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This is an experiment!
It’s the nature of these kinds of videoconferences that 

FAILURES ARE GUARANTEED TO HAPPEN!       
NO PROMISES!

So, please bear with us. Hopefully everything will work out 
well enough.

If you lose your connection, you can retry the same kind of 
connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone 
bridge to fall back on.
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PLEASE MUTE YOURSELF
No matter how you connect, PLEASE MUTE YOURSELF,  

so that we cannot hear you.
At OU, we will turn off the sound on all conferencing 

technologies.
That way, we won’t have problems with echo cancellation.
Of course, that means we cannot hear questions.
So for questions, you’ll need to send e-mail.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.



PLEASE REGISTER
If you haven’t already registered, please do so.

You can find the registration link on the SiPE webpage:

http://www.oscer.ou.edu/education/

Our ability to continue providing Supercomputing in Plain English 
depends on being able to show strong participation.

We use our headcounts, institution counts and state counts     
(since 2001, over 2000 served, from every US state except RI and 
VT, plus 17 other countries, on every continent except Australia 
and Antarctica) to improve grant proposals.
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http://www.oscer.ou.edu/education/


Download the Slides Beforehand
Before the start of the session, please download the slides from 
the Supercomputing in Plain English website:

http://www.oscer.ou.edu/education/

That way, if anything goes wrong, you can still follow along 
with just audio.

PLEASE MUTE YOURSELF.
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H.323 (Polycom etc) #1
If you want to use H.323 videoconferencing – for example, 

Polycom – then:
 If you AREN’T registered with the OneNet gatekeeper (which 

is probably the case), then:
 Dial 164.58.250.51

 Bring up the virtual keypad. 
On some H.323 devices, you can bring up the virtual keypad by typing: 
# 
(You may want to try without first, then with; some devices won't work 
with the #, but give cryptic error messages about it.)

 When asked for the conference ID, or if there's no response, enter: 
0409

 On most but not all H.323 devices, you indicate the end of the ID with: 
#
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H.323 (Polycom etc) #2
If you want to use H.323 videoconferencing – for example, 

Polycom – then:
 If you ARE already registered with the OneNet gatekeeper 

(most institutions aren’t), dial:
2500409

Many thanks to James Deaton, Skyler Donahue, Jeremy Wright 
and Steven Haldeman of OneNet for providing this.

PLEASE MUTE YOURSELF.
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Wowza #1
You can watch from a Windows, MacOS or Linux laptop using 

Wowza from the following URL:

http://jwplayer.onenet.net/stream6/sipe.html

Wowza behaves a lot like YouTube, except live.

Many thanks to James Deaton, Skyler Donahue, Jeremy Wright 
and Steven Haldeman of OneNet for providing this.

PLEASE MUTE YOURSELF.

http://jwplayer.onenet.net/stream6/sipe.html


Wowza #2
Wowza has been tested on multiple browsers on each of:
 Windows (7 and 8): IE, Firefox, Chrome, Opera, Safari
 MacOS X: Safari, Firefox
 Linux: Firefox, Opera
We’ve also successfully tested it on devices with:
Android
iOS
However, we make no representations on the likelihood of it 
working on your device, because we don’t know which 
versions of Android or iOS it mi
PLEASE MUTE YOURSELF.
ght or might not work with.Supercomputing in Plain English: Compilers
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Toll Free Phone Bridge
IF ALL ELSE FAILS, you can use our toll free phone bridge:

800-832-0736
* 623 2874 #

Please mute yourself and use the phone to listen.
Don’t worry, we’ll call out slide numbers as we go.
Please use the phone bridge ONLY if you cannot connect any 

other way: the phone bridge can handle only 100 
simultaneous connections, and we have over 500 participants.

Many thanks to OU CIO Loretta Early for providing the toll free 
phone bridge.

PLEASE MUTE YOURSELF.
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Please Mute Yourself
No matter how you connect, PLEASE MUTE YOURSELF,  

so that we cannot hear you.
(For Wowza, you don’t need to do that, because the 

information only goes from us to you, not from you to us.)
At OU, we will turn off the sound on all conferencing 

technologies.
That way, we won’t have problems with echo cancellation.
Of course, that means we cannot hear questions.
So for questions, you’ll need to send e-mail.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.



Supercomputing in Plain English: Compilers
Tue Feb 10 2015 12

Questions via E-mail Only
Ask questions by sending e-mail to:

sipe2015@gmail.com

All questions will be read out loud and then answered out loud.

PLEASE MUTE YOURSELF.

mailto:sipe2015@gmail.com


Onsite: Talent Release Form
If you’re attending onsite, you MUST do one of the following:
 complete and sign the Talent Release Form,
OR
 sit behind the cameras (where you can’t be seen) and don’t 

talk at all.

If you aren’t onsite, then PLEASE MUTE YOURSELF.
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TENTATIVE Schedule
Tue Jan 20: Overview: What the Heck is Supercomputing?
Tue Feb 3: The Tyranny of the Storage Hierarchy
Tue Feb 3: Instruction Level Parallelism
Tue Feb 10: Stupid Compiler Tricks
Tue Feb 17: Shared Memory Multithreading
Tue Feb 24: Distributed Multiprocessing
Tue March 3: Applications and Types of Parallelism
Tue March 10: Multicore Madness
Tue March 17: NO SESSION (OU's Spring Break)
Tue March 24: NO SESSION (Henry has a huge grant proposal due)
Tue March 31: High Throughput Computing
Tue Apr 7: GPGPU: Number Crunching in Your Graphics Card
Tue Apr 14: Grab Bag: Scientific Libraries, I/O Libraries, 
Visualization
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Thanks for helping!
 OU IT

 OSCER operations staff (Brandon George, Dave Akin, Brett 
Zimmerman, Josh Alexander, Patrick Calhoun)

 Horst Severini, OSCER Associate Director for Remote & 
Heterogeneous Computing

 Debi Gentis, OSCER Coordinator
 Jim Summers
 The OU IT network team

 James Deaton, Skyler Donahue, Jeremy Wright and Steven 
Haldeman, OneNet

 Kay Avila, U Iowa
 Stephen Harrell, Purdue U
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This is an experiment!
It’s the nature of these kinds of videoconferences that 

FAILURES ARE GUARANTEED TO HAPPEN!       
NO PROMISES!

So, please bear with us. Hopefully everything will work out 
well enough.

If you lose your connection, you can retry the same kind of 
connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone 
bridge to fall back on.

PLEASE MUTE YOURSELF.



Coming in 2015!
Linux Clusters Institute workshop May 18-22 2015 @ OU

http://www.linuxclustersinstitute.org/workshops/

Great Plains Network Annual Meeting, May 27-29, Kansas City
Advanced Cyberinfrastructure Research & Education Facilitators (ACI-REF) Virtual 

Residency May 31 - June 6 2015
XSEDE2015, July 26-30, St. Louis MO

https://conferences.xsede.org/xsede15

IEEE Cluster 2015, Sep 23-27, Chicago IL
http://www.mcs.anl.gov/ieeecluster2015/

OKLAHOMA SUPERCOMPUTING SYMPOSIUM 2015, Sep 22-23 2015 @ OU
SC13, Nov 15-20 2015, Austin TX

http://sc15.supercomputing.org/

PLEASE MUTE YOURSELF.
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Outline
 Dependency Analysis

 What is Dependency Analysis?
 Control Dependencies
 Data Dependencies

 Stupid Compiler Tricks
 Tricks the Compiler Plays
 Tricks You Play With the Compiler
 Profiling



Dependency Analysis
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What Is Dependency Analysis?
Dependency analysis describes of how different parts of a 

program affect one another, and how various parts require 
other parts in order to operate correctly.

A control dependency governs how different sequences of 
instructions affect each other.

A data dependency governs how different pieces of data affect 
each other.

Much of this discussion is from references [1] and [6].
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Control Dependencies
Every program has a well-defined flow of control that moves 

from instruction to instruction to instruction.
This flow can be affected by several kinds of operations:

 Loops
 Branches (if, select case/switch)
 Function/subroutine calls
 I/O (typically implemented as calls)

Dependencies affect parallelization!
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Branch Dependency (F90)
y = 7
IF (x <= 2) THEN

y = 3
END IF
z = y + 1
Note that (x <= 2) means “x less than or equal to two.”
The value of y depends on what the condition (x <= 2)

evaluates to:
 If the condition (x <= 2) evaluates to .TRUE., 

then y is set to 3, so z is assigned 4.
 Otherwise, y remains 7, so z is assigned 8.

https://en.wikipedia.org/wiki/Dependence_analysis

https://en.wikipedia.org/wiki/Dependence_analysis
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Branch Dependency (C)
y = 7;
if (x <= 2) {

y = 3;
}
z = y + 1
Note that (x <= 2) means “x less than or equal to two.”
The value of y depends on what the condition (x != 0)

evaluates to:
 If the condition (x <= 2) evaluates to true,   

then y is set to 3, so z is assigned 4.
 Otherwise, y remains 7, so z is assigned 8.

https://en.wikipedia.org/wiki/Dependence_analysis

https://en.wikipedia.org/wiki/Dependence_analysis
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Loop Carried Dependency (F90)
DO i = 2, length
a(i) = a(i-1) + b(i)

END DO
Here, each iteration of the loop depends on the previous:

iteration i=3 depends on iteration i=2,                         
iteration i=4 depends on iteration i=3,                         
iteration i=5 depends on iteration i=4, etc.

This is sometimes called a loop carried dependency.
There is no way to execute iteration i until after iteration i-1 has 

completed, so this loop can’t be parallelized. 
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Loop Carried Dependency (C)
for (i = 1; i < length; i++) {
a[i] = a[i-1] + b[i];

}
Here, each iteration of the loop depends on the previous:

iteration i=3 depends on iteration i=2,                         
iteration i=4 depends on iteration i=3,                         
iteration i=5 depends on iteration i=4, etc.

This is sometimes called a loop carried dependency.
There is no way to execute iteration i until after iteration i-1 has 

completed, so this loop can’t be parallelized. 
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Why Do We Care?
Loops are the favorite control structures of High Performance 

Computing, because compilers know how to optimize their 
performance using instruction-level parallelism:  
superscalar, pipelining and vectorization can give excellent 
speedup.

Loop carried dependencies affect whether a loop can be 
parallelized, and how much.
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Loop or Branch Dependency? (F)
Is this a loop carried dependency or a

branch dependency?

DO i = 1, length
IF (x(i) /= 0) THEN

y(i) = 1.0 / x(i)
END IF

END DO
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Loop or Branch Dependency? (C)
Is this a loop carried dependency or a

branch dependency?

for (i = 0; i < length; i++) {
if (x[i] != 0) {

y[i] = 1.0 / x[i];
}

}
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Call Dependency Example (F90)
x = 5
y = myfunction(7)
z = 22
The flow of the program is interrupted by the call to 
myfunction, which takes the execution to somewhere 
else in the program.

It’s similar to a branch dependency.
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Call Dependency Example (C)
x = 5;
y = myfunction(7);
z = 22;
The flow of the program is interrupted by the call to 
myfunction, which takes the execution to somewhere 
else in the program.

It’s similar to a branch dependency.
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I/O Dependency (F90)
x = a + b
PRINT *, x
y = c + d

Typically, I/O is implemented by hidden subroutine calls, so 
we can think of this as equivalent to a call dependency.
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I/O Dependency (C)
x = a + b;
printf("%f", x);
y = c + d;

Typically, I/O is implemented by hidden subroutine calls, so 
we can think of this as equivalent to a call dependency.
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Reductions Aren’t Dependencies
array_sum = 0
DO i = 1, length
array_sum = array_sum + array(i)

END DO
A reduction is an operation that converts an array to a scalar.
Other kinds of reductions:  product, .AND., .OR., minimum, 

maximum, index of minimum, index of maximum, number of 
occurrences of a particular value, etc.

Reductions are so common that hardware and compilers are 
optimized to handle them.

Also, they aren’t really dependencies, because the order in 
which the individual operations are performed doesn’t matter.
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Reductions Aren’t Dependencies
array_sum = 0;
for (i = 0; i < length; i++) {

array_sum = array_sum + array[i];
}
A reduction is an operation that converts an array to a scalar.
Other kinds of reductions:  product, &&, ||, minimum, 

maximum, index of minimum, index of maximum, number of 
occurrences of a particular value, etc.

Reductions are so common that hardware and compilers are 
optimized to handle them.

Also, they aren’t really dependencies, because the order in 
which the individual operations are performed doesn’t matter.
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Data Dependencies (F90)
“A data dependence occurs when an instruction is dependent 

on data from a previous instruction and therefore cannot be 
moved before the earlier instruction [or executed in 
parallel].” [7]

a = x + y + cos(z)
b = a * c
The value of  b depends on the value of a, so these two 

statements must be executed in order.
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Data Dependencies (C)
“A data dependence occurs when an instruction is dependent 

on data from a previous instruction and therefore cannot be 
moved before the earlier instruction [or executed in 
parallel].” [7]

a = x + y + cos(z);
b = a * c;
The value of  b depends on the value of a, so these two 

statements must be executed in order.
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Output Dependencies (F90)
x = a / b
y = x + 2
x = d – e

Notice that x is assigned two different values, but only one 
of them is retained after these statements are done executing.  
In this context, the final value of x is the “output.”

Again, we are forced to execute in order.
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Output Dependencies (C)
x = a / b;
y = x + 2;
x = d – e;

Notice that x is assigned two different values, but only one 
of them is retained after these statements are done executing.  
In this context, the final value of x is the “output.”

Again, we are forced to execute in order.
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Why Does Order Matter?
 Dependencies can affect whether we can execute a 

particular part of the program in parallel.
 If we cannot execute that part of the program in parallel, 

then it’ll be SLOW. 
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Loop Dependency Example
if ((dst == src1) && (dst == src2)) {

for (index = 1; index < length; index++) {
dst[index] = dst[index-1] + dst[index];

}
}
else if (dst == src1) {

for (index = 1; index < length; index++) {
dst[index] = dst[index-1] + src2[index];

}
}
else if (dst == src2) {

for (index = 1; index < length; index++) {
dst[index] = src1[index-1] + dst[index];

}
}
else if (src1 == src2) {

for (index = 1; index < length; index++) {
dst[index] = src1[index-1] + src1[index];

}
}
else {

for (index = 1; index < length; index++) {
dst[index] = src1[index-1] + src2[index];

}
}
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Loop Dep Example (cont’d)
if ((dst == src1) && (dst == src2)) {

for (index = 1; index < length; index++) {
dst[index] = dst[index-1] + dst[index];

}
}
else if (dst == src1) {

for (index = 1; index < length; index++) {
dst[index] = dst[index-1] + src2[index];

}
}
else if (dst == src2) {

for (index = 1; index < length; index++) {
dst[index] = src1[index-1] + dst[index];

}
}
else if (src1 == src2) {

for (index = 1; index < length; index++) {
dst[index] = src1[index-1] + src1[index];

}
}
else {

for (index = 1; index < length; index++) {
dst[index] = src1[index-1] + src2[index];

}
}

The various versions of the loop either:
 do      have loop carried dependencies, or
 don’t have loop carried dependencies.
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Loop Dependency Performance
Loop Carried Dependency Performance
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Stupid Compiler 
Tricks
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Stupid Compiler Tricks
 Tricks Compilers Play

 Scalar Optimizations
 Loop Optimizations
 Inlining

 Tricks You Can Play with Compilers
 Profiling
 Hardware counters
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Compiler Design
The people who design compilers have a lot of experience 

working with the languages commonly used in High 
Performance Computing:
 Fortran: 50+ years
 C:          40+ years
 C++:     almost 30 years, plus C experience

So, they’ve come up with clever ways to make programs 
run faster.



Tricks Compilers Play
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Scalar Optimizations
 Copy Propagation
 Constant Folding
 Dead Code Removal
 Strength Reduction
 Common Subexpression Elimination
 Variable Renaming
 Loop Optimizations
Not every compiler does all of these, so it sometimes can be 

worth doing these by hand.
Much of this discussion is from [2] and [6].
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Copy Propagation (F90)
x = y
z = 1 + x

x = y
z = 1 + y

Has data dependency

No data dependency

Compile

Before

After
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Copy Propagation (C)
x = y;
z = 1 + x;

x = y;
z = 1 + y;

Has data dependency

No data dependency

Compile

Before

After
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Constant Folding (F90)

add = 100
aug = 200
sum = add + aug

Notice that sum is actually the sum of two constants, so the 
compiler can precalculate it, eliminating the addition that 
otherwise would be performed at runtime.

sum = 300

Before After
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Constant Folding (C)

add = 100;
aug = 200;
sum = add + aug;

Notice that sum is actually the sum of two constants, so the 
compiler can precalculate it, eliminating the addition that 
otherwise would be performed at runtime.

sum = 300;

Before After
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Dead Code Removal (F90)

var = 5
PRINT *, var
STOP
PRINT *, var * 2

Since the last statement never executes, the compiler can 
eliminate it.

var = 5
PRINT *, var
STOP

Before After
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Dead Code Removal (C)

var = 5;
printf("%d", var);
exit(-1);
printf("%d", var * 2);

Since the last statement never executes, the compiler can 
eliminate it.

var = 5;
printf("%d", var);
exit(-1);

Before After
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Strength Reduction (F90)

x = y ** 2.0
a = c / 2.0

x = y * y
a = c * 0.5

Before After

Raising one value to the power of another, or dividing, is more 
expensive than multiplying.  If the compiler can tell that the 
power is a small integer, or that the denominator is a constant, 
it’ll use multiplication instead.

Note: In Fortran, “y ** 2.0” means “y to the power 2.”
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Strength Reduction (C)

x = pow(y, 2.0);
a = c / 2.0;

x = y * y;
a = c * 0.5;

Before After

Raising one value to the power of another, or dividing, is more 
expensive than multiplying.  If the compiler can tell that the 
power is a small integer, or that the denominator is a constant, 
it’ll use multiplication instead.

Note: In C, “pow(y, 2.0)” means “y to the power 2.”
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Common Subexpression Elimination (F90)

d = c * (a / b)
e = (a / b) * 2.0

adivb = a / b
d = c * adivb
e = adivb * 2.0

Before After

The subexpression (a / b) occurs in both assignment 
statements, so there’s no point in calculating it twice.

This is typically only worth doing if the common 
subexpression is expensive to calculate.
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Common Subexpression Elimination (C)

d = c * (a / b);
e = (a / b) * 2.0;

adivb = a / b;
d = c * adivb;
e = adivb * 2.0;

Before After

The subexpression (a / b) occurs in both assignment 
statements, so there’s no point in calculating it twice.

This is typically only worth doing if the common 
subexpression is expensive to calculate.
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Variable Renaming (F90)

x = y * z
q = r + x * 2
x = a + b

x0 = y * z
q = r + x0 * 2
x = a + b

Before After

The original code has an output dependency, while the new 
code doesn’t – but the final value of x is still correct.
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Variable Renaming (C)

x = y * z;
q = r + x * 2;
x = a + b;

x0 = y * z;
q = r + x0 * 2;
x = a + b;

Before After

The original code has an output dependency, while the new 
code doesn’t – but the final value of x is still correct.
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Loop Optimizations
 Hoisting Loop Invariant Code
 Unswitching
 Iteration Peeling
 Index Set Splitting
 Loop Interchange
 Unrolling
 Loop Fusion
 Loop Fission
Not every compiler does all of these, so it sometimes can be 

worth doing some of these by hand.
Much of this discussion is from [3] and [6].
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Hoisting Loop Invariant Code (F90)
DO i = 1, n
a(i) = b(i) + c * d
e = g(n)

END DO

Before

temp = c * d
DO i = 1, n
a(i) = b(i) + temp

END DO
e = g(n)

After

Code that 
doesn’t change 
inside the loop is 
known as      
loop invariant. 
It doesn’t need 
to be calculated 
over and over.
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Hoisting Loop Invariant Code (C)
for (i = 0; i < n; i++) {
a[i] = b[i] + c * d;
e = g[n];

}

Before

temp = c * d;
for (i = 0; i < n; i++) {
a[i] = b[i] + temp;

}
e = g[n];

After

Code that 
doesn’t change 
inside the loop is 
known as      
loop invariant. 
It doesn’t need 
to be calculated 
over and over.
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Unswitching (F90)
DO i = 1, n

DO j = 2, n
IF (t(i) > 0) THEN
a(i,j) = a(i,j) * t(i) + b(j)

ELSE
a(i,j) = 0.0

END IF
END DO

END DO
DO i = 1, n
IF (t(i) > 0) THEN
DO j = 2, n
a(i,j) = a(i,j) * t(i) + b(j)

END DO
ELSE
DO j = 2, n
a(i,j) = 0.0

END DO
END IF

END DO

Before

After

The condition is 
j-independent.

So, it can migrate 
outside the j loop.
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Unswitching (C)
for (i = 0; i < n; i++) {

for (j = 1; j < n; j++) {
if (t[i] > 0)
a[i][j] = a[i][j] * t[i] + b[j];

}
else {
a[i][j] = 0.0;

}
}

}
for (i = 0; i < n; i++) {
if (t[i] > 0) {
for (j = 1; j < n; j++) {
a[i][j] = a[i][j] * t[i] + b[j];

}
}
else {
for (j = 1; j < n; j++) {
a[i][j] = 0.0;

}
}

}

Before

After

The condition is 
j-independent.

So, it can migrate 
outside the j loop.
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Iteration Peeling (F90)
DO i = 1, n
IF ((i == 1) .OR. (i == n)) THEN
x(i) = y(i)

ELSE
x(i) = y(i + 1) + y(i – 1)

END IF
END DO

x(1) = y(1)
DO i = 2, n - 1

x(i) = y(i + 1) + y(i – 1)
END DO
x(n) = y(n)

Before

After

We can eliminate the IF by peeling the weird iterations.
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Iteration Peeling (C)
for (i = 0; i < n; i++) {
if ((i == 0) || (i == (n – 1))) {
x[i] = y[i];

}
else {
x[i] = y[i + 1] + y[i – 1];

}
}

x[0] = y[0];
for (i = 1; i < n – 1; i++) {
x[i] = y[i + 1] + y[i – 1];

}
x[n-1] = y[n-1];

Before

After

We can eliminate the IF by peeling the weird iterations.
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Index Set Splitting (F90)
DO i = 1, n
a(i) = b(i) + c(i)
IF (i > 10) THEN
d(i) = a(i) + b(i – 10)

END IF
END DO

DO i = 1, 10
a(i) = b(i) + c(i)

END DO
DO i = 11, n
a(i) = b(i) + c(i)
d(i) = a(i) + b(i – 10)

END DO

Before

After

Note that this is a generalization of peeling.
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Index Set Splitting (C)
for (i = 0; i < n; i++) {
a[i] = b[i] + c[i];
if (i >= 10) {
d[i] = a[i] + b[i – 10];

}
}

for (i = 0; i < 10; i++) {
a[i] = b[i] + c[i];

}
for (i = 10; i < n; i++) {
a[i] = b[i] + c[i];
d[i] = a[i] + b[i – 10];

}

Before

After

Note that this is a generalization of peeling.
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Loop Interchange (F90)

DO i = 1, ni
DO j = 1, nj
a(i,j) = b(i,j)

END DO
END DO

DO j = 1, nj
DO i = 1, ni
a(i,j) = b(i,j)

END DO
END DO

Array elements a(i,j) and a(i+1,j) are near each 
other in memory, while a(i,j+1) may be far, so it makes 
sense to make the i loop be the inner loop. (This is 
reversed in C, C++ and Java.)

Before After
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Loop Interchange (C)

for (j = 0; j < nj; j++) {
for (i = 0; i < ni; i++) {
a[i][j] = b[i][j];

}
}

for (i = 0; i < ni; i++) {
for (j = 0; j < nj; j++) {
a[i][j] = b[i][j];

}
}

Array elements a[i][j] and a[i][j+1] are near each 
other in memory, while a[i+1][j] may be far, so it makes 
sense to make the j loop be the inner loop. (This is 
reversed in Fortran.)

Before After
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Unrolling (F90)
DO i = 1, n

a(i) = a(i)+b(i)
END DO

DO i = 1, n, 4
a(i)   = a(i)  + b(i)
a(i+1) = a(i+1) + b(i+1)
a(i+2) = a(i+2) + b(i+2)
a(i+3) = a(i+3) + b(i+3)

END DO

Before

After

You generally shouldn’t unroll by hand.
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Unrolling (C)
for (i = 0; i < n; i++) {

a[i] = a[i] + b[i];
}

for (i = 0; i < n; i += 4) {
a[i] = a[i] + b[i];
a[i+1] = a[i+1] + b[i+1];
a[i+2] = a[i+2] + b[i+2];
a[i+3] = a[i+3] + b[i+3];

}

Before

After

You generally shouldn’t unroll by hand.
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Why Do Compilers Unroll?
We saw last time that a loop with a lot of operations gets 

better performance (up to some point), especially if there 
are lots of arithmetic operations but few main memory 
loads and stores.

Unrolling creates multiple operations that typically load from 
the same, or adjacent, cache lines.

So, an unrolled loop has more operations without increasing 
the memory accesses by much.

Also, unrolling decreases the number of comparisons on the 
loop counter variable, and the number of branches to the 
top of the loop.
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Loop Fusion (F90)
DO i = 1, n

a(i) = b(i) + 1
END DO
DO i = 1, n
c(i) = a(i) / 2

END DO
DO i = 1, n
d(i) = 1 / c(i)

END DO

DO i = 1, n
a(i) = b(i) + 1
c(i) = a(i) / 2
d(i) = 1 / c(i)

END DO

As with unrolling, this has fewer branches. It also has fewer 
total memory references.

Before

After
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Loop Fusion (C)
for (i = 0; i < n; i++) {

a[i] = b[i] + 1;
}
for (i = 0; i < n; i++) {
c[i] = a[i] / 2;

}
for (i = 0; i < n; i++) {
d[i] = 1 / c[i];

}

for (i = 0; i < n; i++) {
a[i] = b[i] + 1;
c[i] = a[i] / 2;
d[i] = 1 / c[i];

}

As with unrolling, this has fewer branches. It also has fewer 
total memory references.

Before

After
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Loop Fission (F90)
DO i = 1, n

a(i) = b(i) + 1
c(i) = a(i) / 2
d(i) = 1 / c(i)

END DO

DO i = 1, n
a(i) = b(i) + 1

END DO
DO i = 1, n
c(i) = a(i) / 2

END DO
DO i = 1, n
d(i) = 1 / c(i)

END DO

Fission reduces the cache footprint and the number of 
operations per iteration.

Before

After
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Loop Fission (C)
for (i = 0; i < n; i++) {

a[i] = b[i] + 1;
c[i] = a[i] / 2;
d[i] = 1 / c[i];

}

for (i = 0; i < n; i++) {
a[i] = b[i] + 1;

}
for (i = 0; i < n; i++) {
c[i] = a[i] / 2;

}
for (i = 0; i < n; i++) {
d[i] = 1 / c[i];

}

Fission reduces the cache footprint and the number of 
operations per iteration.

Before

After
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To Fuse or to Fizz?
The question of when to perform fusion versus when to 

perform fission, like many many optimization questions, is 
highly dependent on the application, the platform and a lot 
of other issues that get very, very complicated.

Compilers don’t always make the right choices.
That’s why it’s important to examine the actual behavior of the 

executable.
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Inlining (F90)

DO i = 1, n
a(i) = func(i)

END DO
…
REAL FUNCTION func (x)

…
func = x * 3

END FUNCTION func

DO i = 1, n
a(i) = i * 3

END DO

Before After

When a function or subroutine is inlined, its contents are 
transferred directly into the calling routine, eliminating the 
overhead of making the call.
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Inlining (C)

for (i = 0;
i < n; i++) {

a[i] = func(i+1);
}…
float func (x) {…

return x * 3;
}

for (i = 0;
i < n; i++) {

a[i] = (i+1) * 3;
}

Before After

When a function or subroutine is inlined, its contents are 
transferred directly into the calling routine, eliminating the 
overhead of making the call.



Tricks You Can Play 
with Compilers



Supercomputing in Plain English: Compilers
Tue Feb 10 2015 82

The Joy of Compiler Options
Every compiler has a different set of options that you can set.
Among these are options that control single processor 

optimization:  superscalar, pipelining, vectorization, scalar 
optimizations, loop optimizations, inlining and so on.
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Example Compile Lines
 IBM XL

xlf90 –O –qmaxmem=-1 –qarch=auto
–qtune=auto –qcache=auto –qhot

 Intel
ifort –O -march=corei7-avx -xAVX -xhost

 Portland Group f90
pgf90 –O3 -tp=sandybridge

 NAG f95
nagfor –O4 –Ounsafe
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What Does the Compiler Do? #1
Example: NAG nagfor compiler [4]

nagfor –O<level> source.f90
Possible levels are –O0, -O1, -O2, -O3, -O4:
-O0    No optimisation. …
-O1    Minimal quick optimisation.
-O2    Normal optimisation.
-O3    Further optimisation.
-O4    Maximal optimisation.

The man page is pretty cryptic.



Supercomputing in Plain English: Compilers
Tue Feb 10 2015 85

What Does the Compiler Do? #2
Example: Intel ifort compiler [5]

ifort –O<level> source.f90
Possible levels are  –O0, -O1, -O2, -O3:

-O0    Disables all optimizations. ....
-O1    Enables optimizations for speed ....
-O2    ....
Inlining of intrinsics.
Intra-file interprocedural optimizations, which 
include: inlining, constant propagation, forward
substitution, routine attribute propagation, 
variable address-taken analysis, dead static 
function elimination, and removal of unreferenced 
variables.
-O3    Performs O2 optimizations and enables more 
aggressive  loop transformations such as Fusion, 
Block-Unroll-and-Jam,  and collapsing IF statements. 
...
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Arithmetic Operation Speeds
Ordered Arithmetic Operations
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Optimization Performance

 Performance

0
10
20
30
40
50
60
70
80
ra

dd

ia
dd

rs
um

is
um rs
ub

is
ub

rm
ul

im
ul

rd
iv

id
iv

Operation

M
FL

O
P/

s

Pentium3 NAG O0 Pentium3 NAG O4 Pentium3 Vast no opt Pentium3 Vast opt

Better



Supercomputing in Plain English: Compilers
Tue Feb 10 2015 88

More Optimized Performance

Performance
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Profiling
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Profiling
Profiling means collecting data about how a program executes.
The two major kinds of profiling are:

 Subroutine profiling
 Hardware timing
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Subroutine Profiling
Subroutine profiling means finding out how much time is 

spent in each routine.
The 90-10 Rule: Typically, a program spends 90% of its 

runtime in 10% of the code.
Subroutine profiling tells you what parts of the program to 

spend time optimizing and what parts you can ignore.
Specifically, at regular intervals (e.g., every millisecond), the 

program takes note of what instruction it’s currently on.
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Profiling Example
On GNU compilers systems:
gcc –O –g -pg …

The –g -pg options tell the compiler to set the executable up 
to collect profiling information.

Running the executable generates a file named gmon.out, 
which contains the profiling information.
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Profiling Example (cont’d)
When the run has completed, a file named gmon.out has 

been generated.
Then:
gprof executable

produces a list of all of the routines and how much time was 
spent in each.
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Profiling Result
%   cumulative   self              self     total
time   seconds   seconds    calls  ms/call  ms/call  name
27.6      52.72    52.72   480000     0.11     0.11  longwave_ [5]
24.3      99.06    46.35      897    51.67    51.67  mpdata3_ [8]
7.9     114.19    15.13      300    50.43    50.43  turb_ [9]
7.2     127.94    13.75      299    45.98    45.98  turb_scalar_ [10]
4.7     136.91     8.96      300    29.88    29.88  advect2_z_ [12]
4.1     144.79     7.88      300    26.27    31.52  cloud_ [11]
3.9     152.22     7.43      300    24.77   212.36  radiation_ [3]
2.3     156.65     4.43      897     4.94    56.61  smlr_ [7]
2.2     160.77     4.12      300    13.73    24.39  tke_full_ [13]
1.7     163.97     3.20      300    10.66    10.66  shear_prod_ [15]
1.5     166.79     2.82      300     9.40     9.40  rhs_ [16]
1.4     169.53     2.74      300     9.13     9.13  advect2_xy_ [17]
1.3     172.00     2.47      300     8.23    15.33  poisson_ [14]
1.2     174.27     2.27   480000     0.00     0.12  long_wave_ [4]
1.0     176.13     1.86      299     6.22   177.45  advect_scalar_ [6]
0.9     177.94     1.81      300     6.04     6.04  buoy_ [19]

...



TENTATIVE Schedule
Tue Jan 20: Overview: What the Heck is Supercomputing?
Tue Feb 3: The Tyranny of the Storage Hierarchy
Tue Feb 3: Instruction Level Parallelism
Tue Feb 10: Stupid Compiler Tricks
Tue Feb 17: Shared Memory Multithreading
Tue Feb 24: Distributed Multiprocessing
Tue March 3: Applications and Types of Parallelism
Tue March 10: Multicore Madness
Tue March 17: NO SESSION (OU's Spring Break)
Tue March 24: NO SESSION (Henry has a huge grant proposal due)
Tue March 31: High Throughput Computing
Tue Apr 7: GPGPU: Number Crunching in Your Graphics Card
Tue Apr 14: Grab Bag: Scientific Libraries, I/O Libraries, 
Visualization
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Thanks for helping!
 OU IT

 OSCER operations staff (Brandon George, Dave Akin, Brett 
Zimmerman, Josh Alexander, Patrick Calhoun)

 Horst Severini, OSCER Associate Director for Remote & 
Heterogeneous Computing

 Debi Gentis, OSCER Coordinator
 Jim Summers
 The OU IT network team

 James Deaton, Skyler Donahue, Jeremy Wright and Steven 
Haldeman, OneNet

 Kay Avila, U Iowa
 Stephen Harrell, Purdue U



Coming in 2015!
Red Hat Tech Day, Thu Jan 22 2015 @ OU

http://goo.gl/forms/jORZCz9xh7

Linux Clusters Institute workshop May 18-22 2015 @ OU
http://www.linuxclustersinstitute.org/workshops/

Great Plains Network Annual Meeting, May 27-29, Kansas City
Advanced Cyberinfrastructure Research & Education Facilitators (ACI-REF) Virtual 

Residency May 31 - June 6 2015
XSEDE2015, July 26-30, St. Louis MO

https://conferences.xsede.org/xsede15

IEEE Cluster 2015, Sep 23-27, Chicago IL
http://www.mcs.anl.gov/ieeecluster2015/

OKLAHOMA SUPERCOMPUTING SYMPOSIUM 2015, Sep 22-23 2015 @ OU
SC13, Nov 15-20 2015, Austin TX

http://sc15.supercomputing.org/
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http://goo.gl/forms/jORZCz9xh7
http://www.linuxclustersinstitute.org/workshops/
https://conferences.xsede.org/xsede15
http://www.mcs.anl.gov/ieeecluster2015/
http://sc15.supercomputing.org/
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OK Supercomputing Symposium 2015

2006 Keynote:
Dan Atkins

Head of NSF’s
Office of

Cyberinfrastructure

2004 Keynote:
Sangtae Kim
NSF Shared 

Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer & Information
Science & Engineering

Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

2008 Keynote: 
José Munoz 

Deputy Office 
Director/Senior 

Scientific Advisor 
NSF Office of 

Cyberinfrastructure

2009 Keynote: 
Douglass Post     
Chief Scientist         

US Dept of Defense       
HPC Modernization 

Program

FREE!
Wed Sep 23 2015

@ OU
Over 235 registra2ons already!
Over 152 inhe first day, over 

200 in the first week, over 225 
in the first month.

Reception/Poster Session
Tue Sep 22 2015 @ OU

Symposium
Wed Sep 23 2015 @ OU

2010 Keynote:    
Horst Simon     

Deputy Director         
Lawrence Berkeley 
National Laboratory
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2011 Keynote: 
Barry Schneider  

Program Manager         
National Science 

Foundation

2012 Keynote: 
Thom Dunning  

Director          
National Center for 

Supercomputing 
Applications

2013 Keynote:      
John Shalf

Dept Head CS 
Lawrence           

Berkeley Lab      
CTO, NERSC

2014 Keynote:      
Irene Qualters                   

Division Director 
Advanced           

Cyberinfarstructure
Division, NSF



Thanks for your 
attention!

Questions?
www.oscer.ou.edu

http://www.oscer.ou.edu/
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