
Supercomputing
in Plain English

Stupid Compiler Tricks
Henry Neeman, Director

Director, OU Supercomputing Center for Education & Research (OSCER)
Assistant Vice President, Information Technology – Research Strategy Advisor

Associate Professor, College of Engineering
Adjunct Associate Professor, School of Computer Science

University of Oklahoma
Tuesday February 10 2015

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 2

This is an experiment!
It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone
bridge to fall back on.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 3

PLEASE MUTE YOURSELF
No matter how you connect, PLEASE MUTE YOURSELF,

so that we cannot hear you.
At OU, we will turn off the sound on all conferencing

technologies.
That way, we won’t have problems with echo cancellation.
Of course, that means we cannot hear questions.
So for questions, you’ll need to send e-mail.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

PLEASE REGISTER
If you haven’t already registered, please do so.

You can find the registration link on the SiPE webpage:

http://www.oscer.ou.edu/education/

Our ability to continue providing Supercomputing in Plain English
depends on being able to show strong participation.

We use our headcounts, institution counts and state counts
(since 2001, over 2000 served, from every US state except RI and
VT, plus 17 other countries, on every continent except Australia
and Antarctica) to improve grant proposals.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 4

http://www.oscer.ou.edu/education/

Download the Slides Beforehand
Before the start of the session, please download the slides from
the Supercomputing in Plain English website:

http://www.oscer.ou.edu/education/

That way, if anything goes wrong, you can still follow along
with just audio.

PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 5

http://www.oscer.ou.edu/education/

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 6

H.323 (Polycom etc) #1
If you want to use H.323 videoconferencing – for example,

Polycom – then:
 If you AREN’T registered with the OneNet gatekeeper (which

is probably the case), then:
 Dial 164.58.250.51

 Bring up the virtual keypad.
On some H.323 devices, you can bring up the virtual keypad by typing:

(You may want to try without first, then with; some devices won't work
with the #, but give cryptic error messages about it.)

 When asked for the conference ID, or if there's no response, enter:
0409

 On most but not all H.323 devices, you indicate the end of the ID with:
#

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 7

H.323 (Polycom etc) #2
If you want to use H.323 videoconferencing – for example,

Polycom – then:
 If you ARE already registered with the OneNet gatekeeper

(most institutions aren’t), dial:
2500409

Many thanks to James Deaton, Skyler Donahue, Jeremy Wright
and Steven Haldeman of OneNet for providing this.

PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 8

Wowza #1
You can watch from a Windows, MacOS or Linux laptop using

Wowza from the following URL:

http://jwplayer.onenet.net/stream6/sipe.html

Wowza behaves a lot like YouTube, except live.

Many thanks to James Deaton, Skyler Donahue, Jeremy Wright
and Steven Haldeman of OneNet for providing this.

PLEASE MUTE YOURSELF.

http://jwplayer.onenet.net/stream6/sipe.html

Wowza #2
Wowza has been tested on multiple browsers on each of:
 Windows (7 and 8): IE, Firefox, Chrome, Opera, Safari
 MacOS X: Safari, Firefox
 Linux: Firefox, Opera
We’ve also successfully tested it on devices with:
Android
iOS
However, we make no representations on the likelihood of it
working on your device, because we don’t know which
versions of Android or iOS it mi
PLEASE MUTE YOURSELF.
ght or might not work with.Supercomputing in Plain English: Compilers

Tue Feb 10 2015 9

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 10

Toll Free Phone Bridge
IF ALL ELSE FAILS, you can use our toll free phone bridge:

800-832-0736
* 623 2874 #

Please mute yourself and use the phone to listen.
Don’t worry, we’ll call out slide numbers as we go.
Please use the phone bridge ONLY if you cannot connect any

other way: the phone bridge can handle only 100
simultaneous connections, and we have over 500 participants.

Many thanks to OU CIO Loretta Early for providing the toll free
phone bridge.

PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 11

Please Mute Yourself
No matter how you connect, PLEASE MUTE YOURSELF,

so that we cannot hear you.
(For Wowza, you don’t need to do that, because the

information only goes from us to you, not from you to us.)
At OU, we will turn off the sound on all conferencing

technologies.
That way, we won’t have problems with echo cancellation.
Of course, that means we cannot hear questions.
So for questions, you’ll need to send e-mail.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 12

Questions via E-mail Only
Ask questions by sending e-mail to:

sipe2015@gmail.com

All questions will be read out loud and then answered out loud.

PLEASE MUTE YOURSELF.

mailto:sipe2015@gmail.com

Onsite: Talent Release Form
If you’re attending onsite, you MUST do one of the following:
 complete and sign the Talent Release Form,
OR
 sit behind the cameras (where you can’t be seen) and don’t

talk at all.

If you aren’t onsite, then PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 13

TENTATIVE Schedule
Tue Jan 20: Overview: What the Heck is Supercomputing?
Tue Feb 3: The Tyranny of the Storage Hierarchy
Tue Feb 3: Instruction Level Parallelism
Tue Feb 10: Stupid Compiler Tricks
Tue Feb 17: Shared Memory Multithreading
Tue Feb 24: Distributed Multiprocessing
Tue March 3: Applications and Types of Parallelism
Tue March 10: Multicore Madness
Tue March 17: NO SESSION (OU's Spring Break)
Tue March 24: NO SESSION (Henry has a huge grant proposal due)
Tue March 31: High Throughput Computing
Tue Apr 7: GPGPU: Number Crunching in Your Graphics Card
Tue Apr 14: Grab Bag: Scientific Libraries, I/O Libraries,
Visualization

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 14

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 15

Thanks for helping!
 OU IT

 OSCER operations staff (Brandon George, Dave Akin, Brett
Zimmerman, Josh Alexander, Patrick Calhoun)

 Horst Severini, OSCER Associate Director for Remote &
Heterogeneous Computing

 Debi Gentis, OSCER Coordinator
 Jim Summers
 The OU IT network team

 James Deaton, Skyler Donahue, Jeremy Wright and Steven
Haldeman, OneNet

 Kay Avila, U Iowa
 Stephen Harrell, Purdue U

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 16

This is an experiment!
It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone
bridge to fall back on.

PLEASE MUTE YOURSELF.

Coming in 2015!
Linux Clusters Institute workshop May 18-22 2015 @ OU

http://www.linuxclustersinstitute.org/workshops/

Great Plains Network Annual Meeting, May 27-29, Kansas City
Advanced Cyberinfrastructure Research & Education Facilitators (ACI-REF) Virtual

Residency May 31 - June 6 2015
XSEDE2015, July 26-30, St. Louis MO

https://conferences.xsede.org/xsede15

IEEE Cluster 2015, Sep 23-27, Chicago IL
http://www.mcs.anl.gov/ieeecluster2015/

OKLAHOMA SUPERCOMPUTING SYMPOSIUM 2015, Sep 22-23 2015 @ OU
SC13, Nov 15-20 2015, Austin TX

http://sc15.supercomputing.org/

PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 17

http://www.linuxclustersinstitute.org/workshops/
https://conferences.xsede.org/xsede15
http://www.mcs.anl.gov/ieeecluster2015/
http://sc15.supercomputing.org/

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 18

Outline
 Dependency Analysis

 What is Dependency Analysis?
 Control Dependencies
 Data Dependencies

 Stupid Compiler Tricks
 Tricks the Compiler Plays
 Tricks You Play With the Compiler
 Profiling

Dependency Analysis

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 20

What Is Dependency Analysis?
Dependency analysis describes of how different parts of a

program affect one another, and how various parts require
other parts in order to operate correctly.

A control dependency governs how different sequences of
instructions affect each other.

A data dependency governs how different pieces of data affect
each other.

Much of this discussion is from references [1] and [6].

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 21

Control Dependencies
Every program has a well-defined flow of control that moves

from instruction to instruction to instruction.
This flow can be affected by several kinds of operations:

 Loops
 Branches (if, select case/switch)
 Function/subroutine calls
 I/O (typically implemented as calls)

Dependencies affect parallelization!

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 22

Branch Dependency (F90)
y = 7
IF (x <= 2) THEN

y = 3
END IF
z = y + 1
Note that (x <= 2) means “x less than or equal to two.”
The value of y depends on what the condition (x <= 2)

evaluates to:
 If the condition (x <= 2) evaluates to .TRUE.,

then y is set to 3, so z is assigned 4.
 Otherwise, y remains 7, so z is assigned 8.

https://en.wikipedia.org/wiki/Dependence_analysis

https://en.wikipedia.org/wiki/Dependence_analysis

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 23

Branch Dependency (C)
y = 7;
if (x <= 2) {

y = 3;
}
z = y + 1
Note that (x <= 2) means “x less than or equal to two.”
The value of y depends on what the condition (x != 0)

evaluates to:
 If the condition (x <= 2) evaluates to true,

then y is set to 3, so z is assigned 4.
 Otherwise, y remains 7, so z is assigned 8.

https://en.wikipedia.org/wiki/Dependence_analysis

https://en.wikipedia.org/wiki/Dependence_analysis

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 24

Loop Carried Dependency (F90)
DO i = 2, length
a(i) = a(i-1) + b(i)

END DO
Here, each iteration of the loop depends on the previous:

iteration i=3 depends on iteration i=2,
iteration i=4 depends on iteration i=3,
iteration i=5 depends on iteration i=4, etc.

This is sometimes called a loop carried dependency.
There is no way to execute iteration i until after iteration i-1 has

completed, so this loop can’t be parallelized.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 25

Loop Carried Dependency (C)
for (i = 1; i < length; i++) {
a[i] = a[i-1] + b[i];

}
Here, each iteration of the loop depends on the previous:

iteration i=3 depends on iteration i=2,
iteration i=4 depends on iteration i=3,
iteration i=5 depends on iteration i=4, etc.

This is sometimes called a loop carried dependency.
There is no way to execute iteration i until after iteration i-1 has

completed, so this loop can’t be parallelized.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 26

Why Do We Care?
Loops are the favorite control structures of High Performance

Computing, because compilers know how to optimize their
performance using instruction-level parallelism:
superscalar, pipelining and vectorization can give excellent
speedup.

Loop carried dependencies affect whether a loop can be
parallelized, and how much.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 27

Loop or Branch Dependency? (F)
Is this a loop carried dependency or a

branch dependency?

DO i = 1, length
IF (x(i) /= 0) THEN

y(i) = 1.0 / x(i)
END IF

END DO

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 28

Loop or Branch Dependency? (C)
Is this a loop carried dependency or a

branch dependency?

for (i = 0; i < length; i++) {
if (x[i] != 0) {

y[i] = 1.0 / x[i];
}

}

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 29

Call Dependency Example (F90)
x = 5
y = myfunction(7)
z = 22
The flow of the program is interrupted by the call to
myfunction, which takes the execution to somewhere
else in the program.

It’s similar to a branch dependency.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 30

Call Dependency Example (C)
x = 5;
y = myfunction(7);
z = 22;
The flow of the program is interrupted by the call to
myfunction, which takes the execution to somewhere
else in the program.

It’s similar to a branch dependency.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 31

I/O Dependency (F90)
x = a + b
PRINT *, x
y = c + d

Typically, I/O is implemented by hidden subroutine calls, so
we can think of this as equivalent to a call dependency.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 32

I/O Dependency (C)
x = a + b;
printf("%f", x);
y = c + d;

Typically, I/O is implemented by hidden subroutine calls, so
we can think of this as equivalent to a call dependency.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 33

Reductions Aren’t Dependencies
array_sum = 0
DO i = 1, length
array_sum = array_sum + array(i)

END DO
A reduction is an operation that converts an array to a scalar.
Other kinds of reductions: product, .AND., .OR., minimum,

maximum, index of minimum, index of maximum, number of
occurrences of a particular value, etc.

Reductions are so common that hardware and compilers are
optimized to handle them.

Also, they aren’t really dependencies, because the order in
which the individual operations are performed doesn’t matter.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 34

Reductions Aren’t Dependencies
array_sum = 0;
for (i = 0; i < length; i++) {

array_sum = array_sum + array[i];
}
A reduction is an operation that converts an array to a scalar.
Other kinds of reductions: product, &&, ||, minimum,

maximum, index of minimum, index of maximum, number of
occurrences of a particular value, etc.

Reductions are so common that hardware and compilers are
optimized to handle them.

Also, they aren’t really dependencies, because the order in
which the individual operations are performed doesn’t matter.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 35

Data Dependencies (F90)
“A data dependence occurs when an instruction is dependent

on data from a previous instruction and therefore cannot be
moved before the earlier instruction [or executed in
parallel].” [7]

a = x + y + cos(z)
b = a * c
The value of b depends on the value of a, so these two

statements must be executed in order.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 36

Data Dependencies (C)
“A data dependence occurs when an instruction is dependent

on data from a previous instruction and therefore cannot be
moved before the earlier instruction [or executed in
parallel].” [7]

a = x + y + cos(z);
b = a * c;
The value of b depends on the value of a, so these two

statements must be executed in order.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 37

Output Dependencies (F90)
x = a / b
y = x + 2
x = d – e

Notice that x is assigned two different values, but only one
of them is retained after these statements are done executing.
In this context, the final value of x is the “output.”

Again, we are forced to execute in order.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 38

Output Dependencies (C)
x = a / b;
y = x + 2;
x = d – e;

Notice that x is assigned two different values, but only one
of them is retained after these statements are done executing.
In this context, the final value of x is the “output.”

Again, we are forced to execute in order.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 39

Why Does Order Matter?
 Dependencies can affect whether we can execute a

particular part of the program in parallel.
 If we cannot execute that part of the program in parallel,

then it’ll be SLOW.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 40

Loop Dependency Example
if ((dst == src1) && (dst == src2)) {

for (index = 1; index < length; index++) {
dst[index] = dst[index-1] + dst[index];

}
}
else if (dst == src1) {

for (index = 1; index < length; index++) {
dst[index] = dst[index-1] + src2[index];

}
}
else if (dst == src2) {

for (index = 1; index < length; index++) {
dst[index] = src1[index-1] + dst[index];

}
}
else if (src1 == src2) {

for (index = 1; index < length; index++) {
dst[index] = src1[index-1] + src1[index];

}
}
else {

for (index = 1; index < length; index++) {
dst[index] = src1[index-1] + src2[index];

}
}

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 41

Loop Dep Example (cont’d)
if ((dst == src1) && (dst == src2)) {

for (index = 1; index < length; index++) {
dst[index] = dst[index-1] + dst[index];

}
}
else if (dst == src1) {

for (index = 1; index < length; index++) {
dst[index] = dst[index-1] + src2[index];

}
}
else if (dst == src2) {

for (index = 1; index < length; index++) {
dst[index] = src1[index-1] + dst[index];

}
}
else if (src1 == src2) {

for (index = 1; index < length; index++) {
dst[index] = src1[index-1] + src1[index];

}
}
else {

for (index = 1; index < length; index++) {
dst[index] = src1[index-1] + src2[index];

}
}

The various versions of the loop either:
 do have loop carried dependencies, or
 don’t have loop carried dependencies.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 42

Loop Dependency Performance
Loop Carried Dependency Performance

0

20

40

60

80

100

120

140

160

180

200

dst=
src

1+
src

2

dst=
src

1+
src

1

dst=
dst+

src
2

dst=
src

1+
dst

dst=
dst+

dst

M
FL

O
Ps Pentium3 500 MHz

POWER4
Pentium4 2GHz
EM64T 3.2 GHz

Better

Stupid Compiler
Tricks

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 44

Stupid Compiler Tricks
 Tricks Compilers Play

 Scalar Optimizations
 Loop Optimizations
 Inlining

 Tricks You Can Play with Compilers
 Profiling
 Hardware counters

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 45

Compiler Design
The people who design compilers have a lot of experience

working with the languages commonly used in High
Performance Computing:
 Fortran: 50+ years
 C: 40+ years
 C++: almost 30 years, plus C experience

So, they’ve come up with clever ways to make programs
run faster.

Tricks Compilers Play

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 47

Scalar Optimizations
 Copy Propagation
 Constant Folding
 Dead Code Removal
 Strength Reduction
 Common Subexpression Elimination
 Variable Renaming
 Loop Optimizations
Not every compiler does all of these, so it sometimes can be

worth doing these by hand.
Much of this discussion is from [2] and [6].

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 48

Copy Propagation (F90)
x = y
z = 1 + x

x = y
z = 1 + y

Has data dependency

No data dependency

Compile

Before

After

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 49

Copy Propagation (C)
x = y;
z = 1 + x;

x = y;
z = 1 + y;

Has data dependency

No data dependency

Compile

Before

After

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 50

Constant Folding (F90)

add = 100
aug = 200
sum = add + aug

Notice that sum is actually the sum of two constants, so the
compiler can precalculate it, eliminating the addition that
otherwise would be performed at runtime.

sum = 300

Before After

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 51

Constant Folding (C)

add = 100;
aug = 200;
sum = add + aug;

Notice that sum is actually the sum of two constants, so the
compiler can precalculate it, eliminating the addition that
otherwise would be performed at runtime.

sum = 300;

Before After

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 52

Dead Code Removal (F90)

var = 5
PRINT *, var
STOP
PRINT *, var * 2

Since the last statement never executes, the compiler can
eliminate it.

var = 5
PRINT *, var
STOP

Before After

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 53

Dead Code Removal (C)

var = 5;
printf("%d", var);
exit(-1);
printf("%d", var * 2);

Since the last statement never executes, the compiler can
eliminate it.

var = 5;
printf("%d", var);
exit(-1);

Before After

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 54

Strength Reduction (F90)

x = y ** 2.0
a = c / 2.0

x = y * y
a = c * 0.5

Before After

Raising one value to the power of another, or dividing, is more
expensive than multiplying. If the compiler can tell that the
power is a small integer, or that the denominator is a constant,
it’ll use multiplication instead.

Note: In Fortran, “y ** 2.0” means “y to the power 2.”

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 55

Strength Reduction (C)

x = pow(y, 2.0);
a = c / 2.0;

x = y * y;
a = c * 0.5;

Before After

Raising one value to the power of another, or dividing, is more
expensive than multiplying. If the compiler can tell that the
power is a small integer, or that the denominator is a constant,
it’ll use multiplication instead.

Note: In C, “pow(y, 2.0)” means “y to the power 2.”

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 56

Common Subexpression Elimination (F90)

d = c * (a / b)
e = (a / b) * 2.0

adivb = a / b
d = c * adivb
e = adivb * 2.0

Before After

The subexpression (a / b) occurs in both assignment
statements, so there’s no point in calculating it twice.

This is typically only worth doing if the common
subexpression is expensive to calculate.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 57

Common Subexpression Elimination (C)

d = c * (a / b);
e = (a / b) * 2.0;

adivb = a / b;
d = c * adivb;
e = adivb * 2.0;

Before After

The subexpression (a / b) occurs in both assignment
statements, so there’s no point in calculating it twice.

This is typically only worth doing if the common
subexpression is expensive to calculate.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 58

Variable Renaming (F90)

x = y * z
q = r + x * 2
x = a + b

x0 = y * z
q = r + x0 * 2
x = a + b

Before After

The original code has an output dependency, while the new
code doesn’t – but the final value of x is still correct.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 59

Variable Renaming (C)

x = y * z;
q = r + x * 2;
x = a + b;

x0 = y * z;
q = r + x0 * 2;
x = a + b;

Before After

The original code has an output dependency, while the new
code doesn’t – but the final value of x is still correct.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 60

Loop Optimizations
 Hoisting Loop Invariant Code
 Unswitching
 Iteration Peeling
 Index Set Splitting
 Loop Interchange
 Unrolling
 Loop Fusion
 Loop Fission
Not every compiler does all of these, so it sometimes can be

worth doing some of these by hand.
Much of this discussion is from [3] and [6].

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 61

Hoisting Loop Invariant Code (F90)
DO i = 1, n
a(i) = b(i) + c * d
e = g(n)

END DO

Before

temp = c * d
DO i = 1, n
a(i) = b(i) + temp

END DO
e = g(n)

After

Code that
doesn’t change
inside the loop is
known as
loop invariant.
It doesn’t need
to be calculated
over and over.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 62

Hoisting Loop Invariant Code (C)
for (i = 0; i < n; i++) {
a[i] = b[i] + c * d;
e = g[n];

}

Before

temp = c * d;
for (i = 0; i < n; i++) {
a[i] = b[i] + temp;

}
e = g[n];

After

Code that
doesn’t change
inside the loop is
known as
loop invariant.
It doesn’t need
to be calculated
over and over.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 63

Unswitching (F90)
DO i = 1, n

DO j = 2, n
IF (t(i) > 0) THEN
a(i,j) = a(i,j) * t(i) + b(j)

ELSE
a(i,j) = 0.0

END IF
END DO

END DO
DO i = 1, n
IF (t(i) > 0) THEN
DO j = 2, n
a(i,j) = a(i,j) * t(i) + b(j)

END DO
ELSE
DO j = 2, n
a(i,j) = 0.0

END DO
END IF

END DO

Before

After

The condition is
j-independent.

So, it can migrate
outside the j loop.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 64

Unswitching (C)
for (i = 0; i < n; i++) {

for (j = 1; j < n; j++) {
if (t[i] > 0)
a[i][j] = a[i][j] * t[i] + b[j];

}
else {
a[i][j] = 0.0;

}
}

}
for (i = 0; i < n; i++) {
if (t[i] > 0) {
for (j = 1; j < n; j++) {
a[i][j] = a[i][j] * t[i] + b[j];

}
}
else {
for (j = 1; j < n; j++) {
a[i][j] = 0.0;

}
}

}

Before

After

The condition is
j-independent.

So, it can migrate
outside the j loop.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 65

Iteration Peeling (F90)
DO i = 1, n
IF ((i == 1) .OR. (i == n)) THEN
x(i) = y(i)

ELSE
x(i) = y(i + 1) + y(i – 1)

END IF
END DO

x(1) = y(1)
DO i = 2, n - 1

x(i) = y(i + 1) + y(i – 1)
END DO
x(n) = y(n)

Before

After

We can eliminate the IF by peeling the weird iterations.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 66

Iteration Peeling (C)
for (i = 0; i < n; i++) {
if ((i == 0) || (i == (n – 1))) {
x[i] = y[i];

}
else {
x[i] = y[i + 1] + y[i – 1];

}
}

x[0] = y[0];
for (i = 1; i < n – 1; i++) {
x[i] = y[i + 1] + y[i – 1];

}
x[n-1] = y[n-1];

Before

After

We can eliminate the IF by peeling the weird iterations.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 67

Index Set Splitting (F90)
DO i = 1, n
a(i) = b(i) + c(i)
IF (i > 10) THEN
d(i) = a(i) + b(i – 10)

END IF
END DO

DO i = 1, 10
a(i) = b(i) + c(i)

END DO
DO i = 11, n
a(i) = b(i) + c(i)
d(i) = a(i) + b(i – 10)

END DO

Before

After

Note that this is a generalization of peeling.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 68

Index Set Splitting (C)
for (i = 0; i < n; i++) {
a[i] = b[i] + c[i];
if (i >= 10) {
d[i] = a[i] + b[i – 10];

}
}

for (i = 0; i < 10; i++) {
a[i] = b[i] + c[i];

}
for (i = 10; i < n; i++) {
a[i] = b[i] + c[i];
d[i] = a[i] + b[i – 10];

}

Before

After

Note that this is a generalization of peeling.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 69

Loop Interchange (F90)

DO i = 1, ni
DO j = 1, nj
a(i,j) = b(i,j)

END DO
END DO

DO j = 1, nj
DO i = 1, ni
a(i,j) = b(i,j)

END DO
END DO

Array elements a(i,j) and a(i+1,j) are near each
other in memory, while a(i,j+1) may be far, so it makes
sense to make the i loop be the inner loop. (This is
reversed in C, C++ and Java.)

Before After

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 70

Loop Interchange (C)

for (j = 0; j < nj; j++) {
for (i = 0; i < ni; i++) {
a[i][j] = b[i][j];

}
}

for (i = 0; i < ni; i++) {
for (j = 0; j < nj; j++) {
a[i][j] = b[i][j];

}
}

Array elements a[i][j] and a[i][j+1] are near each
other in memory, while a[i+1][j] may be far, so it makes
sense to make the j loop be the inner loop. (This is
reversed in Fortran.)

Before After

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 71

Unrolling (F90)
DO i = 1, n

a(i) = a(i)+b(i)
END DO

DO i = 1, n, 4
a(i) = a(i) + b(i)
a(i+1) = a(i+1) + b(i+1)
a(i+2) = a(i+2) + b(i+2)
a(i+3) = a(i+3) + b(i+3)

END DO

Before

After

You generally shouldn’t unroll by hand.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 72

Unrolling (C)
for (i = 0; i < n; i++) {

a[i] = a[i] + b[i];
}

for (i = 0; i < n; i += 4) {
a[i] = a[i] + b[i];
a[i+1] = a[i+1] + b[i+1];
a[i+2] = a[i+2] + b[i+2];
a[i+3] = a[i+3] + b[i+3];

}

Before

After

You generally shouldn’t unroll by hand.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 73

Why Do Compilers Unroll?
We saw last time that a loop with a lot of operations gets

better performance (up to some point), especially if there
are lots of arithmetic operations but few main memory
loads and stores.

Unrolling creates multiple operations that typically load from
the same, or adjacent, cache lines.

So, an unrolled loop has more operations without increasing
the memory accesses by much.

Also, unrolling decreases the number of comparisons on the
loop counter variable, and the number of branches to the
top of the loop.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 74

Loop Fusion (F90)
DO i = 1, n

a(i) = b(i) + 1
END DO
DO i = 1, n
c(i) = a(i) / 2

END DO
DO i = 1, n
d(i) = 1 / c(i)

END DO

DO i = 1, n
a(i) = b(i) + 1
c(i) = a(i) / 2
d(i) = 1 / c(i)

END DO

As with unrolling, this has fewer branches. It also has fewer
total memory references.

Before

After

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 75

Loop Fusion (C)
for (i = 0; i < n; i++) {

a[i] = b[i] + 1;
}
for (i = 0; i < n; i++) {
c[i] = a[i] / 2;

}
for (i = 0; i < n; i++) {
d[i] = 1 / c[i];

}

for (i = 0; i < n; i++) {
a[i] = b[i] + 1;
c[i] = a[i] / 2;
d[i] = 1 / c[i];

}

As with unrolling, this has fewer branches. It also has fewer
total memory references.

Before

After

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 76

Loop Fission (F90)
DO i = 1, n

a(i) = b(i) + 1
c(i) = a(i) / 2
d(i) = 1 / c(i)

END DO

DO i = 1, n
a(i) = b(i) + 1

END DO
DO i = 1, n
c(i) = a(i) / 2

END DO
DO i = 1, n
d(i) = 1 / c(i)

END DO

Fission reduces the cache footprint and the number of
operations per iteration.

Before

After

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 77

Loop Fission (C)
for (i = 0; i < n; i++) {

a[i] = b[i] + 1;
c[i] = a[i] / 2;
d[i] = 1 / c[i];

}

for (i = 0; i < n; i++) {
a[i] = b[i] + 1;

}
for (i = 0; i < n; i++) {
c[i] = a[i] / 2;

}
for (i = 0; i < n; i++) {
d[i] = 1 / c[i];

}

Fission reduces the cache footprint and the number of
operations per iteration.

Before

After

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 78

To Fuse or to Fizz?
The question of when to perform fusion versus when to

perform fission, like many many optimization questions, is
highly dependent on the application, the platform and a lot
of other issues that get very, very complicated.

Compilers don’t always make the right choices.
That’s why it’s important to examine the actual behavior of the

executable.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 79

Inlining (F90)

DO i = 1, n
a(i) = func(i)

END DO
…
REAL FUNCTION func (x)

…
func = x * 3

END FUNCTION func

DO i = 1, n
a(i) = i * 3

END DO

Before After

When a function or subroutine is inlined, its contents are
transferred directly into the calling routine, eliminating the
overhead of making the call.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 80

Inlining (C)

for (i = 0;
i < n; i++) {

a[i] = func(i+1);
}…
float func (x) {…

return x * 3;
}

for (i = 0;
i < n; i++) {

a[i] = (i+1) * 3;
}

Before After

When a function or subroutine is inlined, its contents are
transferred directly into the calling routine, eliminating the
overhead of making the call.

Tricks You Can Play
with Compilers

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 82

The Joy of Compiler Options
Every compiler has a different set of options that you can set.
Among these are options that control single processor

optimization: superscalar, pipelining, vectorization, scalar
optimizations, loop optimizations, inlining and so on.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 83

Example Compile Lines
 IBM XL

xlf90 –O –qmaxmem=-1 –qarch=auto
–qtune=auto –qcache=auto –qhot

 Intel
ifort –O -march=corei7-avx -xAVX -xhost

 Portland Group f90
pgf90 –O3 -tp=sandybridge

 NAG f95
nagfor –O4 –Ounsafe

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 84

What Does the Compiler Do? #1
Example: NAG nagfor compiler [4]

nagfor –O<level> source.f90
Possible levels are –O0, -O1, -O2, -O3, -O4:
-O0 No optimisation. …
-O1 Minimal quick optimisation.
-O2 Normal optimisation.
-O3 Further optimisation.
-O4 Maximal optimisation.

The man page is pretty cryptic.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 85

What Does the Compiler Do? #2
Example: Intel ifort compiler [5]

ifort –O<level> source.f90
Possible levels are –O0, -O1, -O2, -O3:

-O0 Disables all optimizations.
-O1 Enables optimizations for speed
-O2
Inlining of intrinsics.
Intra-file interprocedural optimizations, which
include: inlining, constant propagation, forward
substitution, routine attribute propagation,
variable address-taken analysis, dead static
function elimination, and removal of unreferenced
variables.
-O3 Performs O2 optimizations and enables more
aggressive loop transformations such as Fusion,
Block-Unroll-and-Jam, and collapsing IF statements.
...

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 86

Arithmetic Operation Speeds
Ordered Arithmetic Operations

0

100

200

300

400

500

600

ra
dd

ia
dd

rs
um

is
um rs
ub

is
ub

rm
ul

im
ul

rm
am

im
am

rm
ad

im
ad

rd
iv

id
iv

rp
ow

im
od

rs
qr

t

rc
os

re
xp rlo

g i2
r

r2
i

M
FL

O
P/

s

Intel/Xeon PGI/Xeon NAG/Xeon xl/POWER4

Better

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 87

Optimization Performance

 Performance

0
10
20
30
40
50
60
70
80
ra

dd

ia
dd

rs
um

is
um rs
ub

is
ub

rm
ul

im
ul

rd
iv

id
iv

Operation

M
FL

O
P/

s

Pentium3 NAG O0 Pentium3 NAG O4 Pentium3 Vast no opt Pentium3 Vast opt

Better

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 88

More Optimized Performance

Performance

0

50

100

150

200

250
rm

am

im
am

rm
ad

im
ad rd
ot

re
uc

rlo
t8

rlo
t1

0

rlo
t1

2

rlo
t1

6

rlo
t2

0

rlo
t2

4

Operation

M
FL

O
P/

s

Pentium3 NAG O0 Pentium3 NAG 04
Pentium3 VAST no opt Pentium3 VAST opt

Better

Profiling

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 90

Profiling
Profiling means collecting data about how a program executes.
The two major kinds of profiling are:

 Subroutine profiling
 Hardware timing

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 91

Subroutine Profiling
Subroutine profiling means finding out how much time is

spent in each routine.
The 90-10 Rule: Typically, a program spends 90% of its

runtime in 10% of the code.
Subroutine profiling tells you what parts of the program to

spend time optimizing and what parts you can ignore.
Specifically, at regular intervals (e.g., every millisecond), the

program takes note of what instruction it’s currently on.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 92

Profiling Example
On GNU compilers systems:
gcc –O –g -pg …

The –g -pg options tell the compiler to set the executable up
to collect profiling information.

Running the executable generates a file named gmon.out,
which contains the profiling information.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 93

Profiling Example (cont’d)
When the run has completed, a file named gmon.out has

been generated.
Then:
gprof executable

produces a list of all of the routines and how much time was
spent in each.

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 94

Profiling Result
% cumulative self self total
time seconds seconds calls ms/call ms/call name
27.6 52.72 52.72 480000 0.11 0.11 longwave_ [5]
24.3 99.06 46.35 897 51.67 51.67 mpdata3_ [8]
7.9 114.19 15.13 300 50.43 50.43 turb_ [9]
7.2 127.94 13.75 299 45.98 45.98 turb_scalar_ [10]
4.7 136.91 8.96 300 29.88 29.88 advect2_z_ [12]
4.1 144.79 7.88 300 26.27 31.52 cloud_ [11]
3.9 152.22 7.43 300 24.77 212.36 radiation_ [3]
2.3 156.65 4.43 897 4.94 56.61 smlr_ [7]
2.2 160.77 4.12 300 13.73 24.39 tke_full_ [13]
1.7 163.97 3.20 300 10.66 10.66 shear_prod_ [15]
1.5 166.79 2.82 300 9.40 9.40 rhs_ [16]
1.4 169.53 2.74 300 9.13 9.13 advect2_xy_ [17]
1.3 172.00 2.47 300 8.23 15.33 poisson_ [14]
1.2 174.27 2.27 480000 0.00 0.12 long_wave_ [4]
1.0 176.13 1.86 299 6.22 177.45 advect_scalar_ [6]
0.9 177.94 1.81 300 6.04 6.04 buoy_ [19]

...

TENTATIVE Schedule
Tue Jan 20: Overview: What the Heck is Supercomputing?
Tue Feb 3: The Tyranny of the Storage Hierarchy
Tue Feb 3: Instruction Level Parallelism
Tue Feb 10: Stupid Compiler Tricks
Tue Feb 17: Shared Memory Multithreading
Tue Feb 24: Distributed Multiprocessing
Tue March 3: Applications and Types of Parallelism
Tue March 10: Multicore Madness
Tue March 17: NO SESSION (OU's Spring Break)
Tue March 24: NO SESSION (Henry has a huge grant proposal due)
Tue March 31: High Throughput Computing
Tue Apr 7: GPGPU: Number Crunching in Your Graphics Card
Tue Apr 14: Grab Bag: Scientific Libraries, I/O Libraries,
Visualization

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 95

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 96

Thanks for helping!
 OU IT

 OSCER operations staff (Brandon George, Dave Akin, Brett
Zimmerman, Josh Alexander, Patrick Calhoun)

 Horst Severini, OSCER Associate Director for Remote &
Heterogeneous Computing

 Debi Gentis, OSCER Coordinator
 Jim Summers
 The OU IT network team

 James Deaton, Skyler Donahue, Jeremy Wright and Steven
Haldeman, OneNet

 Kay Avila, U Iowa
 Stephen Harrell, Purdue U

Coming in 2015!
Red Hat Tech Day, Thu Jan 22 2015 @ OU

http://goo.gl/forms/jORZCz9xh7

Linux Clusters Institute workshop May 18-22 2015 @ OU
http://www.linuxclustersinstitute.org/workshops/

Great Plains Network Annual Meeting, May 27-29, Kansas City
Advanced Cyberinfrastructure Research & Education Facilitators (ACI-REF) Virtual

Residency May 31 - June 6 2015
XSEDE2015, July 26-30, St. Louis MO

https://conferences.xsede.org/xsede15

IEEE Cluster 2015, Sep 23-27, Chicago IL
http://www.mcs.anl.gov/ieeecluster2015/

OKLAHOMA SUPERCOMPUTING SYMPOSIUM 2015, Sep 22-23 2015 @ OU
SC13, Nov 15-20 2015, Austin TX

http://sc15.supercomputing.org/

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 97

http://goo.gl/forms/jORZCz9xh7
http://www.linuxclustersinstitute.org/workshops/
https://conferences.xsede.org/xsede15
http://www.mcs.anl.gov/ieeecluster2015/
http://sc15.supercomputing.org/

98

OK Supercomputing Symposium 2015

2006 Keynote:
Dan Atkins

Head of NSF’s
Office of

Cyberinfrastructure

2004 Keynote:
Sangtae Kim
NSF Shared

Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer & Information
Science & Engineering

Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

2008 Keynote:
José Munoz

Deputy Office
Director/Senior

Scientific Advisor
NSF Office of

Cyberinfrastructure

2009 Keynote:
Douglass Post
Chief Scientist

US Dept of Defense
HPC Modernization

Program

FREE!
Wed Sep 23 2015

@ OU
Over 235 registra2ons already!
Over 152 inhe first day, over

200 in the first week, over 225
in the first month.

Reception/Poster Session
Tue Sep 22 2015 @ OU

Symposium
Wed Sep 23 2015 @ OU

2010 Keynote:
Horst Simon

Deputy Director
Lawrence Berkeley
National Laboratory

Supercomputing in Plain English: Compilers
Tue Feb 10 2015

2011 Keynote:
Barry Schneider

Program Manager
National Science

Foundation

2012 Keynote:
Thom Dunning

Director
National Center for

Supercomputing
Applications

2013 Keynote:
John Shalf

Dept Head CS
Lawrence

Berkeley Lab
CTO, NERSC

2014 Keynote:
Irene Qualters

Division Director
Advanced

Cyberinfarstructure
Division, NSF

Thanks for your
attention!

Questions?
www.oscer.ou.edu

http://www.oscer.ou.edu/

Supercomputing in Plain English: Compilers
Tue Feb 10 2015 100

References
[1] Kevin Dowd and Charles Severance, High Performance Computing,

2nd ed. O’Reilly, 1998, p. 173-191.
[2] Ibid, p. 91-99.
[3] Ibid, p. 146-157.
[4] NAG f95 man page, version 5.1.
[5] Intel ifort man page, version 10.1.
[6] Michael Wolfe, High Performance Compilers for Parallel Computing, Addison-
Wesley Publishing Co., 1996.
[7] Kevin R. Wadleigh and Isom L. Crawford, Software Optimization for High
Performance Computing, Prentice Hall PTR, 2000, pp. 14-15.

	Supercomputing�in Plain English�Stupid Compiler Tricks
	This is an experiment!
	PLEASE MUTE YOURSELF
	PLEASE REGISTER
	Download the Slides Beforehand
	H.323 (Polycom etc) #1
	H.323 (Polycom etc) #2
	Wowza #1
	Wowza #2
	Toll Free Phone Bridge
	Please Mute Yourself
	Questions via E-mail Only
	Onsite: Talent Release Form
	TENTATIVE Schedule
	Thanks for helping!
	This is an experiment!
	Coming in 2015!
	Outline
	Dependency Analysis
	What Is Dependency Analysis?
	Control Dependencies
	Branch Dependency (F90)
	Branch Dependency (C)
	Loop Carried Dependency (F90)
	Loop Carried Dependency (C)
	Why Do We Care?
	Loop or Branch Dependency? (F)
	Loop or Branch Dependency? (C)
	Call Dependency Example (F90)
	Call Dependency Example (C)
	I/O Dependency (F90)
	I/O Dependency (C)
	Reductions Aren’t Dependencies
	Reductions Aren’t Dependencies
	Data Dependencies (F90)
	Data Dependencies (C)
	Output Dependencies (F90)
	Output Dependencies (C)
	Why Does Order Matter?
	Loop Dependency Example
	Loop Dep Example (cont’d)
	Loop Dependency Performance
	Stupid Compiler Tricks
	Stupid Compiler Tricks
	Compiler Design
	Tricks Compilers Play
	Scalar Optimizations
	Copy Propagation (F90)
	Copy Propagation (C)
	Constant Folding (F90)
	Constant Folding (C)
	Dead Code Removal (F90)
	Dead Code Removal (C)
	Strength Reduction (F90)
	Strength Reduction (C)
	Common Subexpression Elimination (F90)
	Common Subexpression Elimination (C)
	Variable Renaming (F90)
	Variable Renaming (C)
	Loop Optimizations
	Hoisting Loop Invariant Code (F90)
	Hoisting Loop Invariant Code (C)
	Unswitching (F90)
	Unswitching (C)
	Iteration Peeling (F90)
	Iteration Peeling (C)
	Index Set Splitting (F90)
	Index Set Splitting (C)
	Loop Interchange (F90)
	Loop Interchange (C)
	Unrolling (F90)
	Unrolling (C)
	Why Do Compilers Unroll?
	Loop Fusion (F90)
	Loop Fusion (C)
	Loop Fission (F90)
	Loop Fission (C)
	To Fuse or to Fizz?
	Inlining (F90)
	Inlining (C)
	Tricks You Can Play with Compilers
	The Joy of Compiler Options
	Example Compile Lines
	What Does the Compiler Do? #1
	What Does the Compiler Do? #2
	Arithmetic Operation Speeds
	Optimization Performance
	More Optimized Performance
	Profiling
	Profiling
	Subroutine Profiling
	Profiling Example
	Profiling Example (cont’d)
	Profiling Result
	TENTATIVE Schedule
	Thanks for helping!
	Coming in 2015!
	OK Supercomputing Symposium 2015
	Thanks for your attention!���Questions?�www.oscer.ou.edu
	References

