What Is Parallelism?

Parallelism is the use of multiple processing units – either

processors or parts of an individual processor – to solve a

problem, and in particular the use of multiple processing

units operating concurrently on different parts of a problem.

The different parts could be different tasks, or the same task on

different pieces of the problem’s data.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

36

Kinds of Parallelism

 Instruction Level Parallelism

 Shared Memory Multithreading

 Distributed Memory Multiprocessing

 GPU Parallelism

 Hybrid Parallelism (Shared + Distributed + GPU)

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

37

Why Parallelism Is Good

 The Trees: We like parallelism because, as the number of

processing units working on a problem grows, we can solve

the same problem in less time.

 The Forest: We like parallelism because, as the number of

processing units working on a problem grows, we can solve

bigger problems.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

38

Parallelism Jargon

 Threads are execution sequences that share a single memory

area (“address space”)

 Processes are execution sequences with their own

independent, private memory areas

… and thus:

 Multithreading: parallelism via multiple threads

 Multiprocessing: parallelism via multiple processes

Generally:

 Shared Memory Parallelism is concerned with threads, and

 Distributed Parallelism is concerned with processes.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

39

Jargon Alert!

In principle:

 “shared memory parallelism” “multithreading”

 “distributed parallelism” “multiprocessing”

In practice, sadly, these terms are often used interchangeably:

 Parallelism

 Concurrency (not as popular these days)

 Multithreading

 Multiprocessing

Typically, you have to figure out what is meant based on the
context.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

40

Load Balancing

Suppose you have a distributed parallel code, but one process

does 90% of the work, and all the other processes share 10%

of the work.

Is it a big win to run on 1000 processes?

Now, suppose that each process gets exactly 1/Np of the work,

where Np is the number of processes.

Now is it a big win to run on 1000 processes?

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

41

Load Balancing

Load balancing means ensuring that everyone completes

their workload at roughly the same time.

For example, if the jigsaw puzzle is half grass and half sky,

then you can do the grass and Scott can do the sky, and then

y’all only have to communicate at the horizon – and the

amount of work that each of you does on your own is

roughly equal. So you’ll get pretty good speedup.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

42

Load Balancing

Load balancing can be easy, if the problem splits up into
chunks of roughly equal size, with one chunk per
processor. Or load balancing can be very hard.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

43

Load Balancing

Load balancing can be easy, if the problem splits up into
chunks of roughly equal size, with one chunk per
processor. Or load balancing can be very hard.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

44

Load Balancing

Load balancing can be easy, if the problem splits up into
chunks of roughly equal size, with one chunk per
processor. Or load balancing can be very hard.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

45

Load Balancing Is Good

When every process gets the same amount of work, the job is
load balanced.

We like load balancing, because it means that our speedup can
potentially be linear: if we run on Np processes, it takes 1/Np

as much time as on one.

For some codes, figuring out how to balance the load is trivial
(for example, breaking a big unchanging array into sub-
arrays).

For others, load balancing is very tricky (for example, a
dynamically evolving collection of arbitrarily many blocks
of arbitrary size).

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

46

Parallel Strategies
 Client-Server: One worker (the server) decides what tasks

the other workers (clients) will do; for example, Hello
World, Monte Carlo.

 Data Parallelism: Each worker does exactly the same tasks
on its unique subset of the data; for example, distributed
meshes for transport problems (weather etc).

 Task Parallelism: Each worker does different tasks on
exactly the same set of data (each process holds exactly the
same data as the others); for example, N-body problems
(molecular dynamics, astrophysics).

 Pipeline: Each worker does its tasks, then passes its set of
data along to the next worker and receives the next set of
data from the previous worker.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

MPI:
The Message-Passing

Interface

Most of this discussion is from [1] and [2].

48

What Is MPI?

The Message-Passing Interface (MPI) is a standard for

expressing distributed parallelism via message passing.

MPI consists of a header file, a library of routines and a

runtime environment.

When you compile a program that has MPI calls in it, your

compiler links to a local implementation of MPI, and then

you get parallelism; if the MPI library isn’t available, then the

compile will fail.

MPI can be used in Fortran, C and C++.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

49

MPI Calls

MPI calls in Fortran look like this:

CALL MPI_Funcname(…, mpi_error_code)

In C, MPI calls look like:

mpi_error_code = MPI_Funcname(…);

In C++, MPI calls look like:

mpi_error_code = MPI::Funcname(…);

Notice that mpi_error_code is returned by the MPI routine

MPI_Funcname, with a value of MPI_SUCCESS

indicating that MPI_Funcname has worked correctly.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

50

MPI is an API

MPI is actually just an Application Programming Interface

(API).

An API specifies what a call to each routine should look like,

and how each routine should behave.

An API does not specify how each routine should be

implemented, and sometimes is intentionally vague about

certain aspects of a routine’s behavior.

Each platform has its own MPI implementation.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

51

WARNING!

In principle, the MPI standard provides bindings for:

 C

 C++

 Fortran 77

 Fortran 90

In practice, you should do this:

 To use MPI in a C++ code, use the C binding.

 To use MPI in Fortran 90, use the Fortran 77 binding.

This is because the C++ and Fortran 90 bindings are less

popular, and therefore less well tested.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

52

Example MPI Routines

 MPI_Init starts up the MPI runtime environment at the

beginning of a run.

 MPI_Finalize shuts down the MPI runtime environment

at the end of a run.

 MPI_Comm_size gets the number of processes in a run, Np

(typically called just after MPI_Init).

 MPI_Comm_rank gets the process ID that the current

process uses, which is between 0 and Np-1 inclusive (typically

called just after MPI_Init).

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

53

More Example MPI Routines

 MPI_Send sends a message from the current process to

some other process (the destination).

 MPI_Recv receives a message on the current process from

some other process (the source).

 MPI_Bcast broadcasts a message from one process to all

of the others.

 MPI_Reduce performs a reduction (for example, sum,

maximum) of a variable on all processes, sending the result to

a single process.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

54

MPI Program Structure (F90)
PROGRAM my_mpi_program

IMPLICIT NONE

INCLUDE "mpif.h"

[other includes]

INTEGER :: my_rank, num_procs, mpi_error_code

[other declarations]

CALL MPI_Init(mpi_error_code) !! Start up MPI

CALL MPI_Comm_Rank(my_rank, mpi_error_code)

CALL MPI_Comm_size(num_procs, mpi_error_code)

[actual work goes here]

CALL MPI_Finalize(mpi_error_code) !! Shut down MPI

END PROGRAM my_mpi_program

Note that MPI uses the term “rank” to indicate process identifier.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

55

MPI Program Structure (C)

#include <stdio.h>

#include "mpi.h"

[other includes]

int main (int argc, char* argv[])
{ /* main */

int my_rank, num_procs, mpi_error_code;

[other declarations]
mpi_error_code =

MPI_Init(&argc, &argv); /* Start up MPI */

mpi_error_code =

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

mpi_error_code =

MPI_Comm_size(MPI_COMM_WORLD, &num_procs);

[actual work goes here]
mpi_error_code = MPI_Finalize(); /* Shut down MPI */

} /* main */

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

56

MPI is SPMD

MPI uses kind of parallelism known as
Single Program, Multiple Data (SPMD).

This means that you have one MPI program – a single
executable – that is executed by all of the processes in an
MPI run.

So, to differentiate the roles of various processes in the MPI
run, you have to have if statements:

if (my_rank == server_rank) {

…

}

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

57

Example: Greetings

1. Start the MPI system.

2. Get the rank and number of processes.

3. If you’re not the server process:

1. Create a greeting string.

2. Send it to the server process.

4. If you are the server process:

1. For each of the client processes:

1. Receive its greeting string.

2. Print its greeting string.

5. Shut down the MPI system.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

58

greeting.c

#include <stdio.h>

#include <string.h>

#include "mpi.h"

int main (int argc, char* argv[])
{ /* main */

const int maximum_message_length = 100;

const int server_rank = 0;

char message[maximum_message_length+1];

MPI_Status status; /* Info about receive status */

int my_rank; /* This process ID */

int num_procs; /* Number of processes in run */

int source; /* Process ID to receive from */

int destination; /* Process ID to send to */

int tag = 0; /* Message ID */

int mpi_error_code; /* Error code for MPI calls */

[work goes here]

} /* main */

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

59

Hello World Startup/Shut Down

[header file includes]

int main (int argc, char* argv[])

{ /* main */

[declarations]

mpi_error_code = MPI_Init(&argc, &argv);

mpi_error_code = MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

mpi_error_code = MPI_Comm_size(MPI_COMM_WORLD, &num_procs);

if (my_rank != server_rank) {

[work of each non-server (worker) process]

} /* if (my_rank != server_rank) */

else {

[work of server process]

} /* if (my_rank != server_rank)…else */

mpi_error_code = MPI_Finalize();

} /* main */

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

60

Hello World Client’s Work

[header file includes]
int main (int argc, char* argv[])

{ /* main */

[declarations]

[MPI startup (MPI_Init etc)]
if (my_rank != server_rank) {

sprintf(message, "Greetings from process #%d!",

my_rank);

destination = server_rank;

mpi_error_code =

MPI_Send(message, strlen(message) + 1, MPI_CHAR,

destination, tag, MPI_COMM_WORLD);

} /* if (my_rank != server_rank) */

else {

[work of server process]

} /* if (my_rank != server_rank)…else */

mpi_error_code = MPI_Finalize();

} /* main */

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

61

Hello World Server’s Work

[header file includes]
int main (int argc, char* argv[])

{ /* main */

[declarations, MPI startup]
if (my_rank != server_rank) {

[work of each client process]
} /* if (my_rank != server_rank) */

else {

for (source = 0; source < num_procs; source++) {

if (source != server_rank) {

mpi_error_code =

MPI_Recv(message, maximum_message_length + 1,

MPI_CHAR, source, tag, MPI_COMM_WORLD,

&status);

fprintf(stderr, "%s\n", message);

} /* if (source != server_rank) */

} /* for source */

} /* if (my_rank != server_rank)…else */

mpi_error_code = MPI_Finalize();

} /* main */

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

62

How an MPI Run Works

 Every process gets a copy of the executable:

Single Program, Multiple Data (SPMD).

 They all start executing it.

 Each looks at its own rank to determine which part of the

problem to work on.

 Each process works completely independently of the other

processes, except when communicating.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

63

Compiling and Running
% mpicc -o hello_world_mpi greeting.c

% mpirun -np 1 hello_world_mpi

% mpirun -np 2 hello_world_mpi

Greetings from process #1!

% mpirun -np 3 hello_world_mpi

Greetings from process #1!

Greetings from process #2!

% mpirun -np 4 hello_world_mpi

Greetings from process #1!

Greetings from process #2!

Greetings from process #3!

Note: The compile command and the run command vary from

platform to platform.

This ISN’T how you run MPI on Sooner.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

64

Why is Rank #0 the Server?

const int server_rank = 0;

By convention, the server process has rank (process ID) #0.

Why?

A run must use at least one process but can use multiple

processes.

Process ranks are 0 through Np-1, Np >1 .

Therefore, every MPI run has a process with rank #0.

Note: Every MPI run also has a process with rank Np-1, so you

could use Np-1 as the server instead of 0 … but no one does.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

65

Does There Have to be a Server?

There DOESN’T have to be a server.

It’s perfectly possible to write an MPI code that has no master

as such.

For example, weather and other transport codes typically share

most duties equally, and likewise chemistry and astronomy

codes.

In practice, though, most codes use rank #0 to do things like

small scale I/O, since it’s typically more efficient to have

one process read the files and then broadcast the input data

to the other processes.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

66

Why “Rank?”

Why does MPI use the term rank to refer to process ID?

In general, a process has an identifier that is assigned by the
operating system (for example, Unix), and that is unrelated
to MPI:

% ps
PID TTY TIME CMD

52170812 ttyq57 0:01 tcsh

Also, each processor has an identifier, but an MPI run that
uses fewer than all processors will use an arbitrary subset.

The rank of an MPI process is neither of these.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

67

Compiling and Running

Recall:
% mpicc -o hello_world_mpi greeting.c

% mpirun -np 1 hello_world_mpi

% mpirun -np 2 hello_world_mpi

Greetings from process #1!

% mpirun -np 3 hello_world_mpi

Greetings from process #1!

Greetings from process #2!

% mpirun -np 4 hello_world_mpi

Greetings from process #1!

Greetings from process #2!

Greetings from process #3!

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

68

Deterministic Operation?

% mpirun -np 4 hello_world_mpi

Greetings from process #1!

Greetings from process #2!

Greetings from process #3!

The order in which the greetings are printed is deterministic.
Why?

for (source = 0; source < num_procs; source++) {

if (source != server_rank) {

mpi_error_code =

MPI_Recv(message, maximum_message_length + 1,

MPI_CHAR, source, tag, MPI_COMM_WORLD,

&status);

fprintf(stderr, "%s\n", message);

} /* if (source != server_rank) */

} /* for source */

This loop ignores the receive order.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

69

Deterministic Parallelism
for (source = 0; source < num_procs; source++) {

if (source != server_rank) {

mpi_error_code =

MPI_Recv(message, maximum_message_length + 1,

MPI_CHAR, source, tag,

MPI_COMM_WORLD, &status);

fprintf(stderr, "%s\n", message);

} /* if (source != server_rank) */

} /* for source */

Because of the order in which the loop iterations occur, the

greetings will be printed in non-deterministic order.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

70

Nondeterministic Parallelism
for (source = 0; source < num_procs; source++) {

if (source != server_rank) {

mpi_error_code =

MPI_Recv(message, maximum_message_length + 1,

MPI_CHAR, MPI_ANY_SOURCE, tag,

MPI_COMM_WORLD, &status);

fprintf(stderr, "%s\n", message);

} /* if (source != server_rank) */

} /* for source */

Because of this change, the greetings will be printed in

non-deterministic order, specifically in the order in which

they’re received.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

71

Message = Envelope+Contents

MPI_Send(message, strlen(message) + 1,

MPI_CHAR, destination, tag,

MPI_COMM_WORLD);

When MPI sends a message, it doesn’t just send the contents; it
also sends an “envelope” describing the contents:

Size (number of elements of data type)

Data type

Source: rank of sending process

Destination: rank of process to receive

Tag (message ID)

Communicator (for example, MPI_COMM_WORLD)

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

72

MPI Data Types

C Fortran

char MPI_CHAR CHARACTER MPI_CHARACTER

int MPI_INT INTEGER MPI_INTEGER

float MPI_FLOAT REAL MPI_REAL

double MPI_DOUBLE DOUBLE

PRECISION

MPI_DOUBLE_PRECISION

MPI supports several other data types, but most are variations

of these, and probably these are all you’ll use.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

73

Message Tags

My daughter was born in mid-December.

So, if I give her a present in December, how does she know

which of these it’s for?

 Her birthday

 Christmas

 Hanukkah

She knows because of the tag on the present:

 A little cake and candles means birthday

 A little tree or a Santa means Christmas

 A little menorah means Hanukkah

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

74

Message Tags
for (source = 0; source < num_procs; source++) {

if (source != server_rank) {

mpi_error_code =

MPI_Recv(message, maximum_message_length + 1,

MPI_CHAR, source, tag,

MPI_COMM_WORLD, &status);

fprintf(stderr, "%s\n", message);

} /* if (source != server_rank) */

} /* for source */

The greetings are printed in deterministic order not because

messages are sent and received in order, but because each has

a tag (message identifier), and MPI_Recv asks for a

specific message (by tag) from a specific source (by rank).

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

75

Parallelism is Nondeterministic
for (source = 0; source < num_procs; source++) {

if (source != server_rank) {

mpi_error_code =

MPI_Recv(message, maximum_message_length + 1,

MPI_CHAR, MPI_ANY_SOURCE, tag,

MPI_COMM_WORLD, &status);

fprintf(stderr, "%s\n", message);

} /* if (source != server_rank) */

} /* for source */

But here the greetings are printed in non-deterministic order.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

76

Communicators

An MPI communicator is a collection of processes that can

send messages to each other.

MPI_COMM_WORLD is the default communicator; it contains

all of the processes. It’s probably the only one you’ll need.

Some libraries create special library-only communicators,

which can simplify keeping track of message tags.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

77

Broadcasting

What happens if one process has data that everyone else needs
to know?

For example, what if the server process needs to send an input
value to the others?

MPI_Bcast(length, 1, MPI_INTEGER,
source, MPI_COMM_WORLD);

Note that MPI_Bcast doesn’t use a tag, and that the call is
the same for both the sender and all of the receivers.

All processes have to call MPI_Bcast at the same time;
everyone waits until everyone is done.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

78

Broadcast Example: Setup
PROGRAM broadcast

IMPLICIT NONE

INCLUDE "mpif.h"

INTEGER,PARAMETER :: server = 0

INTEGER,PARAMETER :: source = server

INTEGER,DIMENSION(:),ALLOCATABLE :: array

INTEGER :: length, memory_status

INTEGER :: num_procs, my_rank, mpi_error_code

CALL MPI_Init(mpi_error_code)

CALL MPI_Comm_rank(MPI_COMM_WORLD, my_rank, &

& mpi_error_code)

CALL MPI_Comm_size(MPI_COMM_WORLD, num_procs, &

& mpi_error_code)

[input]

[broadcast]

CALL MPI_Finalize(mpi_error_code)

END PROGRAM broadcast

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

79

Broadcast Example: Input
PROGRAM broadcast

IMPLICIT NONE

INCLUDE "mpif.h"

INTEGER,PARAMETER :: server = 0

INTEGER,PARAMETER :: source = server

INTEGER,DIMENSION(:),ALLOCATABLE :: array

INTEGER :: length, memory_status

INTEGER :: num_procs, my_rank, mpi_error_code

[MPI startup]
IF (my_rank == server) THEN

OPEN (UNIT=99,FILE="broadcast_in.txt")

READ (99,*) length

CLOSE (UNIT=99)

ALLOCATE(array(length), STAT=memory_status)

array(1:length) = 0

END IF !! (my_rank == server)...ELSE

[broadcast]

CALL MPI_Finalize(mpi_error_code)

END PROGRAM broadcast

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

80

Broadcast Example: Broadcast
PROGRAM broadcast

IMPLICIT NONE

INCLUDE "mpif.h"

INTEGER,PARAMETER :: server = 0

INTEGER,PARAMETER :: source = server

[other declarations]

[MPI startup and input]
IF (num_procs > 1) THEN

CALL MPI_Bcast(length, 1, MPI_INTEGER, source, &

& MPI_COMM_WORLD, mpi_error_code)

IF (my_rank /= server) THEN

ALLOCATE(array(length), STAT=memory_status)

END IF !! (my_rank /= server)

CALL MPI_Bcast(array, length, MPI_INTEGER, source, &

MPI_COMM_WORLD, mpi_error_code)

WRITE (0,*) my_rank, ": broadcast length = ", length

END IF !! (num_procs > 1)

CALL MPI_Finalize(mpi_error_code)

END PROGRAM broadcast

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

81

Broadcast Compile & Run

% mpif90 -o broadcast broadcast.f90

% mpirun -np 4 broadcast

0 : broadcast length = 16777216

1 : broadcast length = 16777216

2 : broadcast length = 16777216

3 : broadcast length = 16777216

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

82

Reductions

A reduction converts an array to a scalar: for example,

sum, product, minimum value, maximum value, Boolean

AND, Boolean OR, etc.

Reductions are so common, and so important, that MPI has two

routines to handle them:

MPI_Reduce: sends result to a single specified process

MPI_Allreduce: sends result to all processes (and therefore

takes longer)

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

83

Reduction Example
PROGRAM reduce

IMPLICIT NONE

INCLUDE "mpif.h"

INTEGER,PARAMETER :: server = 0

INTEGER :: value, value_sum

INTEGER :: num_procs, my_rank, mpi_error_code

CALL MPI_Init(mpi_error_code)

CALL MPI_Comm_rank(MPI_COMM_WORLD, my_rank,
mpi_error_code)

CALL MPI_Comm_size(MPI_COMM_WORLD, num_procs,
mpi_error_code)

value_sum = 0

value = my_rank * num_procs

CALL MPI_Reduce(value, value_sum, 1, MPI_INT, MPI_SUM, &

& server, MPI_COMM_WORLD, mpi_error_code)

WRITE (0,*) my_rank, ": reduce value_sum = ", value_sum

CALL MPI_Allreduce(value, value_sum, 1, MPI_INT, MPI_SUM, &

& MPI_COMM_WORLD, mpi_error_code)

WRITE (0,*) my_rank, ": allreduce value_sum = ", value_sum

CALL MPI_Finalize(mpi_error_code)

END PROGRAM reduce

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

84

Compiling and Running

% mpif90 -o reduce reduce.f90

% mpirun -np 4 reduce

3 : reduce value_sum = 0

1 : reduce value_sum = 0

2 : reduce value_sum = 0

0 : reduce value_sum = 24

0 : allreduce value_sum = 24

1 : allreduce value_sum = 24

2 : allreduce value_sum = 24

3 : allreduce value_sum = 24

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

85

Why Two Reduction Routines?

MPI has two reduction routines because of the high cost of

each communication.

If only one process needs the result, then it doesn’t make sense

to pay the cost of sending the result to all processes.

But if all processes need the result, then it may be cheaper to

reduce to all processes than to reduce to a single process and

then broadcast to all.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

86

Non-blocking Communication

MPI allows a process to start a send, then go on and do work

while the message is in transit.

This is called non-blocking or immediate communication.

Here, “immediate” refers to the fact that the call to the MPI

routine returns immediately rather than waiting for the

communication to complete.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

87

Immediate Send

mpi_error_code =

MPI_Isend(array, size, MPI_FLOAT,

destination, tag, communicator, request);

Likewise:

mpi_error_code =

MPI_Irecv(array, size, MPI_FLOAT,

source, tag, communicator, request);

This call starts the send/receive, but the send/receive won’t be

complete until:

MPI_Wait(request, status);

What’s the advantage of this?

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

88

Communication Hiding

In between the call to MPI_Isend/Irecv and the call to

MPI_Wait, both processes can do work!

If that work takes at least as much time as the communication,

then the cost of the communication is effectively zero, since

the communication won’t affect how much work gets done.

This is called communication hiding.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

89

Rule of Thumb for Hiding

When you want to hide communication:

 as soon as you calculate the data, send it;

 don’t receive it until you need it.

That way, the communication has the maximal amount of time

to happen in background (behind the scenes).

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

Mathematica Workshop Tue Apr 5

 OU will be hosting a FREE workshop on Mathematica:
 Tue Apr 5 3:00pm, right after SiPE

 Available live, in person at SRTC or via videoconferencing

 Also will be recorded for playback

 To register, send e-mail containing the information below

to justinsmith@wolfram.com, with:
 your name;

 your e-mail address;

 your institution/company/agency/organization;

 your department/division;

 your status (undergrad, grad student, staff, faculty, professional etc);

 whether you're a current Mathematica user;

 whether you plan to attend in person at OU, live remotely via

videoconferencing, or afterwards by watching the recorded

streaming video.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011 90

mailto:justinsmith@wolfram.com

Undergraduate Petascale Internships
• NSF support for undergraduate internships involving high-performance

computing in science and engineering.

• Provides a stipend ($5k over the year), a two-week intensive high-performance
computing workshop at the National Center for Supercomputing Applications,

and travel to the SC11 supercomputing conference in November.

• This support is intended to allow you to work with a faculty mentor on your
campus. Have your faculty mentor fill out an intern position description at the

link below. There are also some open positions listed on our site.

• Student applications and position descriptions from faculty are due by March
31, 2011. Selections and notifications will be made by April 15.

http://shodor.org/petascale/participation/internships/

http://shodor.org/petascale/participation/internships/

Summer Workshops 2011

 In Summer 2011, there will be several workshops on HPC

and Computational and Data Enabled Science and

Engineering (CDESE) across the US.

 These will be weeklong intensives, running from Sunday

evening through Saturday morning.

 We’re currently working on where and when those

workshops will be held.

 Once we’ve got that worked out, we’ll announce them and

open up the registration website.

 One of them will be held at OU.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011 92

Supercomputing in Plain English: Distributed Par

Tue March 22 2011 93

OK Supercomputing Symposium 2011

2006 Keynote:

Dan Atkins

Head of NSF’s

Office of

Cyberinfrastructure

2004 Keynote:
Sangtae Kim

NSF Shared
Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer & Information
Science & Engineering

Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

2008 Keynote:
José Munoz

Deputy Office
Director/ Senior

Scientific Advisor
NSF Office of

Cyberinfrastructure

2009 Keynote:
Douglass Post
Chief Scientist

US Dept of Defense
HPC Modernization

Program

FREE! Wed Oct 12 2011 @ OU
Over 235 registratons already!

Over 150 in the first day, over 200 in the first week, over
225 in the first month.

http://symposium2011.oscer.ou.edu/

Parallel Programming Workshop

FREE! Tue Oct 11 2011 @ OU
FREE! Symposium Wed Oct 12 2011 @ OU2010 Keynote:

Horst Simon
Deputy Director

Lawrence Berkeley
National Laboratory

?
2011 Keynote

to be

announced

http://symposium2011.oscer.ou.edu/

SC11 Education Program

 At the SC11 supercomputing conference, we’ll hold our

annual Education Program, Sat Nov 12 – Tue Nov 15.

 You can apply to attend, either fully funded by SC11 or

self-funded.

 Henry is the SC11 Education Chair.

 We’ll alert everyone once the registration website opens.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011 94

Thanks for your
attention!

Questions?
www.oscer.ou.edu

http://www.oscer.ou.edu/

96

References

[1] P.S. Pacheco, Parallel Programming with MPI, Morgan Kaufmann

Publishers, 1997.

[2] W. Gropp, E. Lusk and A. Skjellum, Using MPI: Portable Parallel

Programming with the Message-Passing Interface, 2nd ed. MIT

Press, 1999.

Supercomputing in Plain English: Distributed Par

Tue March 22 2011

