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This is an experiment! 
It’s the nature of these kinds of videoconferences that 

FAILURES ARE GUARANTEED TO HAPPEN!       
NO PROMISES! 

So, please bear with us. Hopefully everything will work out 
well enough. 

If you lose your connection, you can retry the same kind of 
connection, or try connecting another way. 

Remember, if all else fails, you always have the toll free phone 
bridge to fall back on. 
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H.323 (Polycom etc) #1 
If you want to use H.323 videoconferencing – for example, 

Polycom – then: 
 If you AREN’T registered with the OneNet gatekeeper (which 

is probably the case), then: 
 Dial 164.58.250.47 
 Bring up the virtual keypad.  

On some H.323 devices, you can bring up the virtual keypad by typing:  
#  
(You may want to try without first, then with; some devices won't work 
with the #, but give cryptic error messages about it.) 

 When asked for the conference ID, or if there's no response, enter:  
0409 

 On most but not all H.323 devices, you indicate the end of the ID with:  
# 
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H.323 (Polycom etc) #2 
If you want to use H.323 videoconferencing – for example, 

Polycom – then: 
 If you ARE already registered with the OneNet gatekeeper 

(most institutions aren’t), dial: 
 2500409 

Many thanks to Skyler Donahue and Steven Haldeman of OneNet 
for providing this. 
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Wowza #1 
You can watch from a Windows, MacOS or Linux laptop using 

Wowza from either of the following URLs: 
 
http://www.onenet.net/technical-resources/video/sipe-stream/ 

OR 
https://vcenter.njvid.net/videos/livestreams/page1/ 

 
Wowza behaves a lot like YouTube, except live. 
 
Many thanks to Skyler Donahue and Steven Haldeman of OneNet 

and Bob Gerdes of Rutgers U for providing this. 
 

http://www.onenet.net/technical-resources/video/sipe-stream/
https://vcenter.njvid.net/videos/livestreams/page1/


Wowza #2 
Wowza has been tested on multiple browsers on each of: 
 Windows (7 and 8): IE, Firefox, Chrome, Opera, Safari 
 MacOS X: Safari, Firefox 
 Linux: Firefox, Opera 
We’ve also successfully tested it on devices with: 
 Android 
 iOS 
However, we make no representations on the likelihood of it 
working on your device, because we don’t know which 
versions of Android or iOS it might or might not work with. 
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Wowza #3 
If one of the Wowza URLs fails, try switching over to the other 
one. 
 
If we lose our network connection between OU and OneNet, 
then there may be a slight delay while we set up a direct 
connection to Rutgers. 
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Toll Free Phone Bridge 
IF ALL ELSE FAILS, you can use our toll free phone bridge: 

800-832-0736 
* 623 2847 # 

Please mute yourself and use the phone to listen. 
Don’t worry, we’ll call out slide numbers as we go. 
Please use the phone bridge ONLY if you cannot connect any 

other way: the phone bridge can handle only 100 
simultaneous connections, and we have over 350 participants. 

Many thanks to OU CIO Loretta Early for providing the toll free 
phone bridge. 
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Please Mute Yourself 
No matter how you connect, please mute yourself, so that we 

cannot hear you. 
(For Wowza, you don’t need to do that, because the 

information only goes from us to you, not from you to us.) 
At OU, we will turn off the sound on all conferencing 

technologies. 
That way, we won’t have problems with echo cancellation. 
Of course, that means we cannot hear questions. 
So for questions, you’ll need to send e-mail. 
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Questions via E-mail Only 
Ask questions by sending e-mail to: 
 

sipe2013@gmail.com 
 
All questions will be read out loud and then answered out loud. 

mailto:sipe2013@gmail.com


TENTATIVE Schedule 
Tue Jan 29: Compilers: What the Heck is Supercomputing? 
Tue Jan 29: The Tyranny of the Storage Hierarchy 
Tue Feb 12: Instruction Level Parallelism 
Tue Feb 12: Stupid Compiler Tricks 
Tue Feb 19: Shared Memory Multithreading 
Tue Feb 26: Distributed Multiprocessing 
Tue March 5: Applications and Types of Parallelism 
Tue March 12: Multicore Madness 
Tue March 19: NO SESSION (OU's Spring Break) 
Tue March 26: High Throughput Computing 
Tue Apr 2: GPGPU: Number Crunching in Your Graphics Card 
Tue Apr 9: Grab Bag: Scientific Libraries, I/O Libraries, 
Visualization 
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Supercomputing Exercises #1 
Want to do the “Supercomputing in Plain English” exercises? 
 The 3rd exercise will be posted soon at: 

http://www.oscer.ou.edu/education/ 
 If you don’t yet have a supercomputer account, you can get 

a temporary account, just for the “Supercomputing in Plain 
English” exercises, by sending e-mail to: 

hneeman@ou.edu 
Please note that this account is for doing the exercises only, 

and will be shut down at the end of the series. It’s also 
available only to those at institutions in the USA. 

 This week’s Introductory exercise will teach you how to 
compile and run jobs on OU’s big Linux cluster 
supercomputer, which is named Boomer. 

http://www.oscer.ou.edu/education/
mailto:hneeman@ou.edu


Supercomputing Exercises #2 
You’ll be doing the exercises on your own (or you can work 
with others at your local institution if you like). 
These aren’t graded, but we’re available for questions: 

hneeman@ou.edu 
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Thanks for helping! 
 OU IT 

 OSCER operations staff (Brandon George, Dave Akin, Brett Zimmerman, 
Josh Alexander, Patrick Calhoun) 

 Horst Severini, OSCER Associate Director for Remote & Heterogeneous 
Computing 

 Debi Gentis, OU Research IT coordinator 
 Kevin Blake, OU IT (videographer) 
 Chris Kobza, OU IT (learning technologies) 
 Mark McAvoy 

 Kyle Keys, OU National Weather Center 
 James Deaton, Skyler Donahue and Steven Haldeman, OneNet 
 Bob Gerdes, Rutgers U 
 Lisa Ison, U Kentucky 
 Paul Dave, U Chicago 
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This is an experiment! 
It’s the nature of these kinds of videoconferences that 

FAILURES ARE GUARANTEED TO HAPPEN!       
NO PROMISES! 

So, please bear with us. Hopefully everything will work out 
well enough. 

If you lose your connection, you can retry the same kind of 
connection, or try connecting another way. 

Remember, if all else fails, you always have the toll free phone 
bridge to fall back on. 



Coming in 2013! 
From Computational Biophysics to Systems Biology, May 19-21, 

Norman OK 
Great Plains Network Annual Meeting, May 29-31, Kansas City 
XSEDE2013, July 22-25, San Diego CA 
IEEE Cluster 2013, Sep 23-27, Indianapolis IN 
OKLAHOMA SUPERCOMPUTING SYMPOSIUM 2013, 

Oct 1-2, Norman OK 
SC13, Nov 17-22, Denver CO 
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OK Supercomputing Symposium 2013 

2006 Keynote: 
Dan Atkins 

Head of NSF’s 
Office of 

Cyberinfrastructure 

2004 Keynote: 
Sangtae Kim 
NSF Shared  

Cyberinfrastructure 
Division Director 

2003 Keynote: 
Peter Freeman 

NSF 
Computer & Information 
Science & Engineering 

Assistant Director 

2005 Keynote: 
Walt Brooks 

NASA Advanced 
Supercomputing 
Division Director 

2007 Keynote: 
Jay Boisseau 

Director 
Texas Advanced 

Computing Center 
U. Texas Austin 

2008 Keynote:     
José Munoz     

Deputy Office 
Director/ Senior 

Scientific Advisor 
NSF Office of 

Cyberinfrastructure 

2009 Keynote: 
Douglass Post  
Chief Scientist         

US Dept of Defense       
HPC Modernization 

Program 

FREE! Wed Oct 2 2013 @ OU 
Over 235 registra2ons already! 

Over 150 in the first day, over 200 in the first week, 
over 225 in the first month. 

http://symposium2013.oscer.ou.edu/ 

Reception/Poster Session 
Tue Oct 1 2013 @ OU 

Symposium Wed Oct 2 2013 @ OU 

2010 Keynote: 
Horst Simon  

Deputy Director         
Lawrence Berkeley 
National Laboratory 

2013 Keynote     
to be announced! 
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2011 Keynote: 
Barry Schneider  

Program Manager         
National Science 

Foundation 

2012 Keynote: 
Thom Dunning  

Director        
National Center for 

Supercomputing 
Applications 

http://symposium2013.oscer.ou.edu/
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Outline 
 Dependency Analysis 

 What is Dependency Analysis? 
 Control Dependencies 
 Data Dependencies 

 Stupid Compiler Tricks 
 Tricks the Compiler Plays 
 Tricks You Play With the Compiler 
 Profiling 



Dependency Analysis 
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What Is Dependency Analysis? 
Dependency analysis describes of how different parts of a 

program affect one another, and how various parts require 
other parts in order to operate correctly. 

A control dependency governs how different sequences of 
instructions affect each other. 

A data dependency governs how different pieces of data affect 
each other. 

Much of this discussion is from references [1] and [6]. 
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Control Dependencies 
Every program has a well-defined flow of control that moves 

from instruction to instruction to instruction. 
This flow can be affected by several kinds of operations: 

 Loops 
 Branches (if, select case/switch) 
 Function/subroutine calls 
 I/O (typically implemented as calls) 

Dependencies affect parallelization! 
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Branch Dependency (F90) 
y = 7 
IF (x /= 0) THEN 
    y = 1.0 / x 
END IF 
Note that (x /= 0) means “x not equal to zero.” 
The value of y depends on what the condition (x /= 0) 

evaluates to: 
 If the condition (x /= 0) evaluates to .TRUE., 

then y is set to 1.0 / x. (1 divided by x). 
 Otherwise, y remains 7. 
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Branch Dependency (C) 
y = 7; 
if (x != 0) { 
    y = 1.0 / x; 
} 
Note that (x != 0) means “x not equal to zero.” 
The value of y depends on what the condition (x != 0) 

evaluates to: 
 If the condition (x != 0) evaluates to true, then 
y is set to 1.0 / x (1 divided by x). 

 Otherwise, y remains 7. 
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Loop Carried Dependency (F90) 
DO i = 2, length 
  a(i) = a(i-1) + b(i) 
END DO 
Here, each iteration of the loop depends on the previous:    

iteration i=3 depends on iteration i=2,                         
iteration i=4 depends on iteration i=3,                         
iteration i=5 depends on iteration i=4, etc. 

This is sometimes called a loop carried dependency. 
There is no way to execute iteration i until after iteration i-1 has 

completed, so this loop can’t be parallelized.  
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Loop Carried Dependency (C) 
for (i = 1; i < length; i++) { 
  a[i] = a[i-1] + b[i]; 
} 
Here, each iteration of the loop depends on the previous:    

iteration i=3 depends on iteration i=2,                         
iteration i=4 depends on iteration i=3,                         
iteration i=5 depends on iteration i=4, etc. 

This is sometimes called a loop carried dependency. 
There is no way to execute iteration i until after iteration i-1 has 

completed, so this loop can’t be parallelized.  



Supercomputing in Plain English: Compilers 
Tue Feb 12 2013 26 

Why Do We Care? 
Loops are the favorite control structures of High Performance 

Computing, because compilers know how to optimize their 
performance using instruction-level parallelism:  
superscalar, pipelining and vectorization can give excellent 
speedup. 

Loop carried dependencies affect whether a loop can be 
parallelized, and how much. 
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Loop or Branch Dependency? (F) 
Is this a loop carried dependency or a      

branch dependency? 
 
DO i = 1, length 
  IF (x(i) /= 0) THEN 
    y(i) = 1.0 / x(i) 
  END IF 
END DO 
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Loop or Branch Dependency? (C) 
Is this a loop carried dependency or a      

branch dependency? 
 
for (i = 0; i < length; i++) { 
  if (x[i] != 0) { 
    y[i] = 1.0 / x[i]; 
  } 
} 
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Call Dependency Example (F90) 
x = 5 
y = myfunction(7) 
z = 22 
The flow of the program is interrupted by the call to 
myfunction, which takes the execution to somewhere 
else in the program. 

It’s similar to a branch dependency. 
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Call Dependency Example (C) 
x = 5; 
y = myfunction(7); 
z = 22; 
The flow of the program is interrupted by the call to 
myfunction, which takes the execution to somewhere 
else in the program. 

It’s similar to a branch dependency. 
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I/O Dependency (F90) 
x = a + b 
PRINT *, x 
y = c + d 
 
Typically, I/O is implemented by hidden subroutine calls, so 

we can think of this as equivalent to a call dependency. 
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I/O Dependency (C) 
x = a + b; 
printf("%f", x); 
y = c + d; 
 
Typically, I/O is implemented by hidden subroutine calls, so 

we can think of this as equivalent to a call dependency. 
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Reductions Aren’t Dependencies 
array_sum = 0 
DO i = 1, length 
  array_sum = array_sum + array(i) 
END DO 
A reduction is an operation that converts an array to a scalar. 
Other kinds of reductions:  product, .AND., .OR., minimum, 

maximum, index of minimum, index of maximum, number of 
occurrences of a particular value, etc. 

Reductions are so common that hardware and compilers are 
optimized to handle them. 

Also, they aren’t really dependencies, because the order in 
which the individual operations are performed doesn’t matter. 
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Reductions Aren’t Dependencies 
array_sum = 0; 
for (i = 0; i < length; i++) { 
  array_sum = array_sum + array[i]; 
} 
A reduction is an operation that converts an array to a scalar. 
Other kinds of reductions:  product, &&, ||, minimum, 

maximum, index of minimum, index of maximum, number of 
occurrences of a particular value, etc. 

Reductions are so common that hardware and compilers are 
optimized to handle them. 

Also, they aren’t really dependencies, because the order in 
which the individual operations are performed doesn’t matter. 
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Data Dependencies (F90) 
“A data dependence occurs when an instruction is dependent 

on data from a previous instruction and therefore cannot be 
moved before the earlier instruction [or executed in 
parallel].” [7] 

a = x + y + cos(z) 
b = a * c 
The value of  b depends on the value of a, so these two 

statements must be executed in order. 



Supercomputing in Plain English: Compilers 
Tue Feb 12 2013 36 

Data Dependencies (C) 
“A data dependence occurs when an instruction is dependent 

on data from a previous instruction and therefore cannot be 
moved before the earlier instruction [or executed in 
parallel].” [7] 

a = x + y + cos(z); 
b = a * c; 
The value of  b depends on the value of a, so these two 

statements must be executed in order. 
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Output Dependencies (F90) 
x = a / b 
y = x + 2 
x = d – e 

Notice that x is assigned two different values, but only one 
of them is retained after these statements are done executing.  
In this context, the final value of x is the “output.” 
 
Again, we are forced to execute in order. 
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Output Dependencies (C) 
x = a / b; 
y = x + 2; 
x = d – e; 

Notice that x is assigned two different values, but only one 
of them is retained after these statements are done executing.  
In this context, the final value of x is the “output.” 
 
Again, we are forced to execute in order. 
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Why Does Order Matter? 
 Dependencies can affect whether we can execute a 

particular part of the program in parallel. 
 If we cannot execute that part of the program in parallel, 

then it’ll be SLOW.  
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Loop Dependency Example 
if ((dst == src1) && (dst == src2)) { 
  for (index = 1; index < length; index++) { 
    dst[index] = dst[index-1] + dst[index]; 
  } 
} 
else if (dst == src1) { 
  for (index = 1; index < length; index++) { 
    dst[index] = dst[index-1] + src2[index]; 
  } 
} 
else if (dst == src2) { 
  for (index = 1; index < length; index++) { 
    dst[index] = src1[index-1] + dst[index]; 
  } 
} 
else if (src1 == src2) { 
  for (index = 1; index < length; index++) { 
    dst[index = src1[index-1] + src1[index]; 
  } 
} 
else { 
  for (index = 1; index < length; index++) { 
    dst[index] = src1[index-1] + src2[index]; 
  } 
} 
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Loop Dep Example (cont’d) 
if ((dst == src1) && (dst == src2)) { 
  for (index = 1; index < length; index++) { 
    dst[index] = dst[index-1] + dst[index]; 
  } 
} 
else if (dst == src1) { 
  for (index = 1; index < length; index++) { 
    dst[index] = dst[index-1] + src2[index]; 
  } 
} 
else if (dst == src2) { 
  for (index = 1; index < length; index++) { 
    dst[index] = src1[index-1] + dst[index]; 
  } 
} 
else if (src1 == src2) { 
  for (index = 1; index < length; index++) { 
    dst[index] = src1[index-1] + src1[index]; 
  } 
} 
else { 
  for (index = 1; index < length; index++) { 
    dst[index] = src1[index-1] + src2[index]; 
  } 
} 
 

The various versions of the loop either: 
 do      have loop carried dependencies, or 
 don’t have loop carried dependencies. 
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Loop Dependency Performance 
Loop Carried Dependency Performance
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Stupid Compiler 
Tricks 
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Stupid Compiler Tricks 
 Tricks Compilers Play 

 Scalar Optimizations 
 Loop Optimizations 
 Inlining 

 Tricks You Can Play with Compilers 
 Profiling 
 Hardware counters 
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Compiler Design 
The people who design compilers have a lot of experience 

working with the languages commonly used in High 
Performance Computing: 
 Fortran: 50+ years 
 C:          40+ years 
 C++:     25+ years, plus C experience 

So, they’ve come up with clever ways to make programs 
run faster. 



Tricks Compilers Play 
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Scalar Optimizations 
 Copy Propagation 
 Constant Folding 
 Dead Code Removal 
 Strength Reduction 
 Common Subexpression Elimination 
 Variable Renaming 
 Loop Optimizations 
Not every compiler does all of these, so it sometimes can be 

worth doing these by hand. 
Much of this discussion is from [2] and [6]. 
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Copy Propagation (F90) 
x = y 
z = 1 + x 

x = y 
z = 1 + y 

Has data dependency 

No data dependency 

Compile 

Before 

After 
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Copy Propagation (C) 
x = y; 
z = 1 + x; 

x = y; 
z = 1 + y; 

Has data dependency 

No data dependency 

Compile 

Before 

After 
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Constant Folding (F90) 

add = 100 
aug = 200 
sum = add + aug 

Notice that  sum  is actually the sum of two constants, so the 
compiler can precalculate it, eliminating the addition that 
otherwise would be performed at runtime. 

sum = 300 

Before After 
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Constant Folding (C) 

add = 100; 
aug = 200; 
sum = add + aug; 

Notice that  sum  is actually the sum of two constants, so the 
compiler can precalculate it, eliminating the addition that 
otherwise would be performed at runtime. 

sum = 300; 

Before After 
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Dead Code Removal (F90) 

var = 5 
PRINT *, var 
STOP 
PRINT *, var * 2 

Since the last statement never executes, the compiler can 
eliminate it. 

var = 5 
PRINT *, var 
STOP 

Before After 
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Dead Code Removal (C) 

var = 5; 
printf("%d", var); 
exit(-1); 
printf("%d", var * 2); 

Since the last statement never executes, the compiler can 
eliminate it. 

var = 5; 
printf("%d", var); 
exit(-1); 

Before After 
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Strength Reduction (F90) 

x = y ** 2.0 
a = c /  2.0 

x = y * y 
a = c * 0.5 

Before After 

Raising one value to the power of another, or dividing, is more 
expensive than multiplying.  If the compiler can tell that the 
power is a small integer, or that the denominator is a constant, 
it’ll use multiplication instead. 
 
Note: In Fortran, “y ** 2.0” means “y to the power 2.” 
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Strength Reduction (C) 

x = pow(y, 2.0); 
a = c /  2.0; 

x = y * y; 
a = c * 0.5; 

Before After 

Raising one value to the power of another, or dividing, is more 
expensive than multiplying.  If the compiler can tell that the 
power is a small integer, or that the denominator is a constant, 
it’ll use multiplication instead. 
 
Note: In C, “pow(y, 2.0)” means “y to the power 2.” 
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Common Subexpression Elimination (F90) 

d = c * (a / b) 
e = (a / b) * 2.0 

adivb = a / b 
d = c * adivb 
e = adivb * 2.0 

Before After 

The subexpression (a / b) occurs in both assignment 
statements, so there’s no point in calculating it twice. 
 
This is typically only worth doing if the common 
subexpression is expensive to calculate. 
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Common Subexpression Elimination (C) 

d = c * (a / b); 
e = (a / b) * 2.0; 

adivb = a / b; 
d = c * adivb; 
e = adivb * 2.0; 

Before After 

The subexpression (a / b) occurs in both assignment 
statements, so there’s no point in calculating it twice. 
 
This is typically only worth doing if the common 
subexpression is expensive to calculate. 
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Variable Renaming (F90) 

x = y * z 
q = r + x * 2 
x = a + b 

x0 = y * z 
q = r + x0 * 2 
x = a + b 

Before After 

The original code has an output dependency, while the new 
code doesn’t – but the final value of  x  is still correct. 
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Variable Renaming (C) 

x = y * z; 
q = r + x * 2; 
x = a + b; 

x0 = y * z; 
q = r + x0 * 2; 
x = a + b; 

Before After 

The original code has an output dependency, while the new 
code doesn’t – but the final value of  x  is still correct. 
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Loop Optimizations 
 Hoisting Loop Invariant Code 
 Unswitching 
 Iteration Peeling 
 Index Set Splitting 
 Loop Interchange 
 Unrolling 
 Loop Fusion 
 Loop Fission 
Not every compiler does all of these, so it sometimes can be 

worth doing some of these by hand. 
Much of this discussion is from [3] and [6]. 
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Hoisting Loop Invariant Code (F90) 
DO i = 1, n 
  a(i) = b(i) + c * d 
  e = g(n) 
END DO 

Before 

temp = c * d 
DO i = 1, n 
  a(i) = b(i) + temp 
END DO 
e = g(n) 

After 

Code that 
doesn’t change 
inside the loop is 
known as      
loop invariant. 
It doesn’t need 
to be calculated 
over and over. 
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Hoisting Loop Invariant Code (C) 
for (i = 0; i < n; i++) { 
  a[i] = b[i] + c * d; 
  e = g(n); 
} 

Before 

temp = c * d; 
for (i = 0; i < n; i++) { 
  a[i] = b[i] + temp; 
} 
e = g(n); 

After 

Code that 
doesn’t change 
inside the loop is 
known as      
loop invariant. 
It doesn’t need 
to be calculated 
over and over. 
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Unswitching (F90) 
DO i = 1, n 
  DO j = 2, n 
    IF (t(i) > 0) THEN 
      a(i,j) = a(i,j) * t(i) + b(j) 
    ELSE 
      a(i,j) = 0.0 
    END IF 
  END DO 
END DO  
DO i = 1, n 
  IF (t(i) > 0) THEN 
    DO j = 2, n 
      a(i,j) = a(i,j) * t(i) + b(j) 
    END DO 
  ELSE 
    DO j = 2, n 
      a(i,j) = 0.0 
    END DO 
  END IF 
END DO 
 

Before 

After 

The condition is 
j-independent. 

So, it can migrate 
outside the j loop. 
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Unswitching (C) 
for (i = 0; i < n; i++) { 
  for (j = 1; j < n; j++) { 
    if (t[i] > 0) 
      a[i][j] = a[i][j] * t[i] + b[j]; 
    } 
    else { 
      a[i][j] = 0.0; 
    } 
  } 
}  
for (i = 0; i < n; i++) { 
  if (t[i] > 0) { 
    for (j = 1; j < n; j++) { 
      a[i][j] = a[i][j] * t[i] + b[j]; 
    } 
  } 
  else { 
    for (j = 1; j < n; j++) { 
      a[i][j] = 0.0; 
    } 
  } 
} 
 

Before 

After 

The condition is 
j-independent. 

So, it can migrate 
outside the j loop. 
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Iteration Peeling (F90) 
DO i = 1, n 
  IF ((i == 1) .OR. (i == n)) THEN 
    x(i) = y(i) 
  ELSE 
    x(i) = y(i + 1) + y(i – 1) 
  END IF 
END DO 

x(1) = y(1) 
DO i = 2, n - 1 
  x(i) = y(i + 1) + y(i – 1) 
END DO 
x(n) = y(n) 

Before 

After 

We can eliminate the IF by peeling the weird iterations. 
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Iteration Peeling (C) 
for (i = 0; i < n; i++) { 
  if ((i == 0) || (i == (n – 1))) { 
    x[i] = y[i]; 
  } 
  else { 
    x[i] = y[i + 1] + y[i – 1]; 
  } 
} 

x[0] = y[0]; 
for (i = 1; i < n – 1; i++) { 
  x[i] = y[i + 1] + y[i – 1]; 
} 
x[n-1] = y[n-1]; 

Before 

After 

We can eliminate the IF by peeling the weird iterations. 
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Index Set Splitting (F90) 
DO i = 1, n 
  a(i) = b(i) + c(i) 
  IF (i > 10) THEN 
    d(i) = a(i) + b(i – 10) 
  END IF 
END DO 
 
DO i = 1, 10 
  a(i) = b(i) + c(i) 
END DO 
DO i = 11, n 
  a(i) = b(i) + c(i) 
  d(i) = a(i) + b(i – 10) 
END DO 

Before 

After 

Note that this is a generalization of peeling. 
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Index Set Splitting (C) 
for (i = 0; i < n; i++) { 
  a[i] = b[i] + c[i]; 
  if (i >= 10) { 
    d[i] = a[i] + b[i – 10]; 
  } 
} 
 
for (i = 0; i < 10; i++) { 
  a[i] = b[i] + c[i]; 
} 
for (i = 10; i < n; i++) { 
  a[i] = b[i] + c[i]; 
  d[i] = a[i] + b[i – 10]; 
} 

Before 

After 

Note that this is a generalization of peeling. 
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Loop Interchange (F90) 

DO i = 1, ni 
  DO j = 1, nj 
    a(i,j) = b(i,j) 
  END DO 
END DO 

DO j = 1, nj 
  DO i = 1, ni 
    a(i,j) = b(i,j) 
  END DO 
END DO 

Array elements  a(i,j) and  a(i+1,j) are near each 
other in memory, while a(i,j+1) may be far, so it makes 
sense to make the  i  loop be the inner loop. (This is 
reversed in C, C++ and Java.) 

Before After 
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Loop Interchange (C) 

for (j = 0; j < nj; j++) { 
  for (i = 0; i < ni; i++) { 
    a[i][j] = b[i][j]; 
  } 
} 

for (i = 0; i < ni; i++) { 
  for (j = 0; j < nj; j++) { 
    a[i][j] = b[i][j]; 
  } 
} 

Array elements  a[i][j] and  a[i][j+1] are near each 
other in memory, while a[i+1][j] may be far, so it makes 
sense to make the  j  loop be the inner loop. (This is 
reversed in Fortran.) 

Before After 
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Unrolling (F90) 
DO i = 1, n 
  a(i) = a(i)+b(i) 
END DO 

DO i = 1, n, 4 
  a(i)   = a(i)   + b(i) 
  a(i+1) = a(i+1) + b(i+1) 
  a(i+2) = a(i+2) + b(i+2) 
  a(i+3) = a(i+3) + b(i+3) 
END DO 

Before 

After 

You generally shouldn’t unroll by hand. 
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Unrolling (C) 
for (i = 0; i < n; i++) { 
  a[i] = a[i] + b[i]; 
} 

for (i = 0; i < n; i += 4) { 
  a[i]   = a[i]   + b[i]; 
  a[i+1] = a[i+1] + b[i+1]; 
  a[i+2] = a[i+2] + b[i+2]; 
  a[i+3] = a[i+3] + b[i+3]; 
} 

Before 

After 

You generally shouldn’t unroll by hand. 
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Why Do Compilers Unroll? 
We saw last time that a loop with a lot of operations gets 

better performance (up to some point), especially if there 
are lots of arithmetic operations but few main memory 
loads and stores. 

Unrolling creates multiple operations that typically load from 
the same, or adjacent, cache lines. 

So, an unrolled loop has more operations without increasing 
the memory accesses by much. 

Also, unrolling decreases the number of comparisons on the 
loop counter variable, and the number of branches to the 
top of the loop. 
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Loop Fusion (F90) 
DO i = 1, n 
  a(i) = b(i) + 1 
END DO 
DO i = 1, n 
  c(i) = a(i) / 2 
END DO 
DO i = 1, n 
  d(i) = 1 / c(i) 
END DO 
 
DO i = 1, n 
  a(i) = b(i) + 1 
  c(i) = a(i) / 2 
  d(i) = 1 / c(i) 
END DO 
 

As with unrolling, this has fewer branches. It also has fewer 
total memory references. 

Before 

After 
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Loop Fusion (C) 
for (i = 0; i < n; i++) { 
  a[i] = b[i] + 1; 
} 
for (i = 0; i < n; i++) { 
  c[i] = a[i] / 2; 
} 
for (i = 0; i < n; i++) { 
  d[i] = 1 / c[i]; 
} 
 
for (i = 0; i < n; i++) { 
  a[i] = b[i] + 1; 
  c[i] = a[i] / 2; 
  d[i] = 1 / c[i]; 
} 
 

As with unrolling, this has fewer branches. It also has fewer 
total memory references. 

Before 

After 
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Loop Fission (F90) 
DO i = 1, n 
  a(i) = b(i) + 1 
  c(i) = a(i) / 2 
  d(i) = 1 / c(i) 
END DO 
 
DO i = 1, n 
  a(i) = b(i) + 1 
END DO 
DO i = 1, n 
  c(i) = a(i) / 2 
END DO 
DO i = 1, n 
  d(i) = 1 / c(i) 
END DO 
 

Fission reduces the cache footprint and the number of 
operations per iteration. 

Before 

After 
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Loop Fission (C) 
for (i = 0; i < n; i++) { 
  a[i] = b[i] + 1; 
  c[i] = a[i] / 2; 
  d[i] = 1 / c[i]; 
} 
 
for (i = 0; i < n; i++) { 
  a[i] = b[i] + 1; 
} 
for (i = 0; i < n; i++) { 
  c[i] = a[i] / 2; 
} 
for (i = 0; i < n; i++) { 
  d[i] = 1 / c[i]; 
} 
 

Fission reduces the cache footprint and the number of 
operations per iteration. 

Before 

After 
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To Fuse or to Fizz? 
The question of when to perform fusion versus when to 

perform fission, like many many optimization questions, is 
highly dependent on the application, the platform and a lot 
of other issues that get very, very complicated. 

Compilers don’t always make the right choices. 
That’s why it’s important to examine the actual behavior of the 

executable. 
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Inlining (F90) 

DO i = 1, n 
  a(i) = func(i) 
END DO 
… 
REAL FUNCTION func (x) 
  … 
  func = x * 3 
END FUNCTION func 

DO i = 1, n 
  a(i) = i * 3 
END DO 

Before After 

When a function or subroutine is inlined, its contents are 
transferred directly into the calling routine, eliminating the 
overhead of making the call. 
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Inlining (C) 

for (i = 0; 
     i < n; i++) { 
  a[i] = func(i+1); 
} … 
float func (x) {   … 
  return x * 3; 
} 

for (i = 0; 
     i < n; i++) { 
  a[i] = (i+1) * 3; 
} 

Before After 

When a function or subroutine is inlined, its contents are 
transferred directly into the calling routine, eliminating the 
overhead of making the call. 



Tricks You Can Play 
with Compilers 
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The Joy of Compiler Options 
Every compiler has a different set of options that you can set. 
Among these are options that control single processor 

optimization:  superscalar, pipelining, vectorization, scalar 
optimizations, loop optimizations, inlining and so on. 
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Example Compile Lines 
 IBM XL 
  xlf90 –O –qmaxmem=-1 –qarch=auto 
       –qtune=auto –qcache=auto –qhot 
 Intel 
  ifort –O -march=corei7-avx -xAVX -xhost 
 Portland Group f90 
  pgf90 –O3 -tp=sandybridge 
 NAG f95 
  nagfor –O4 –Ounsafe 
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What Does the Compiler Do? #1 
Example: NAG nagfor compiler [4] 
  nagfor –O<level> source.f90 
Possible levels are –O0, -O1, -O2, -O3, -O4: 
  -O0    No optimisation. … 
  -O1    Minimal quick optimisation. 
  -O2    Normal optimisation. 
  -O3    Further optimisation. 
  -O4    Maximal optimisation. 

The man page is pretty cryptic. 
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What Does the Compiler Do? #2 
Example: Intel ifort compiler [5] 
  ifort –O<level> source.f90 
Possible levels are  –O0, -O1, -O2, -O3: 
  -O0    Disables all -O<n> optimizations. … 
  -O1    ... [E]nables optimizations for speed. … 
  -O2    … 
   Inlining of intrinsics. 
   Intra-file interprocedural optimizations, which include: 

inlining, constant propagation, forward substitution, routine 
attribute propagation, variable address-taken analysis, dead 
static function elimination, and removal of unreferenced 
variables. 

  -O3    Enables -O2 optimizations plus more aggressive 
optimizations, such as prefetching, scalar replacement, and  
loop  transformations. Enables optimizations for maximum 
speed, but does not guarantee higher performance unless loop 
and memory access transformations take place. … 
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Arithmetic Operation Speeds 
Ordered Arithmetic Operations
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Optimization Performance 

 Performance
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More Optimized Performance 

Performance
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Profiling 
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Profiling 
Profiling means collecting data about how a program executes. 
The two major kinds of profiling are: 

 Subroutine profiling 
 Hardware timing 
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Subroutine Profiling 
Subroutine profiling means finding out how much time is 

spent in each routine. 
The 90-10 Rule: Typically, a program spends 90% of its 

runtime in 10% of the code. 
Subroutine profiling tells you what parts of the program to 

spend time optimizing and what parts you can ignore. 
Specifically, at regular intervals (e.g., every millisecond), the 

program takes note of what instruction it’s currently on. 
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Profiling Example 
On GNU compilers systems: 
  gcc –O –g -pg … 
The –g -pg options tell the compiler to set the executable up 

to collect profiling information. 
Running the executable generates a file named gmon.out, 

which contains the profiling information. 
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Profiling Example (cont’d) 
When the run has completed, a file named gmon.out has 

been generated. 
Then: 
  gprof executable 
produces a list of all of the routines and how much time was 

spent in each. 
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Profiling Result 
 %   cumulative   self              self     total 
 time   seconds   seconds    calls  ms/call  ms/call  name 
 27.6      52.72    52.72   480000     0.11     0.11  longwave_ [5] 
 24.3      99.06    46.35      897    51.67    51.67  mpdata3_ [8] 
  7.9     114.19    15.13      300    50.43    50.43  turb_ [9] 
  7.2     127.94    13.75      299    45.98    45.98  turb_scalar_ [10] 
  4.7     136.91     8.96      300    29.88    29.88  advect2_z_ [12] 
  4.1     144.79     7.88      300    26.27    31.52  cloud_ [11] 
  3.9     152.22     7.43      300    24.77   212.36  radiation_ [3] 
  2.3     156.65     4.43      897     4.94    56.61  smlr_ [7] 
  2.2     160.77     4.12      300    13.73    24.39  tke_full_ [13] 
  1.7     163.97     3.20      300    10.66    10.66  shear_prod_ [15] 
  1.5     166.79     2.82      300     9.40     9.40  rhs_ [16] 
  1.4     169.53     2.74      300     9.13     9.13  advect2_xy_ [17] 
  1.3     172.00     2.47      300     8.23    15.33  poisson_ [14] 
  1.2     174.27     2.27   480000     0.00     0.12  long_wave_ [4] 
  1.0     176.13     1.86      299     6.22   177.45  advect_scalar_ [6] 
  0.9     177.94     1.81      300     6.04     6.04  buoy_ [19] 

... 
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