
SupercomputingSupercomputing
in Plain Englishin Plain English

Distributed Multiprocessing

Henry Neeman
Director

OU Supercomputing Center for Education & Research
November 19 2004

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 2

Outline
The Desert Islands Analogy
Distributed Parallelism
MPI

The Desert Islands
Analogy

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 4

An Island Hut
Imagine you’re on a desert island

in a little hut.
Inside the hut is a desk and a chair.
On the desk is:

a phone;
a pencil;
a calculator;
a piece of paper with instructions;
a piece of paper with numbers.

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 5

Instructions
The instructions are split into two kinds:

Arithmetic/Logical: e.g.,
Add the 27th number to the 239th number
Compare the 96th number to the 118th number to
see whether they are equal

Communication: e.g.,
dial 555-0127 and leave a voicemail containing

the 962nd number
call your voicemail box and collect a voicemail
from 555-0063 and put that number in the 715th

slot

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 6

Is There Anybody Out There?
If you’re in a hut on an island, you aren’t specifically

aware of anyone else.
Especially, you don’t know whether anyone else is

working on the same problem as you are, and you
don’t know who’s at the other end of the phone line.

All you know is what to do with the voicemails you
get, and what phone numbers to send voicemails to.

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 7

Someone Might Be Out There
Now suppose that Julie is on another island

somewhere, in the same kind of hut, with the same
kind of equipment.

Suppose that she has the same list of instructions as
you, but a different set of numbers (both data and
phone numbers).

Like you, she doesn’t know whether there’s anyone
else working on her problem.

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 8

Even More People Out There
Now suppose that Lloyd and Jerry are also in huts on

islands.
Suppose that each of the four has the exact same list of

instructions, but different lists of numbers.
And suppose that the phone numbers that people call

are each others’. That is, your instructions have you
call Julie, Lloyd and Jerry, Julie’s has her call Lloyd,
Jerry and you, and so on.

Then you might all be working together on the same
problem, even though you’re not aware of it.

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 9

All Data Are Private
Notice that you can’t see Julie’s or Lloyd’s or Jerry’s

numbers, nor can they see yours or each other’s.
Thus, everyone’s numbers are private: there’s no

way for anyone to share numbers,
except by leaving them in voicemails.

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 10

Long Distance Calls: 2 Costs
When you make a long distance phone call, you

typically have to pay two costs:
Connection charge: the fixed cost of connecting
your phone to someone else’s, even if you’re only
connected for a second
Per-minute charge: the cost per minute of talking,
once you’re connected

If the connection charge is large, then you want to
make as few calls as possible.

Distributed
Parallelism

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 12

Like Desert Islands
Distributed parallelism is very much like the Desert

Islands analogy:
processes are independent of each other.
All data are private.
Processes communicate by passing messages (like
voicemails).
The cost of passing a message is split into:

latency (connection time)
bandwidth (time per byte)

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 13

Parallelism

Less fish …

More fish!

Parallelism means doing
multiple things at the
same time: you can get
more work done in the
same amount of time.

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 14

What Is Parallelism?
Parallelism is the use of multiple processing units –

either processors or parts of an individual processor
– to solve a problem, and in particular the use of
multiple processing units operating concurrently on
different parts of a problem.

The different parts could be different tasks, or the
same task on different pieces of the problem’s data.

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 15

Kinds of Parallelism
Shared Memory Multithreading (our topic last
time)
Distributed Memory Multiprocessing (today)
Hybrid Shared/Distributed

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 16

Why Parallelism Is Good
The Trees: We like parallelism because, as the
number of processing units working on a problem
grows, we can solve the same problem in less
time.
The Forest: We like parallelism because, as the
number of processing units working on a problem
grows, we can solve bigger problems.

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 17

Parallelism Jargon
Threads: execution sequences that share a single
memory area (“address space”)
Processes: execution sequences with their own
independent, private memory areas

… and thus:
Multithreading: parallelism via multiple threads
Multiprocessing: parallelism via multiple processes

As a general rule, Shared Memory Parallelism is
concerned with threads, and Distributed
Parallelism is concerned with processes.

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 18

Jargon Alert
In principle:

“shared memory parallelism” “multithreading”
“distributed parallelism” “multiprocessing”

In practice, these terms are often used interchangeably:
Parallelism
Concurrency (not as popular these days)
Multithreading
Multiprocessing

Typically, you have to figure out what is meant based
on the context.

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 19

Load Balancing
Suppose you have a distributed parallel code, but one

process does 90% of the work, and all the other
processes share 10% of the work.

Is it a big win to run on 1000 processes?

Now, suppose that each process gets exactly 1/Np of
the work, where Np is the number of processes.

Now is it a big win to run on 1000 processes?

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 20

Load Balancing

Load balancing means giving everyone roughly the
same amount of work to do.

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 21

Load Balancing

Load balancing can be easy, if the problem splits up into
chunks of roughly equal size, with one chunk per process.
Or load balancing can be very hard.

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 22

Load Balancing Is Good
When every process gets the same amount of work,

the job is load balanced.
We like load balancing, because it means that our

speedup can potentially be linear: if we run on Np
processes, it takes 1/Np as much time as on one.

For some codes, figuring out how to balance the load
is trivial (e.g., breaking a big unchanging array into
sub-arrays).

For others, load balancing is very tricky (e.g., a
dynamically evolving collection of arbitrarily many
blocks of arbitrary size).

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 23

Parallel Strategies
Client-Server: One worker (the server) decides
what tasks the other workers (clients) will do; e.g.,
Hello World, Monte Carlo.
Data Parallelism: Each worker does exactly the
same tasks on its unique subset of the data; e.g.,
distributed meshes (weather etc).
Task Parallelism: Each worker does different tasks
on exactly the same set of data (each process holds
exactly the same data as the others); e.g., N-body.
Pipeline: Each worker does its tasks, then passes its
set of data along to the next worker and receives the
next set of data from the previous worker.

MPI:
The Message-Passing

Interface

Most of this discussion is from [1] and [2].

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 25

What Is MPI?
The Message-Passing Interface (MPI) is a standard

for expressing distributed parallelism via message
passing.

MPI consists of a header file, a library of routines and
a runtime environment.

When you compile a program that has MPI calls in it,
your compiler links to a local implementation of
MPI, and then you get parallelism; if the MPI library
isn’t available, then the compile will fail.

MPI can be used in Fortran, C and C++.

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 26

MPI Calls
MPI calls in Fortran look like this:
CALL MPI_Funcname(…, errcode)

In C, MPI calls look like:
errcode = MPI_Funcname(…)

In C++, MPI calls look like:
errcode = MPI::Funcname(…)

Notice that errcode is returned by the MPI routine
MPI_Funcname, with a value of MPI_SUCCESS
indicating that MPI_Funcname has worked
correctly.

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 27

MPI is an API
MPI is actually just an Application Programming

Interface (API).
An API specifies what a call to each routine should

look like, and how each routine should behave.
An API does not specify how each routine should be

implemented, and sometimes is intentionally vague
about certain aspects of a routine’s behavior.

Each platform has its own MPI implementation.

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 28

Example MPI Routines
MPI_Init starts up the MPI runtime environment at

the beginning of a run.
MPI_Finalize shuts down the MPI runtime

environment at the end of a run.
MPI_Comm_size gets the number of processes in a

run, Np (typically called just after MPI_Init).
MPI_Comm_rank gets the process ID that the current

process uses, which is between 0 and Np-1 inclusive
(typically called just after MPI_Init).

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 29

More Example MPI Routines
MPI_Send sends a message from the current process

to some other process (the destination).
MPI_Recv receives a message on the current process

from some other process (the source).
MPI_Bcast broadcasts a message from one process

to all of the others.
MPI_Reduce performs a reduction (e.g., sum,

maximum) of a variable on all processes, sending the
result to a single process.

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 30

MPI Program Structure (F90)
PROGRAM my_mpi_program
IMPLICIT NONE
INCLUDE "mpif.h"
[other includes]
INTEGER :: my_rank, num_procs, mpi_error_code
[other declarations]
CALL MPI_Init(mpi_error_code) !! Start up MPI
CALL MPI_Comm_Rank(my_rank, mpi_error_code)
CALL MPI_Comm_size(num_procs, mpi_error_code)
[actual work goes here]
CALL MPI_Finalize(mpi_error_code) !! Shut down MPI

END PROGRAM my_mpi_program

Note that MPI uses the term “rank” to indicate
process identifier.

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 31

MPI Program Structure (in C)
#include <stdio.h>
#include "mpi.h"
[other includes]

int main (int argc, char* argv[])
{ /* main */
int my_rank, num_procs, mpi_error;
[other declarations]
mpi_error = MPI_Init(&argc, &argv); /* Start up MPI */
mpi_error = MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
mpi_error = MPI_Comm_size(MPI_COMM_WORLD, &num_procs);

[actual work goes here]
mpi_error = MPI_Finalize(); /* Shut down MPI */

} /* main */

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 32

Example: Hello World
1. Start the MPI system.
2. Get the rank and number of processes.
3. If you’re not the server process:

1. Create a “hello world” string.
2. Send it to the server process.

4. If you are the server process:
1. For each of the client processes:

1. Receive its “hello world” string.
2. Print its “hello world” string.

5. Shut down the MPI system.

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 33

hello_world_mpi.c
#include <stdio.h>
#include <string.h>
#include "mpi.h"

int main (int argc, char* argv[])
{ /* main */
const int maximum_message_length = 100;
const int server_rank = 0;
char message[maximum_message_length+1];
MPI_Status status; /* Info about receive status */
int my_rank; /* This process ID */
int num_procs; /* Number of processes in run */
int source; /* Process ID to receive from */
int destination; /* Process ID to send to */
int tag = 0; /* Message ID */
int mpi_error; /* Error code for MPI calls */
[work goes here]

} /* main */

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 34

Hello World Startup/Shut Down
[header file includes]
int main (int argc, char* argv[])
{ /* main */

[declarations]
mpi_error = MPI_Init(&argc, &argv);
mpi_error = MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
mpi_error = MPI_Comm_size(MPI_COMM_WORLD, &num_procs);
if (my_rank != server_rank) {

[work of each non-server (worker) process]
} /* if (my_rank != server_rank) */
else {

[work of server process]
} /* if (my_rank != server_rank)…else */
mpi_error = MPI_Finalize();

} /* main */

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 35

Hello World Client’s Work
[header file includes]
int main (int argc, char* argv[])
{ /* main */

[declarations]
[MPI startup (MPI_Init etc)]
if (my_rank != server_rank) {
sprintf(message, "Greetings from process #%d!“,

my_rank);
destination = server_rank;
mpi_error =
MPI_Send(message, strlen(message) + 1, MPI_CHAR,
destination, tag, MPI_COMM_WORLD);

} /* if (my_rank != server_rank) */
else {

[work of server process]
} /* if (my_rank != server_rank)…else */
mpi_error = MPI_Finalize();

} /* main */

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 36

Hello World Server’s Work
[header file includes]
int main (int argc, char* argv[])
{ /* main */

[declarations, MPI startup]
if (my_rank != server_rank) {

[work of each client process]
} /* if (my_rank != server_rank) */
else {

for (source = 0; source < num_procs; source++) {
if (source != server_rank) {
mpi_error =

MPI_Recv(message, maximum_message_length + 1,
MPI_CHAR, source, tag, MPI_COMM_WORLD,
&status);

fprintf(stderr, "%s\n", message);
} /* if (source != server_rank) */

} /* for source */
} /* if (my_rank != server_rank)…else */
mpi_error = MPI_Finalize();

} /* main */

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 37

How an MPI Run Works

Every process gets a copy of the executable: Single
Program, Multiple Data (SPMD).
They all start executing it.
Each looks at its own rank to determine which part
of the problem to work on.
Each process works completely independently of
the other processes, except when communicating.

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 38

Compiling and Running
% mpicc -o hello_world_mpi hello_world_mpi.c
% mpirun -np 1 hello_world_mpi
% mpirun -np 2 hello_world_mpi
Greetings from process #1!
% mpirun -np 3 hello_world_mpi
Greetings from process #1!
Greetings from process #2!
% mpirun -np 4 hello_world_mpi
Greetings from process #1!
Greetings from process #2!
Greetings from process #3!

Note: the compile command and the run command
vary from platform to platform.

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 39

Why is Rank #0 the server?
const int server_rank = 0;

By convention, the server process has rank
(process ID) #0. Why?

A run must use at least one process but can use
multiple processes.

Process ranks are 0 through Np-1, Np >1 .
Therefore, every MPI run has a process with rank #0.
Note: every MPI run also has a process with rank

Np-1, so you could use Np-1 as the server instead of
0 … but no one does.

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 40

Why “Rank?”
Why does MPI use the term rank to refer to process

ID?
In general, a process has an identifier that is assigned

by the operating system (e.g., Unix), and that is
unrelated to MPI:

% ps
PID TTY TIME CMD

52170812 ttyq57 0:01 tcsh

Also, each processor has an identifier, but an MPI run
that uses fewer than all processors will use an
arbitrary subset.

The rank of an MPI process is neither of these.

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 41

Compiling and Running
Recall:
% mpicc -o hello_world_mpi hello_world_mpi.c
% mpirun -np 1 hello_world_mpi
% mpirun -np 2 hello_world_mpi
Greetings from process #1!
% mpirun -np 3 hello_world_mpi
Greetings from process #1!
Greetings from process #2!
% mpirun -np 4 hello_world_mpi
Greetings from process #1!
Greetings from process #2!
Greetings from process #3!

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 42

Deterministic Operation?
% mpirun -np 4 hello_world_mpi
Greetings from process #1!
Greetings from process #2!
Greetings from process #3!

The order in which the greetings are printed is
deterministic. Why?

for (source = 0; source < num_procs; source++) {
if (source != server_rank) {
mpi_error =
MPI_Recv(message, maximum_message_length + 1,
MPI_CHAR, source, tag, MPI_COMM_WORLD,
&status);

fprintf(stderr, "%s\n", message);
} /* if (source != server_rank) */

} /* for source */

This loop ignores the receive order.

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 43

Message = Envelope+Contents
MPI_Send(message, strlen(message) + 1,

MPI_CHAR, destination, tag,
MPI_COMM_WORLD);

When MPI sends a message, it doesn’t just send the
contents; it also sends an “envelope” describing the
contents:
Size (number of elements of data type)
Data type
Source: rank of sending process
Destination: rank of process to receive
Tag (message ID)
Communicator (e.g., MPI_COMM_WORLD)

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 44

MPI Data Types
C Fortran 90

char MPI_CHAR CHARACTER MPI_CHARACTER

int MPI_INT INTEGER MPI_INTEGER

float MPI_FLOAT REAL MPI_REAL

double MPI_DOUBLE DOUBLE
PRECISION

MPI_DOUBLE_PRECISION

MPI supports several other data types, but most are
variations of these, and probably these are all you’ll
use.

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 45

Message Tags
for (source = 0; source < num_procs; source++) {

if (source != server_rank) {
mpi_error =

MPI_Recv(message, maximum_message_length + 1,
MPI_CHAR, source, tag, MPI_COMM_WORLD,
&status);

fprintf(stderr, "%s\n", message);
} /* if (source != server_rank) */

} /* for source */

The greetings are printed in deterministic order not
because messages are sent and received in order, but
because each has a tag (message identifier), and
MPI_Recv asks for a specific message (by tag) from
a specific source (by rank).

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 46

Communicators
An MPI communicator is a collection of processes

that can send messages to each other.
MPI_COMM_WORLD is the default communicator; it

contains all of the processes. It’s probably the only
one you’ll need.

Some libraries (e.g., PETSc) create special library-
only communicators, which can simplify keeping
track of message tags.

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 47

Broadcasting
What happens if one process has data that everyone

else needs to know?
For example, what if the server process needs to send

an input value to the others?
CALL MPI_Bcast(length, 1, MPI_INTEGER, &
& source, MPI_COMM_WORLD,

error_code)

Note that MPI_Bcast doesn’t use a tag, and that the
call is the same for both the sender and all of the
receivers.

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 48

Broadcast Example: Setup
PROGRAM broadcast
USE mpi
IMPLICIT NONE
INTEGER,PARAMETER :: server = 0
INTEGER,PARAMETER :: source = server
INTEGER,DIMENSION(:),ALLOCATABLE :: array
INTEGER :: length, memory_status
INTEGER :: num_procs, my_rank, mpi_error_code

CALL MPI_Init(mpi_error_code)
CALL MPI_Comm_rank(MPI_COMM_WORLD, my_rank, &
& mpi_error_code)
CALL MPI_Comm_size(MPI_COMM_WORLD, num_procs, &
& mpi_error_code)
[input]
[broadcast]
CALL MPI_Finalize(mpi_error_code)

END PROGRAM broadcast

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 49

Broadcast Example: Input
PROGRAM broadcast
USE mpi
IMPLICIT NONE
INTEGER,PARAMETER :: server = 0
INTEGER,PARAMETER :: source = server
INTEGER,DIMENSION(:),ALLOCATABLE :: array
INTEGER :: length, memory_status
INTEGER :: num_procs, my_rank, mpi_error_code

[MPI startup]
IF (my_rank == server) THEN

OPEN (UNIT=99,FILE="broadcast_in.txt")
READ (99,*) length
CLOSE (UNIT=99)
ALLOCATE(array(length), STAT=memory_status)
array(1:length) = 0

END IF !! (my_rank == server)...ELSE
[broadcast]
CALL MPI_Finalize(mpi_error_code)

END PROGRAM broadcast

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 50

Broadcast Example: Broadcast
PROGRAM broadcast
USE mpi
IMPLICIT NONE
INTEGER,PARAMETER :: server = 0
INTEGER,PARAMETER :: source = server
[other declarations]

[MPI startup and input]
IF (num_procs > 1) THEN

CALL MPI_Bcast(length, 1, MPI_INTEGER, source, &
& MPI_COMM_WORLD, mpi_error_code)

IF (my_rank /= server) THEN
ALLOCATE(array(length), STAT=memory_status)

END IF !! (my_rank /= server)
CALL MPI_Bcast(array, length, MPI_INTEGER, source, &

MPI_COMM_WORLD, mpi_error_code)
WRITE (0,*) my_rank, ": broadcast length = ", length

END IF !! (num_procs > 1)
CALL MPI_Finalize(mpi_error_code)

END PROGRAM broadcast

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 51

Broadcast Compile & Run
% mpif90 -o broadcast broadcast.f90
% mpirun -np 4 broadcast
0 : broadcast length = 16777216
1 : broadcast length = 16777216
2 : broadcast length = 16777216
3 : broadcast length = 16777216

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 52

Reductions
A reduction converts an array to a scalar:

e.g., sum, product, minimum value, maximum value,
Boolean AND, Boolean OR, etc.

Reductions are so common, and so important, that MPI
has two routines to handle them:
MPI_Reduce: sends result to a single specified
process
MPI_Allreduce: sends result to all processes
(and therefore takes longer)

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 53

Reduction Example
PROGRAM reduce
USE mpi
IMPLICIT NONE
INTEGER,PARAMETER :: server = 0
INTEGER :: value, value_sum
INTEGER :: num_procs, my_rank, mpi_error_code

CALL MPI_Init(mpi_error_code)
CALL MPI_Comm_rank(MPI_COMM_WORLD, my_rank, mpi_error_code)
CALL MPI_Comm_size(MPI_COMM_WORLD, num_procs, mpi_error_code)
value_sum = 0
value = my_rank * num_procs
CALL MPI_Reduce(value, value_sum, 1, MPI_INT, MPI_SUM, &
& server, MPI_COMM_WORLD, mpi_error_code)
WRITE (0,*) my_rank, ": reduce value_sum = ", value_sum
CALL MPI_Allreduce(value, value_sum, 1, MPI_INT, MPI_SUM, &
& MPI_COMM_WORLD, mpi_error_code)
WRITE (0,*) my_rank, ": allreduce value_sum = ", value_sum
CALL MPI_Finalize(mpi_error_code)

END PROGRAM reduce

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 54

Compiling and Running
% mpif90 -o reduce reduce.f90
% mpirun -np 4 reduce
3 : reduce value_sum = 0
1 : reduce value_sum = 0
2 : reduce value_sum = 0
0 : reduce value_sum = 24
0 : allreduce value_sum = 24
1 : allreduce value_sum = 24
2 : allreduce value_sum = 24
3 : allreduce value_sum = 24

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 55

Why Two Reduction Routines?
MPI has two reduction routines because of the high

cost of each communication.
If only one process needs the result, then it doesn’t

make sense to pay the cost of sending the result to
all processes.

But if all processes need the result, then it may be
cheaper to reduce to all processes than to reduce to
a single process and then broadcast to all.

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 56

Example: Monte Carlo
Monte Carlo methods are approximation methods that

randomly generate a large number of examples
(realizations) of a phenomenon, and then take the
average of the examples’ properties.

When the realizations’ average converges (i.e., doesn’t
change substantially if new realizations are
generated), then the Monte Carlo simulation stops.

Monte Carlo simulations are sometimes known as
embarrassingly parallel.

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 57

Serial Monte Carlo
Suppose you have an existing serial Monte Carlo

simulation:
PROGRAM monte_carlo
CALL read_input(…)
DO WHILE (average_properties_havent_converged(…))
CALL generate_random_realization(…)
CALL calculate_properties(…)
CALL calculate_average(…)

END DO
END PROGRAM monte_carlo

How would you parallelize this?

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 58

Parallel Monte Carlo
PROGRAM monte_carlo

[MPI startup]
IF (my_rank == server_rank) THEN

CALL read_input(…)
END IF !! (my_rank == server_rank)
CALL MPI_Bcast(…)
DO WHILE (average_properties_havent_converged(…))

CALL generate_random_realization(…)
CALL calculate_properties(…)
IF (my_rank == server_rank) THEN

[collect properties]
ELSE !! (my_rank == server_rank)

[send properties]
END IF !! (my_rank == server_rank)…ELSE
CALL calculate_average(…)

END DO !! WHILE (average_properties_havent_converged(…))
[MPI shutdown]

END PROGRAM monte_carlo

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 59

Asynchronous Communication
MPI allows a process to start a send, then go on and

do work while the message is in transit.
This is called asynchronous or non-blocking or

immediate communication. (Here, “immediate”
refers to the fact that the call to the MPI routine
returns immediately rather than waiting for the send
to complete.)

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 60

Immediate Send
CALL MPI_Isend(array, size, MPI_FLOAT, &
& destination, tag, communicator, request, &
& mpi_error_code)

Likewise:
CALL MPI_Irecv(array, size, MPI_FLOAT, &
& source, tag, communicator, request, &
& mpi_error_code)

This call starts the send/receive, but the send/receive
won’t be complete until:

CALL MPI_Wait(request, status)

What’s the advantage of this?

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 61

Communication Hiding
In between the call to MPI_Isend/Irecv and the

call to MPI_Wait, both processes can do work!
If that work takes at least as much time as the

communication, then the cost of the communication
is effectively zero, since the communication won’t
affect how much work gets done.

This is called communication hiding.

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 62

Communication Hiding in MC
In our Monte Carlo example, we could use

communication hiding by, for instance, sending the
properties of each realization asynchronously.

That way, the sending process can start generating a
new realization while the old realization’s
properties are in transit.

The server process can collect the other processes’
data when it’s done with its realization.

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 63

Rule of Thumb for Hiding
When you want to hide communication:

as soon as you calculate the data, send it;
don’t receive it until you need it.

That way, the communication has the maximal
amount of time to happen in background (behind
the scenes).

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 64

Next Time

Part VII:
Grab Bag:

I/O, Visualization, etc

Supercomputing in Plain English: Distributed Parallel
OU Supercomputing Center for Education & Research 65

References

[1] P.S. Pacheco, Parallel Programming with MPI, Morgan Kaufmann
Publishers, 1997.

[2] W. Gropp, E. Lusk and A. Skjellum, Using MPI: Portable Parallel
Programming with the Message-Passing Interface, 2nd ed. MIT
Press, 1999.

	Supercomputing�in Plain English� Distributed Multiprocessing
	Outline
	The Desert Islands �Analogy
	An Island Hut
	Instructions
	Is There Anybody Out There?
	Someone Might Be Out There
	Even More People Out There
	All Data Are Private
	Long Distance Calls: 2 Costs
	Distributed Parallelism
	Like Desert Islands
	Parallelism
	What Is Parallelism?
	Kinds of Parallelism
	Why Parallelism Is Good
	Parallelism Jargon
	Jargon Alert
	Load Balancing
	Load Balancing
	Load Balancing
	Load Balancing Is Good
	Parallel Strategies
	MPI:�The Message-Passing Interface
	What Is MPI?
	MPI Calls
	MPI is an API
	Example MPI Routines
	More Example MPI Routines
	MPI Program Structure (F90)
	MPI Program Structure (in C)
	Example: Hello World
	hello_world_mpi.c
	Hello World Startup/Shut Down
	Hello World Client’s Work
	Hello World Server’s Work
	How an MPI Run Works
	Compiling and Running
	Why is Rank #0 the server?
	Why “Rank?”
	Compiling and Running
	Deterministic Operation?
	Message = Envelope+Contents
	MPI Data Types
	Message Tags
	Communicators
	Broadcasting
	Broadcast Example: Setup
	Broadcast Example: Input
	Broadcast Example: Broadcast
	Broadcast Compile & Run
	Reductions
	Reduction Example
	Compiling and Running
	Why Two Reduction Routines?
	Example: Monte Carlo
	Serial Monte Carlo
	Parallel Monte Carlo
	Asynchronous Communication
	Immediate Send
	Communication Hiding
	Communication Hiding in MC
	Rule of Thumb for Hiding
	Next Time
	References

