
Supercomputing
in Plain English

Stupid Compiler Tricks
Henry Neeman, Director

OU Supercomputing Center for Education & Research (OSCER)
University of Oklahoma
Tuesday February 12 2013

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 2

This is an experiment!
It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone
bridge to fall back on.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 3

H.323 (Polycom etc) #1
If you want to use H.323 videoconferencing – for example,

Polycom – then:
 If you AREN’T registered with the OneNet gatekeeper (which

is probably the case), then:
 Dial 164.58.250.47
 Bring up the virtual keypad.

On some H.323 devices, you can bring up the virtual keypad by typing:

(You may want to try without first, then with; some devices won't work
with the #, but give cryptic error messages about it.)

 When asked for the conference ID, or if there's no response, enter:
0409

 On most but not all H.323 devices, you indicate the end of the ID with:

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 4

H.323 (Polycom etc) #2
If you want to use H.323 videoconferencing – for example,

Polycom – then:
 If you ARE already registered with the OneNet gatekeeper

(most institutions aren’t), dial:
 2500409

Many thanks to Skyler Donahue and Steven Haldeman of OneNet
for providing this.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 5

Wowza #1
You can watch from a Windows, MacOS or Linux laptop using

Wowza from either of the following URLs:

http://www.onenet.net/technical-resources/video/sipe-stream/

OR
https://vcenter.njvid.net/videos/livestreams/page1/

Wowza behaves a lot like YouTube, except live.

Many thanks to Skyler Donahue and Steven Haldeman of OneNet

and Bob Gerdes of Rutgers U for providing this.

http://www.onenet.net/technical-resources/video/sipe-stream/
https://vcenter.njvid.net/videos/livestreams/page1/

Wowza #2
Wowza has been tested on multiple browsers on each of:
 Windows (7 and 8): IE, Firefox, Chrome, Opera, Safari
 MacOS X: Safari, Firefox
 Linux: Firefox, Opera
We’ve also successfully tested it on devices with:
 Android
 iOS
However, we make no representations on the likelihood of it
working on your device, because we don’t know which
versions of Android or iOS it might or might not work with.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 6

Wowza #3
If one of the Wowza URLs fails, try switching over to the other
one.

If we lose our network connection between OU and OneNet,
then there may be a slight delay while we set up a direct
connection to Rutgers.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 7

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 8

Toll Free Phone Bridge
IF ALL ELSE FAILS, you can use our toll free phone bridge:

800-832-0736
* 623 2847 #

Please mute yourself and use the phone to listen.
Don’t worry, we’ll call out slide numbers as we go.
Please use the phone bridge ONLY if you cannot connect any

other way: the phone bridge can handle only 100
simultaneous connections, and we have over 350 participants.

Many thanks to OU CIO Loretta Early for providing the toll free
phone bridge.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 9

Please Mute Yourself
No matter how you connect, please mute yourself, so that we

cannot hear you.
(For Wowza, you don’t need to do that, because the

information only goes from us to you, not from you to us.)
At OU, we will turn off the sound on all conferencing

technologies.
That way, we won’t have problems with echo cancellation.
Of course, that means we cannot hear questions.
So for questions, you’ll need to send e-mail.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 10

Questions via E-mail Only
Ask questions by sending e-mail to:

sipe2013@gmail.com

All questions will be read out loud and then answered out loud.

mailto:sipe2013@gmail.com

TENTATIVE Schedule
Tue Jan 29: Compilers: What the Heck is Supercomputing?
Tue Jan 29: The Tyranny of the Storage Hierarchy
Tue Feb 12: Instruction Level Parallelism
Tue Feb 12: Stupid Compiler Tricks
Tue Feb 19: Shared Memory Multithreading
Tue Feb 26: Distributed Multiprocessing
Tue March 5: Applications and Types of Parallelism
Tue March 12: Multicore Madness
Tue March 19: NO SESSION (OU's Spring Break)
Tue March 26: High Throughput Computing
Tue Apr 2: GPGPU: Number Crunching in Your Graphics Card
Tue Apr 9: Grab Bag: Scientific Libraries, I/O Libraries,
Visualization

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 11

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 12

Supercomputing Exercises #1
Want to do the “Supercomputing in Plain English” exercises?
 The 3rd exercise will be posted soon at:

http://www.oscer.ou.edu/education/
 If you don’t yet have a supercomputer account, you can get

a temporary account, just for the “Supercomputing in Plain
English” exercises, by sending e-mail to:

hneeman@ou.edu
Please note that this account is for doing the exercises only,

and will be shut down at the end of the series. It’s also
available only to those at institutions in the USA.

 This week’s Introductory exercise will teach you how to
compile and run jobs on OU’s big Linux cluster
supercomputer, which is named Boomer.

http://www.oscer.ou.edu/education/
mailto:hneeman@ou.edu

Supercomputing Exercises #2
You’ll be doing the exercises on your own (or you can work
with others at your local institution if you like).
These aren’t graded, but we’re available for questions:

hneeman@ou.edu

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 13

mailto:hneeman@ou.edu

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 14

Thanks for helping!
 OU IT

 OSCER operations staff (Brandon George, Dave Akin, Brett Zimmerman,
Josh Alexander, Patrick Calhoun)

 Horst Severini, OSCER Associate Director for Remote & Heterogeneous
Computing

 Debi Gentis, OU Research IT coordinator
 Kevin Blake, OU IT (videographer)
 Chris Kobza, OU IT (learning technologies)
 Mark McAvoy

 Kyle Keys, OU National Weather Center
 James Deaton, Skyler Donahue and Steven Haldeman, OneNet
 Bob Gerdes, Rutgers U
 Lisa Ison, U Kentucky
 Paul Dave, U Chicago

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 15

This is an experiment!
It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone
bridge to fall back on.

Coming in 2013!
From Computational Biophysics to Systems Biology, May 19-21,

Norman OK
Great Plains Network Annual Meeting, May 29-31, Kansas City
XSEDE2013, July 22-25, San Diego CA
IEEE Cluster 2013, Sep 23-27, Indianapolis IN
OKLAHOMA SUPERCOMPUTING SYMPOSIUM 2013,

Oct 1-2, Norman OK
SC13, Nov 17-22, Denver CO

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 16

17

OK Supercomputing Symposium 2013

2006 Keynote:
Dan Atkins

Head of NSF’s
Office of

Cyberinfrastructure

2004 Keynote:
Sangtae Kim
NSF Shared

Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer & Information
Science & Engineering

Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

2008 Keynote:
José Munoz

Deputy Office
Director/ Senior

Scientific Advisor
NSF Office of

Cyberinfrastructure

2009 Keynote:
Douglass Post
Chief Scientist

US Dept of Defense
HPC Modernization

Program

FREE! Wed Oct 2 2013 @ OU
Over 235 registra2ons already!

Over 150 in the first day, over 200 in the first week,
over 225 in the first month.

http://symposium2013.oscer.ou.edu/

Reception/Poster Session
Tue Oct 1 2013 @ OU

Symposium Wed Oct 2 2013 @ OU

2010 Keynote:
Horst Simon

Deputy Director
Lawrence Berkeley
National Laboratory

2013 Keynote
to be announced!

Supercomputing in Plain English: Compilers
Tue Feb 12 2013

2011 Keynote:
Barry Schneider

Program Manager
National Science

Foundation

2012 Keynote:
Thom Dunning

Director
National Center for

Supercomputing
Applications

http://symposium2013.oscer.ou.edu/

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 18

Outline
 Dependency Analysis

 What is Dependency Analysis?
 Control Dependencies
 Data Dependencies

 Stupid Compiler Tricks
 Tricks the Compiler Plays
 Tricks You Play With the Compiler
 Profiling

Dependency Analysis

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 20

What Is Dependency Analysis?
Dependency analysis describes of how different parts of a

program affect one another, and how various parts require
other parts in order to operate correctly.

A control dependency governs how different sequences of
instructions affect each other.

A data dependency governs how different pieces of data affect
each other.

Much of this discussion is from references [1] and [6].

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 21

Control Dependencies
Every program has a well-defined flow of control that moves

from instruction to instruction to instruction.
This flow can be affected by several kinds of operations:

 Loops
 Branches (if, select case/switch)
 Function/subroutine calls
 I/O (typically implemented as calls)

Dependencies affect parallelization!

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 22

Branch Dependency (F90)
y = 7
IF (x /= 0) THEN
 y = 1.0 / x
END IF
Note that (x /= 0) means “x not equal to zero.”
The value of y depends on what the condition (x /= 0)

evaluates to:
 If the condition (x /= 0) evaluates to .TRUE.,

then y is set to 1.0 / x. (1 divided by x).
 Otherwise, y remains 7.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 23

Branch Dependency (C)
y = 7;
if (x != 0) {
 y = 1.0 / x;
}
Note that (x != 0) means “x not equal to zero.”
The value of y depends on what the condition (x != 0)

evaluates to:
 If the condition (x != 0) evaluates to true, then
y is set to 1.0 / x (1 divided by x).

 Otherwise, y remains 7.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 24

Loop Carried Dependency (F90)
DO i = 2, length
 a(i) = a(i-1) + b(i)
END DO
Here, each iteration of the loop depends on the previous:

iteration i=3 depends on iteration i=2,
iteration i=4 depends on iteration i=3,
iteration i=5 depends on iteration i=4, etc.

This is sometimes called a loop carried dependency.
There is no way to execute iteration i until after iteration i-1 has

completed, so this loop can’t be parallelized.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 25

Loop Carried Dependency (C)
for (i = 1; i < length; i++) {
 a[i] = a[i-1] + b[i];
}
Here, each iteration of the loop depends on the previous:

iteration i=3 depends on iteration i=2,
iteration i=4 depends on iteration i=3,
iteration i=5 depends on iteration i=4, etc.

This is sometimes called a loop carried dependency.
There is no way to execute iteration i until after iteration i-1 has

completed, so this loop can’t be parallelized.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 26

Why Do We Care?
Loops are the favorite control structures of High Performance

Computing, because compilers know how to optimize their
performance using instruction-level parallelism:
superscalar, pipelining and vectorization can give excellent
speedup.

Loop carried dependencies affect whether a loop can be
parallelized, and how much.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 27

Loop or Branch Dependency? (F)
Is this a loop carried dependency or a

branch dependency?

DO i = 1, length
 IF (x(i) /= 0) THEN
 y(i) = 1.0 / x(i)
 END IF
END DO

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 28

Loop or Branch Dependency? (C)
Is this a loop carried dependency or a

branch dependency?

for (i = 0; i < length; i++) {
 if (x[i] != 0) {
 y[i] = 1.0 / x[i];
 }
}

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 29

Call Dependency Example (F90)
x = 5
y = myfunction(7)
z = 22
The flow of the program is interrupted by the call to
myfunction, which takes the execution to somewhere
else in the program.

It’s similar to a branch dependency.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 30

Call Dependency Example (C)
x = 5;
y = myfunction(7);
z = 22;
The flow of the program is interrupted by the call to
myfunction, which takes the execution to somewhere
else in the program.

It’s similar to a branch dependency.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 31

I/O Dependency (F90)
x = a + b
PRINT *, x
y = c + d

Typically, I/O is implemented by hidden subroutine calls, so

we can think of this as equivalent to a call dependency.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 32

I/O Dependency (C)
x = a + b;
printf("%f", x);
y = c + d;

Typically, I/O is implemented by hidden subroutine calls, so

we can think of this as equivalent to a call dependency.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 33

Reductions Aren’t Dependencies
array_sum = 0
DO i = 1, length
 array_sum = array_sum + array(i)
END DO
A reduction is an operation that converts an array to a scalar.
Other kinds of reductions: product, .AND., .OR., minimum,

maximum, index of minimum, index of maximum, number of
occurrences of a particular value, etc.

Reductions are so common that hardware and compilers are
optimized to handle them.

Also, they aren’t really dependencies, because the order in
which the individual operations are performed doesn’t matter.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 34

Reductions Aren’t Dependencies
array_sum = 0;
for (i = 0; i < length; i++) {
 array_sum = array_sum + array[i];
}
A reduction is an operation that converts an array to a scalar.
Other kinds of reductions: product, &&, ||, minimum,

maximum, index of minimum, index of maximum, number of
occurrences of a particular value, etc.

Reductions are so common that hardware and compilers are
optimized to handle them.

Also, they aren’t really dependencies, because the order in
which the individual operations are performed doesn’t matter.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 35

Data Dependencies (F90)
“A data dependence occurs when an instruction is dependent

on data from a previous instruction and therefore cannot be
moved before the earlier instruction [or executed in
parallel].” [7]

a = x + y + cos(z)
b = a * c
The value of b depends on the value of a, so these two

statements must be executed in order.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 36

Data Dependencies (C)
“A data dependence occurs when an instruction is dependent

on data from a previous instruction and therefore cannot be
moved before the earlier instruction [or executed in
parallel].” [7]

a = x + y + cos(z);
b = a * c;
The value of b depends on the value of a, so these two

statements must be executed in order.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 37

Output Dependencies (F90)
x = a / b
y = x + 2
x = d – e

Notice that x is assigned two different values, but only one
of them is retained after these statements are done executing.
In this context, the final value of x is the “output.”

Again, we are forced to execute in order.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 38

Output Dependencies (C)
x = a / b;
y = x + 2;
x = d – e;

Notice that x is assigned two different values, but only one
of them is retained after these statements are done executing.
In this context, the final value of x is the “output.”

Again, we are forced to execute in order.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 39

Why Does Order Matter?
 Dependencies can affect whether we can execute a

particular part of the program in parallel.
 If we cannot execute that part of the program in parallel,

then it’ll be SLOW.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 40

Loop Dependency Example
if ((dst == src1) && (dst == src2)) {
 for (index = 1; index < length; index++) {
 dst[index] = dst[index-1] + dst[index];
 }
}
else if (dst == src1) {
 for (index = 1; index < length; index++) {
 dst[index] = dst[index-1] + src2[index];
 }
}
else if (dst == src2) {
 for (index = 1; index < length; index++) {
 dst[index] = src1[index-1] + dst[index];
 }
}
else if (src1 == src2) {
 for (index = 1; index < length; index++) {
 dst[index = src1[index-1] + src1[index];
 }
}
else {
 for (index = 1; index < length; index++) {
 dst[index] = src1[index-1] + src2[index];
 }
}

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 41

Loop Dep Example (cont’d)
if ((dst == src1) && (dst == src2)) {
 for (index = 1; index < length; index++) {
 dst[index] = dst[index-1] + dst[index];
 }
}
else if (dst == src1) {
 for (index = 1; index < length; index++) {
 dst[index] = dst[index-1] + src2[index];
 }
}
else if (dst == src2) {
 for (index = 1; index < length; index++) {
 dst[index] = src1[index-1] + dst[index];
 }
}
else if (src1 == src2) {
 for (index = 1; index < length; index++) {
 dst[index] = src1[index-1] + src1[index];
 }
}
else {
 for (index = 1; index < length; index++) {
 dst[index] = src1[index-1] + src2[index];
 }
}

The various versions of the loop either:
 do have loop carried dependencies, or
 don’t have loop carried dependencies.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 42

Loop Dependency Performance
Loop Carried Dependency Performance

0

20

40

60

80

100

120

140

160

180

200

dst=
src

1+
src

2

dst=
src

1+
src

1

dst=
dst+

src
2

dst=
src

1+
dst

dst=
dst+

dst

M
FL

O
Ps Pentium3 500 MHz

POWER4
Pentium4 2GHz
EM64T 3.2 GHz

Better

Stupid Compiler
Tricks

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 44

Stupid Compiler Tricks
 Tricks Compilers Play

 Scalar Optimizations
 Loop Optimizations
 Inlining

 Tricks You Can Play with Compilers
 Profiling
 Hardware counters

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 45

Compiler Design
The people who design compilers have a lot of experience

working with the languages commonly used in High
Performance Computing:
 Fortran: 50+ years
 C: 40+ years
 C++: 25+ years, plus C experience

So, they’ve come up with clever ways to make programs
run faster.

Tricks Compilers Play

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 47

Scalar Optimizations
 Copy Propagation
 Constant Folding
 Dead Code Removal
 Strength Reduction
 Common Subexpression Elimination
 Variable Renaming
 Loop Optimizations
Not every compiler does all of these, so it sometimes can be

worth doing these by hand.
Much of this discussion is from [2] and [6].

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 48

Copy Propagation (F90)
x = y
z = 1 + x

x = y
z = 1 + y

Has data dependency

No data dependency

Compile

Before

After

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 49

Copy Propagation (C)
x = y;
z = 1 + x;

x = y;
z = 1 + y;

Has data dependency

No data dependency

Compile

Before

After

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 50

Constant Folding (F90)

add = 100
aug = 200
sum = add + aug

Notice that sum is actually the sum of two constants, so the
compiler can precalculate it, eliminating the addition that
otherwise would be performed at runtime.

sum = 300

Before After

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 51

Constant Folding (C)

add = 100;
aug = 200;
sum = add + aug;

Notice that sum is actually the sum of two constants, so the
compiler can precalculate it, eliminating the addition that
otherwise would be performed at runtime.

sum = 300;

Before After

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 52

Dead Code Removal (F90)

var = 5
PRINT *, var
STOP
PRINT *, var * 2

Since the last statement never executes, the compiler can
eliminate it.

var = 5
PRINT *, var
STOP

Before After

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 53

Dead Code Removal (C)

var = 5;
printf("%d", var);
exit(-1);
printf("%d", var * 2);

Since the last statement never executes, the compiler can
eliminate it.

var = 5;
printf("%d", var);
exit(-1);

Before After

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 54

Strength Reduction (F90)

x = y ** 2.0
a = c / 2.0

x = y * y
a = c * 0.5

Before After

Raising one value to the power of another, or dividing, is more
expensive than multiplying. If the compiler can tell that the
power is a small integer, or that the denominator is a constant,
it’ll use multiplication instead.

Note: In Fortran, “y ** 2.0” means “y to the power 2.”

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 55

Strength Reduction (C)

x = pow(y, 2.0);
a = c / 2.0;

x = y * y;
a = c * 0.5;

Before After

Raising one value to the power of another, or dividing, is more
expensive than multiplying. If the compiler can tell that the
power is a small integer, or that the denominator is a constant,
it’ll use multiplication instead.

Note: In C, “pow(y, 2.0)” means “y to the power 2.”

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 56

Common Subexpression Elimination (F90)

d = c * (a / b)
e = (a / b) * 2.0

adivb = a / b
d = c * adivb
e = adivb * 2.0

Before After

The subexpression (a / b) occurs in both assignment
statements, so there’s no point in calculating it twice.

This is typically only worth doing if the common
subexpression is expensive to calculate.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 57

Common Subexpression Elimination (C)

d = c * (a / b);
e = (a / b) * 2.0;

adivb = a / b;
d = c * adivb;
e = adivb * 2.0;

Before After

The subexpression (a / b) occurs in both assignment
statements, so there’s no point in calculating it twice.

This is typically only worth doing if the common
subexpression is expensive to calculate.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 58

Variable Renaming (F90)

x = y * z
q = r + x * 2
x = a + b

x0 = y * z
q = r + x0 * 2
x = a + b

Before After

The original code has an output dependency, while the new
code doesn’t – but the final value of x is still correct.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 59

Variable Renaming (C)

x = y * z;
q = r + x * 2;
x = a + b;

x0 = y * z;
q = r + x0 * 2;
x = a + b;

Before After

The original code has an output dependency, while the new
code doesn’t – but the final value of x is still correct.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 60

Loop Optimizations
 Hoisting Loop Invariant Code
 Unswitching
 Iteration Peeling
 Index Set Splitting
 Loop Interchange
 Unrolling
 Loop Fusion
 Loop Fission
Not every compiler does all of these, so it sometimes can be

worth doing some of these by hand.
Much of this discussion is from [3] and [6].

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 61

Hoisting Loop Invariant Code (F90)
DO i = 1, n
 a(i) = b(i) + c * d
 e = g(n)
END DO

Before

temp = c * d
DO i = 1, n
 a(i) = b(i) + temp
END DO
e = g(n)

After

Code that
doesn’t change
inside the loop is
known as
loop invariant.
It doesn’t need
to be calculated
over and over.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 62

Hoisting Loop Invariant Code (C)
for (i = 0; i < n; i++) {
 a[i] = b[i] + c * d;
 e = g(n);
}

Before

temp = c * d;
for (i = 0; i < n; i++) {
 a[i] = b[i] + temp;
}
e = g(n);

After

Code that
doesn’t change
inside the loop is
known as
loop invariant.
It doesn’t need
to be calculated
over and over.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 63

Unswitching (F90)
DO i = 1, n
 DO j = 2, n
 IF (t(i) > 0) THEN
 a(i,j) = a(i,j) * t(i) + b(j)
 ELSE
 a(i,j) = 0.0
 END IF
 END DO
END DO
DO i = 1, n
 IF (t(i) > 0) THEN
 DO j = 2, n
 a(i,j) = a(i,j) * t(i) + b(j)
 END DO
 ELSE
 DO j = 2, n
 a(i,j) = 0.0
 END DO
 END IF
END DO

Before

After

The condition is
j-independent.

So, it can migrate
outside the j loop.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 64

Unswitching (C)
for (i = 0; i < n; i++) {
 for (j = 1; j < n; j++) {
 if (t[i] > 0)
 a[i][j] = a[i][j] * t[i] + b[j];
 }
 else {
 a[i][j] = 0.0;
 }
 }
}
for (i = 0; i < n; i++) {
 if (t[i] > 0) {
 for (j = 1; j < n; j++) {
 a[i][j] = a[i][j] * t[i] + b[j];
 }
 }
 else {
 for (j = 1; j < n; j++) {
 a[i][j] = 0.0;
 }
 }
}

Before

After

The condition is
j-independent.

So, it can migrate
outside the j loop.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 65

Iteration Peeling (F90)
DO i = 1, n
 IF ((i == 1) .OR. (i == n)) THEN
 x(i) = y(i)
 ELSE
 x(i) = y(i + 1) + y(i – 1)
 END IF
END DO

x(1) = y(1)
DO i = 2, n - 1
 x(i) = y(i + 1) + y(i – 1)
END DO
x(n) = y(n)

Before

After

We can eliminate the IF by peeling the weird iterations.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 66

Iteration Peeling (C)
for (i = 0; i < n; i++) {
 if ((i == 0) || (i == (n – 1))) {
 x[i] = y[i];
 }
 else {
 x[i] = y[i + 1] + y[i – 1];
 }
}

x[0] = y[0];
for (i = 1; i < n – 1; i++) {
 x[i] = y[i + 1] + y[i – 1];
}
x[n-1] = y[n-1];

Before

After

We can eliminate the IF by peeling the weird iterations.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 67

Index Set Splitting (F90)
DO i = 1, n
 a(i) = b(i) + c(i)
 IF (i > 10) THEN
 d(i) = a(i) + b(i – 10)
 END IF
END DO

DO i = 1, 10
 a(i) = b(i) + c(i)
END DO
DO i = 11, n
 a(i) = b(i) + c(i)
 d(i) = a(i) + b(i – 10)
END DO

Before

After

Note that this is a generalization of peeling.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 68

Index Set Splitting (C)
for (i = 0; i < n; i++) {
 a[i] = b[i] + c[i];
 if (i >= 10) {
 d[i] = a[i] + b[i – 10];
 }
}

for (i = 0; i < 10; i++) {
 a[i] = b[i] + c[i];
}
for (i = 10; i < n; i++) {
 a[i] = b[i] + c[i];
 d[i] = a[i] + b[i – 10];
}

Before

After

Note that this is a generalization of peeling.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 69

Loop Interchange (F90)

DO i = 1, ni
 DO j = 1, nj
 a(i,j) = b(i,j)
 END DO
END DO

DO j = 1, nj
 DO i = 1, ni
 a(i,j) = b(i,j)
 END DO
END DO

Array elements a(i,j) and a(i+1,j) are near each
other in memory, while a(i,j+1) may be far, so it makes
sense to make the i loop be the inner loop. (This is
reversed in C, C++ and Java.)

Before After

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 70

Loop Interchange (C)

for (j = 0; j < nj; j++) {
 for (i = 0; i < ni; i++) {
 a[i][j] = b[i][j];
 }
}

for (i = 0; i < ni; i++) {
 for (j = 0; j < nj; j++) {
 a[i][j] = b[i][j];
 }
}

Array elements a[i][j] and a[i][j+1] are near each
other in memory, while a[i+1][j] may be far, so it makes
sense to make the j loop be the inner loop. (This is
reversed in Fortran.)

Before After

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 71

Unrolling (F90)
DO i = 1, n
 a(i) = a(i)+b(i)
END DO

DO i = 1, n, 4
 a(i) = a(i) + b(i)
 a(i+1) = a(i+1) + b(i+1)
 a(i+2) = a(i+2) + b(i+2)
 a(i+3) = a(i+3) + b(i+3)
END DO

Before

After

You generally shouldn’t unroll by hand.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 72

Unrolling (C)
for (i = 0; i < n; i++) {
 a[i] = a[i] + b[i];
}

for (i = 0; i < n; i += 4) {
 a[i] = a[i] + b[i];
 a[i+1] = a[i+1] + b[i+1];
 a[i+2] = a[i+2] + b[i+2];
 a[i+3] = a[i+3] + b[i+3];
}

Before

After

You generally shouldn’t unroll by hand.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 73

Why Do Compilers Unroll?
We saw last time that a loop with a lot of operations gets

better performance (up to some point), especially if there
are lots of arithmetic operations but few main memory
loads and stores.

Unrolling creates multiple operations that typically load from
the same, or adjacent, cache lines.

So, an unrolled loop has more operations without increasing
the memory accesses by much.

Also, unrolling decreases the number of comparisons on the
loop counter variable, and the number of branches to the
top of the loop.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 74

Loop Fusion (F90)
DO i = 1, n
 a(i) = b(i) + 1
END DO
DO i = 1, n
 c(i) = a(i) / 2
END DO
DO i = 1, n
 d(i) = 1 / c(i)
END DO

DO i = 1, n
 a(i) = b(i) + 1
 c(i) = a(i) / 2
 d(i) = 1 / c(i)
END DO

As with unrolling, this has fewer branches. It also has fewer
total memory references.

Before

After

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 75

Loop Fusion (C)
for (i = 0; i < n; i++) {
 a[i] = b[i] + 1;
}
for (i = 0; i < n; i++) {
 c[i] = a[i] / 2;
}
for (i = 0; i < n; i++) {
 d[i] = 1 / c[i];
}

for (i = 0; i < n; i++) {
 a[i] = b[i] + 1;
 c[i] = a[i] / 2;
 d[i] = 1 / c[i];
}

As with unrolling, this has fewer branches. It also has fewer
total memory references.

Before

After

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 76

Loop Fission (F90)
DO i = 1, n
 a(i) = b(i) + 1
 c(i) = a(i) / 2
 d(i) = 1 / c(i)
END DO

DO i = 1, n
 a(i) = b(i) + 1
END DO
DO i = 1, n
 c(i) = a(i) / 2
END DO
DO i = 1, n
 d(i) = 1 / c(i)
END DO

Fission reduces the cache footprint and the number of
operations per iteration.

Before

After

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 77

Loop Fission (C)
for (i = 0; i < n; i++) {
 a[i] = b[i] + 1;
 c[i] = a[i] / 2;
 d[i] = 1 / c[i];
}

for (i = 0; i < n; i++) {
 a[i] = b[i] + 1;
}
for (i = 0; i < n; i++) {
 c[i] = a[i] / 2;
}
for (i = 0; i < n; i++) {
 d[i] = 1 / c[i];
}

Fission reduces the cache footprint and the number of
operations per iteration.

Before

After

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 78

To Fuse or to Fizz?
The question of when to perform fusion versus when to

perform fission, like many many optimization questions, is
highly dependent on the application, the platform and a lot
of other issues that get very, very complicated.

Compilers don’t always make the right choices.
That’s why it’s important to examine the actual behavior of the

executable.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 79

Inlining (F90)

DO i = 1, n
 a(i) = func(i)
END DO
…
REAL FUNCTION func (x)
 …
 func = x * 3
END FUNCTION func

DO i = 1, n
 a(i) = i * 3
END DO

Before After

When a function or subroutine is inlined, its contents are
transferred directly into the calling routine, eliminating the
overhead of making the call.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 80

Inlining (C)

for (i = 0;
 i < n; i++) {
 a[i] = func(i+1);
} …
float func (x) { …
 return x * 3;
}

for (i = 0;
 i < n; i++) {
 a[i] = (i+1) * 3;
}

Before After

When a function or subroutine is inlined, its contents are
transferred directly into the calling routine, eliminating the
overhead of making the call.

Tricks You Can Play
with Compilers

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 82

The Joy of Compiler Options
Every compiler has a different set of options that you can set.
Among these are options that control single processor

optimization: superscalar, pipelining, vectorization, scalar
optimizations, loop optimizations, inlining and so on.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 83

Example Compile Lines
 IBM XL
 xlf90 –O –qmaxmem=-1 –qarch=auto
 –qtune=auto –qcache=auto –qhot
 Intel
 ifort –O -march=corei7-avx -xAVX -xhost
 Portland Group f90
 pgf90 –O3 -tp=sandybridge
 NAG f95
 nagfor –O4 –Ounsafe

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 84

What Does the Compiler Do? #1
Example: NAG nagfor compiler [4]
 nagfor –O<level> source.f90
Possible levels are –O0, -O1, -O2, -O3, -O4:
 -O0 No optimisation. …
 -O1 Minimal quick optimisation.
 -O2 Normal optimisation.
 -O3 Further optimisation.
 -O4 Maximal optimisation.

The man page is pretty cryptic.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 85

What Does the Compiler Do? #2
Example: Intel ifort compiler [5]
 ifort –O<level> source.f90
Possible levels are –O0, -O1, -O2, -O3:
 -O0 Disables all -O<n> optimizations. …
 -O1 ... [E]nables optimizations for speed. …
 -O2 …
 Inlining of intrinsics.
 Intra-file interprocedural optimizations, which include:

inlining, constant propagation, forward substitution, routine
attribute propagation, variable address-taken analysis, dead
static function elimination, and removal of unreferenced
variables.

 -O3 Enables -O2 optimizations plus more aggressive
optimizations, such as prefetching, scalar replacement, and
loop transformations. Enables optimizations for maximum
speed, but does not guarantee higher performance unless loop
and memory access transformations take place. …

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 86

Arithmetic Operation Speeds
Ordered Arithmetic Operations

0

100

200

300

400

500

600

ra
dd

ia
dd

rs
um

is
um rs
ub

is
ub

rm
ul

im
ul

rm
am

im
am

rm
ad

im
ad

rd
iv

id
iv

rp
ow

im
od

rs
qr

t

rc
os

re
xp rlo

g i2
r

r2
i

M
FL

O
P/

s

Intel/Xeon PGI/Xeon NAG/Xeon xl/POWER4

Better

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 87

Optimization Performance

 Performance

0
10
20
30
40
50
60
70
80
ra

dd

ia
dd

rs
um

is
um rs
ub

is
ub

rm
ul

im
ul

rd
iv

id
iv

Operation

M
FL

O
P/

s

Pentium3 NAG O0 Pentium3 NAG O4 Pentium3 Vast no opt Pentium3 Vast opt

Better

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 88

More Optimized Performance

Performance

0

50

100

150

200

250
rm

am

im
am

rm
ad

im
ad rd
ot

re
uc

rlo
t8

rlo
t1

0

rlo
t1

2

rlo
t1

6

rlo
t2

0

rlo
t2

4

Operation

M
FL

O
P/

s

Pentium3 NAG O0 Pentium3 NAG 04
Pentium3 VAST no opt Pentium3 VAST opt

Better

Profiling

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 90

Profiling
Profiling means collecting data about how a program executes.
The two major kinds of profiling are:

 Subroutine profiling
 Hardware timing

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 91

Subroutine Profiling
Subroutine profiling means finding out how much time is

spent in each routine.
The 90-10 Rule: Typically, a program spends 90% of its

runtime in 10% of the code.
Subroutine profiling tells you what parts of the program to

spend time optimizing and what parts you can ignore.
Specifically, at regular intervals (e.g., every millisecond), the

program takes note of what instruction it’s currently on.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 92

Profiling Example
On GNU compilers systems:
 gcc –O –g -pg …
The –g -pg options tell the compiler to set the executable up

to collect profiling information.
Running the executable generates a file named gmon.out,

which contains the profiling information.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 93

Profiling Example (cont’d)
When the run has completed, a file named gmon.out has

been generated.
Then:
 gprof executable
produces a list of all of the routines and how much time was

spent in each.

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 94

Profiling Result
 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 27.6 52.72 52.72 480000 0.11 0.11 longwave_ [5]
 24.3 99.06 46.35 897 51.67 51.67 mpdata3_ [8]
 7.9 114.19 15.13 300 50.43 50.43 turb_ [9]
 7.2 127.94 13.75 299 45.98 45.98 turb_scalar_ [10]
 4.7 136.91 8.96 300 29.88 29.88 advect2_z_ [12]
 4.1 144.79 7.88 300 26.27 31.52 cloud_ [11]
 3.9 152.22 7.43 300 24.77 212.36 radiation_ [3]
 2.3 156.65 4.43 897 4.94 56.61 smlr_ [7]
 2.2 160.77 4.12 300 13.73 24.39 tke_full_ [13]
 1.7 163.97 3.20 300 10.66 10.66 shear_prod_ [15]
 1.5 166.79 2.82 300 9.40 9.40 rhs_ [16]
 1.4 169.53 2.74 300 9.13 9.13 advect2_xy_ [17]
 1.3 172.00 2.47 300 8.23 15.33 poisson_ [14]
 1.2 174.27 2.27 480000 0.00 0.12 long_wave_ [4]
 1.0 176.13 1.86 299 6.22 177.45 advect_scalar_ [6]
 0.9 177.94 1.81 300 6.04 6.04 buoy_ [19]

...

95

OK Supercomputing Symposium 2013

2006 Keynote:
Dan Atkins

Head of NSF’s
Office of

Cyberinfrastructure

2004 Keynote:
Sangtae Kim
NSF Shared

Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer & Information
Science & Engineering

Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

2008 Keynote:
José Munoz

Deputy Office
Director/ Senior

Scientific Advisor
NSF Office of

Cyberinfrastructure

2009 Keynote:
Douglass Post
Chief Scientist

US Dept of Defense
HPC Modernization

Program

FREE! Wed Oct 2 2013 @ OU
Over 235 registra2ons already!

Over 150 in the first day, over 200 in the first week,
over 225 in the first month.

http://symposium2013.oscer.ou.edu/

Reception/Poster Session
Tue Oct 1 2013 @ OU

Symposium Wed Oct 2 2013 @ OU

2010 Keynote:
Horst Simon

Deputy Director
Lawrence Berkeley
National Laboratory

2013 Keynote
to be announced!

Supercomputing in Plain English: Compilers
Tue Feb 12 2013

2011 Keynote:
Barry Schneider

Program Manager
National Science

Foundation

2012 Keynote:
Thom Dunning

Director
National Center for

Supercomputing
Applications

http://symposium2013.oscer.ou.edu/

Thanks for your
attention!

Questions?
www.oscer.ou.edu

http://www.oscer.ou.edu/

Supercomputing in Plain English: Compilers
Tue Feb 12 2013 97

References
[1] Kevin Dowd and Charles Severance, High Performance Computing,
 2nd ed. O’Reilly, 1998, p. 173-191.
[2] Ibid, p. 91-99.
[3] Ibid, p. 146-157.
[4] NAG f95 man page, version 5.1.
[5] Intel ifort man page, version 10.1.
[6] Michael Wolfe, High Performance Compilers for Parallel Computing,
Addison-Wesley Publishing Co., 1996.
[7] Kevin R. Wadleigh and Isom L. Crawford, Software Optimization for High
Performance Computing, Prentice Hall PTR, 2000, pp. 14-15.

	Supercomputing�in Plain English�Stupid Compiler Tricks
	This is an experiment!
	H.323 (Polycom etc) #1
	H.323 (Polycom etc) #2
	Wowza #1
	Wowza #2
	Wowza #3
	Toll Free Phone Bridge
	Please Mute Yourself
	Questions via E-mail Only
	TENTATIVE Schedule
	Supercomputing Exercises #1
	Supercomputing Exercises #2
	Thanks for helping!
	This is an experiment!
	Coming in 2013!
	OK Supercomputing Symposium 2013
	Outline
	Dependency Analysis
	What Is Dependency Analysis?
	Control Dependencies
	Branch Dependency (F90)
	Branch Dependency (C)
	Loop Carried Dependency (F90)
	Loop Carried Dependency (C)
	Why Do We Care?
	Loop or Branch Dependency? (F)
	Loop or Branch Dependency? (C)
	Call Dependency Example (F90)
	Call Dependency Example (C)
	I/O Dependency (F90)
	I/O Dependency (C)
	Reductions Aren’t Dependencies
	Reductions Aren’t Dependencies
	Data Dependencies (F90)
	Data Dependencies (C)
	Output Dependencies (F90)
	Output Dependencies (C)
	Why Does Order Matter?
	Loop Dependency Example
	Loop Dep Example (cont’d)
	Loop Dependency Performance
	Stupid Compiler Tricks
	Stupid Compiler Tricks
	Compiler Design
	Tricks Compilers Play
	Scalar Optimizations
	Copy Propagation (F90)
	Copy Propagation (C)
	Constant Folding (F90)
	Constant Folding (C)
	Dead Code Removal (F90)
	Dead Code Removal (C)
	Strength Reduction (F90)
	Strength Reduction (C)
	Common Subexpression Elimination (F90)
	Common Subexpression Elimination (C)
	Variable Renaming (F90)
	Variable Renaming (C)
	Loop Optimizations
	Hoisting Loop Invariant Code (F90)
	Hoisting Loop Invariant Code (C)
	Unswitching (F90)
	Unswitching (C)
	Iteration Peeling (F90)
	Iteration Peeling (C)
	Index Set Splitting (F90)
	Index Set Splitting (C)
	Loop Interchange (F90)
	Loop Interchange (C)
	Unrolling (F90)
	Unrolling (C)
	Why Do Compilers Unroll?
	Loop Fusion (F90)
	Loop Fusion (C)
	Loop Fission (F90)
	Loop Fission (C)
	To Fuse or to Fizz?
	Inlining (F90)
	Inlining (C)
	Tricks You Can Play with Compilers
	The Joy of Compiler Options
	Example Compile Lines
	What Does the Compiler Do? #1
	What Does the Compiler Do? #2
	Arithmetic Operation Speeds
	Optimization Performance
	More Optimized Performance
	Profiling
	Profiling
	Subroutine Profiling
	Profiling Example
	Profiling Example (cont’d)
	Profiling Result
	OK Supercomputing Symposium 2013
	Thanks for your attention!���Questions?�www.oscer.ou.edu
	References

