
Supercomputing

in Plain English

Stupid Compiler Tricks

Henry Neeman, Director
OU Supercomputing Center for Education & Research

University of Oklahoma Information Technology
Tuesday March 1 2011

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 2

This is an experiment!

It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!

NO PROMISES!

So, please bear with us. Hopefully everything will work out

well enough.

If you lose your connection, you can retry the same kind of

connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone

bridge to fall back on.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 3

Access Grid

If you aren’t sure whether you have AG, you probably don’t.

Tue March 1 Walkabout

Tue March 8 NO WORKSHOP

Tue March 15 NO WORKSHOP

Tue March 22 Axon

Tue March 29 NO WORKSHOP

Tue Apr 5 Axon

Tue Apr 12 Platinum

Tue Apr 19 Mosaic

Tue Apr 26 Monte Carlo

Tue May 3 Helium

Many thanks to

Patrick Calhoun

of OU for setting

these up for us.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 4

H.323 (Polycom etc)

From an H.323 device (e.g., Polycom, Tandberg, Lifesize, etc):

 If you ARE already registered with the OneNet gatekeeper:

Dial
2500409

 If you AREN'T registered with the OneNet gatekeeper (probably the case):

1. Dial:
164.58.250.47

2. Bring up the virtual keypad.

On some H.323 devices, you can bring up the virtual keypad by typing:
#

3. When asked for the conference ID, enter:
0409

4. On some H.323 devices, you indicate the end of conference ID with:
#

Many thanks to Roger Holder and OneNet for providing this.

http://www.polycom.com/
http://www.tandberg.com/
http://www.lifesize.com/
http://www.onenet.net/
http://www.onenet.net/

H.323 from Internet Explorer

From a Windows PC running Internet Explorer:

1. You MUST have the ability to install software on the PC (or have someone install it for you).

2. Download and install the latest Java Runtime Environment (JRE) from here:
http://www.oracle.com/technetwork/java/javase/downloads/

(Click on the Java Download icon, because that install package includes both the JRE and other

components.)

3. Download and install this video decoder:
http://164.58.250.47/codian_video_decoder.msi

4. Start Internet Explorer.

5. Copy-and-paste this URL into your IE window:
http://164.58.250.47/

6. When that webpage loads, in the upper left, click on “Streaming.”

7. In the textbox labeled Sign-in Name, type your name.

8. In the textbox labeled Conference ID, type this:
0409

9. Click on “Stream this conference.”

10. When that webpage loads, you may see, at the very top, a bar offering you options.

If so, click on it and choose “Install this add-on.”

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 5

http://www.oracle.com/technetwork/java/javase/downloads/
http://164.58.250.47/codian_video_decoder.msi
http://164.58.250.47/

H.323 from XMeeting (MacOS)

From a Mac running MacOS X:

1. Download XMeeting from
http://xmeeting.sourceforge.net/

2. Install XMeeting as follows:

a. Open the .dmg file.

b. Drag XMeeting into the Applications folder.

3. Open XMeeting from Applications.

4. Skip the setup wizard.

5. In the call box, type

164.58.250.47

6. Click the Call button.

7. From the Remote Control window, when prompted to join the conference,

enter :
0409#

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 6

http://xmeeting.sourceforge.net/

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 7

EVO

There’s a quick tutorial on the OSCER education webpage.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 8

QuickTime Broadcaster

If you cannot connect via the Access Grid, H.323 or iLinc,
then you can connect via QuickTime:

rtsp://129.15.254.141/test_hpc09.sdp

We recommend using QuickTime Player for this, because
we’ve tested it successfully.

We recommend upgrading to the latest version at:

http://www.apple.com/quicktime/

When you run QuickTime Player, traverse the menus

File -> Open URL

Then paste in the rstp URL into the textbox, and click OK.

Many thanks to Kevin Blake of OU for setting up QuickTime
Broadcaster for us.

http://www.apple.com/quicktime/

WebEx

We have only a limited number of WebEx connections, so

please avoid WebEx unless you have NO OTHER WAY

TO CONNECT.

Instructions are available on the OSCER education webpage.

Thanks to Tim Miller of Wake Forest U.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 9

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 10

Phone Bridge

If all else fails, you can call into our toll free phone bridge:

US: 1-800-832-0736, *6232874#

International: 303-330-0440, *6232874#

Please mute yourself and use the phone to listen.

Don’t worry, we’ll call out slide numbers as we go.

Please use the phone bridge ONLY if you cannot connect any

other way: the phone bridge is charged per connection per

minute, so our preference is to minimize the number of

connections.

Many thanks to Amy Apon and U Arkansas for providing the

previous toll free phone bridge.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 11

Please Mute Yourself

No matter how you connect, please mute yourself, so that we

cannot hear you.

At OU, we will turn off the sound on all conferencing

technologies.

That way, we won’t have problems with echo cancellation.

Of course, that means we cannot hear questions.

So for questions, you’ll need to send some kind of text.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 12

Questions via Text: iLinc or E-mail

Ask questions via e-mail to sipe2011@yahoo.com.

All questions will be read out loud and then answered out loud.

mailto:sipe2011@yahoo.com

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 13

Thanks for helping!

 OSCER operations staff: Brandon George, Dave Akin, Brett
Zimmerman, Josh Alexander

 Horst Severini, OSCER Associate Director for Remote &
Heterogeneous Computing

 OU Research Campus staff (Patrick Calhoun, Mark McAvoy)

 Kevin Blake, OU IT (videographer)

 John Chapman, Jeff Pummill and Amy Apon, U Arkansas

 James Deaton and Roger Holder, OneNet

 Tim Miller, Wake Forest U

 Jamie Hegarty Schwettmann, i11 Industries

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 14

This is an experiment!

It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!

NO PROMISES!

So, please bear with us. Hopefully everything will work out

well enough.

If you lose your connection, you can retry the same kind of

connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone

bridge to fall back on.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 15

Supercomputing Exercises

Want to do the “Supercomputing in Plain English” exercises?

 The first exercise is already posted at:

http://www.oscer.ou.edu/education.php

 If you don’t yet have a supercomputer account, you can get
a temporary account, just for the “Supercomputing in Plain
English” exercises, by sending e-mail to:

hneeman@ou.edu

Please note that this account is for doing the exercises only,
and will be shut down at the end of the series.

 This week’s Tiling exercise will give you experience
optimizing performance by finding the best tile size.

http://www.oscer.ou.edu/education.php
mailto:hneeman@ou.edu

Summer Workshops 2011

 In Summer 2011, there will be several workshops on HPC

and Computational and Data Enabled Science and

Engineering (CDESE) across the US.

 These will be weeklong intensives, running from Sunday

evening through Saturday morning.

 We’re currently working on where and when those

workshops will be held.

 Once we’ve got that worked out, we’ll announce them and

open up the registration website.

 One of them will be held at OU.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 16

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 17

OK Supercomputing Symposium 2011

2006 Keynote:

Dan Atkins

Head of NSF’s

Office of

Cyberinfrastructure

2004 Keynote:
Sangtae Kim

NSF Shared
Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer & Information
Science & Engineering

Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

2008 Keynote:
José Munoz

Deputy Office
Director/ Senior

Scientific Advisor
NSF Office of

Cyberinfrastructure

2009 Keynote:
Douglass Post
Chief Scientist

US Dept of Defense
HPC Modernization

Program

FREE! Wed Oct 12 2011 @ OU
Over 235 registratons already!

Over 150 in the first day, over 200 in the first week, over
225 in the first month.

http://symposium2011.oscer.ou.edu/

Parallel Programming Workshop

FREE! Tue Oct 11 2011 @ OU
FREE! Symposium Wed Oct 12 2011 @ OU2010 Keynote:

Horst Simon
Deputy Director

Lawrence Berkeley
National Laboratory

?
2011 Keynote

to be

announced

http://symposium2011.oscer.ou.edu/

SC11 Education Program

 At the SC11 supercomputing conference, we’ll hold our

annual Education Program, Sat Nov 12 – Tue Nov 15.

 You can apply to attend, either fully funded by SC11 or

self-funded.

 Henry is the SC11 Education Chair.

 We’ll alert everyone once the registration website opens.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 18

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 19

Outline

 Dependency Analysis

 What is Dependency Analysis?

 Control Dependencies

 Data Dependencies

 Stupid Compiler Tricks

 Tricks the Compiler Plays

 Tricks You Play With the Compiler

 Profiling

Dependency Analysis

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 21

What Is Dependency Analysis?

Dependency analysis describes of how different parts of a

program affect one another, and how various parts require

other parts in order to operate correctly.

A control dependency governs how different sequences of

instructions affect each other.

A data dependency governs how different pieces of data affect

each other.
Much of this discussion is from references [1] and [6].

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 22

Control Dependencies

Every program has a well-defined flow of control that moves

from instruction to instruction to instruction.

This flow can be affected by several kinds of operations:

 Loops

 Branches (if, select case/switch)

 Function/subroutine calls

 I/O (typically implemented as calls)

Dependencies affect parallelization!

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 23

Branch Dependency (F90)

y = 7

IF (x /= 0) THEN

y = 1.0 / x

END IF

Note that (x /= 0) means “x not equal to zero.”

The value of y depends on what the condition (x /= 0)
evaluates to:

 If the condition (x /= 0) evaluates to .TRUE.,
then y is set to 1.0 / x. (1 divided by x).

 Otherwise, y remains 7.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 24

Branch Dependency (C)

y = 7;

if (x != 0) {

y = 1.0 / x;

}

Note that (x != 0) means “x not equal to zero.”

The value of y depends on what the condition (x != 0)
evaluates to:

 If the condition (x != 0) evaluates to true, then
y is set to 1.0 / x (1 divided by x).

 Otherwise, y remains 7.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 25

Loop Carried Dependency (F90)

DO i = 2, length

a(i) = a(i-1) + b(i)

END DO

Here, each iteration of the loop depends on the previous:
iteration i=3 depends on iteration i=2,
iteration i=4 depends on iteration i=3,
iteration i=5 depends on iteration i=4, etc.

This is sometimes called a loop carried dependency.

There is no way to execute iteration i until after iteration i-1 has
completed, so this loop can’t be parallelized.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 26

Loop Carried Dependency (C)

for (i = 1; i < length; i++) {

a[i] = a[i-1] + b[i];

}

Here, each iteration of the loop depends on the previous:
iteration i=3 depends on iteration i=2,
iteration i=4 depends on iteration i=3,
iteration i=5 depends on iteration i=4, etc.

This is sometimes called a loop carried dependency.

There is no way to execute iteration i until after iteration i-1 has
completed, so this loop can’t be parallelized.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 27

Why Do We Care?

Loops are the favorite control structures of High Performance

Computing, because compilers know how to optimize their

performance using instruction-level parallelism:

superscalar, pipelining and vectorization can give excellent

speedup.

Loop carried dependencies affect whether a loop can be

parallelized, and how much.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 28

Loop or Branch Dependency? (F)

Is this a loop carried dependency or a

branch dependency?

DO i = 1, length

IF (x(i) /= 0) THEN

y(i) = 1.0 / x(i)

END IF

END DO

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 29

Loop or Branch Dependency? (C)

Is this a loop carried dependency or a

branch dependency?

for (i = 0; i < length; i++) {

if (x[i] != 0) {

y[i] = 1.0 / x[i];

}

}

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 30

Call Dependency Example (F90)

x = 5

y = myfunction(7)

z = 22

The flow of the program is interrupted by the call to

myfunction, which takes the execution to somewhere

else in the program.

It’s similar to a branch dependency.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 31

Call Dependency Example (C)

x = 5;

y = myfunction(7);

z = 22;

The flow of the program is interrupted by the call to

myfunction, which takes the execution to somewhere

else in the program.

It’s similar to a branch dependency.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 32

I/O Dependency (F90)

x = a + b

PRINT *, x

y = c + d

Typically, I/O is implemented by hidden subroutine calls, so
we can think of this as equivalent to a call dependency.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 33

I/O Dependency (C)

x = a + b;

printf("%f", x);

y = c + d;

Typically, I/O is implemented by hidden subroutine calls, so
we can think of this as equivalent to a call dependency.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 34

Reductions Aren’t Dependencies

array_sum = 0
DO i = 1, length

array_sum = array_sum + array(i)

END DO

A reduction is an operation that converts an array to a scalar.

Other kinds of reductions: product, .AND., .OR., minimum,
maximum, index of minimum, index of maximum, number of
occurrences of a particular value, etc.

Reductions are so common that hardware and compilers are
optimized to handle them.

Also, they aren’t really dependencies, because the order in
which the individual operations are performed doesn’t matter.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 35

Reductions Aren’t Dependencies

array_sum = 0;
for (i = 0; i < length; i++) {

array_sum = array_sum + array[i];

}

A reduction is an operation that converts an array to a scalar.

Other kinds of reductions: product, &&, ||, minimum,
maximum, index of minimum, index of maximum, number of
occurrences of a particular value, etc.

Reductions are so common that hardware and compilers are
optimized to handle them.

Also, they aren’t really dependencies, because the order in
which the individual operations are performed doesn’t matter.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 36

Data Dependencies (F90)

“A data dependence occurs when an instruction is dependent

on data from a previous instruction and therefore cannot be

moved before the earlier instruction [or executed in

parallel].” [7]

a = x + y + cos(z)

b = a * c

The value of b depends on the value of a, so these two

statements must be executed in order.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 37

Data Dependencies (C)

“A data dependence occurs when an instruction is dependent

on data from a previous instruction and therefore cannot be

moved before the earlier instruction [or executed in

parallel].” [7]

a = x + y + cos(z);

b = a * c;

The value of b depends on the value of a, so these two

statements must be executed in order.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 38

Output Dependencies (F90)

x = a / b

y = x + 2

x = d – e

Notice that x is assigned two different values, but only one

of them is retained after these statements are done executing.

In this context, the final value of x is the “output.”

Again, we are forced to execute in order.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 39

Output Dependencies (C)

x = a / b;

y = x + 2;

x = d – e;

Notice that x is assigned two different values, but only one

of them is retained after these statements are done executing.

In this context, the final value of x is the “output.”

Again, we are forced to execute in order.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 40

Why Does Order Matter?

 Dependencies can affect whether we can execute a

particular part of the program in parallel.

 If we cannot execute that part of the program in parallel,

then it’ll be SLOW.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 41

Loop Dependency Example

if ((dst == src1) && (dst == src2)) {
for (index = 1; index < length; index++) {

dst[index] = dst[index-1] + dst[index];
}

}
else if (dst == src1) {

for (index = 1; index < length; index++) {

dst[index] = dst[index-1] + src2[index];
}

}
else if (dst == src2) {

for (index = 1; index < length; index++) {

dst[index] = src1[index-1] + dst[index];
}

}
else if (src1 == src2) {

for (index = 1; index < length; index++) {

dst[index = src1[index-1] + src1[index];
}

}
else {

for (index = 1; index < length; index++) {
dst[index] = src1[index-1] + src2[index];

}
}

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 42

Loop Dep Example (cont’d)
if ((dst == src1) && (dst == src2)) {
for (index = 1; index < length; index++) {

dst[index] = dst[index-1] + dst[index];
}

}
else if (dst == src1) {
for (index = 1; index < length; index++) {

dst[index] = dst[index-1] + src2[index];
}

}
else if (dst == src2) {

for (index = 1; index < length; index++) {

dst[index] = src1[index-1] + dst[index];
}

}
else if (src1 == src2) {

for (index = 1; index < length; index++) {

dst[index] = src1[index-1] + src1[index];
}

}
else {
for (index = 1; index < length; index++) {

dst[index] = src1[index-1] + src2[index];
}

}

The various versions of the loop either:
 do have loop carried dependencies, or
 don’t have loop carried dependencies.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 43

Loop Dependency Performance

Loop Carried Dependency Performance

0

20

40

60

80

100

120

140

160

180

200

dst
=sr

c1
+sr

c2

dst
=sr

c1
+sr

c1

dst
=dst

+sr
c2

dst
=sr

c1
+dst

dst
=dst

+dst

M
F

L
O

P
s

Pentium3 500 MHz

POWER4

Pentium4 2GHz

EM64T 3.2 GHz

Better

Stupid Compiler
Tricks

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 45

Stupid Compiler Tricks

 Tricks Compilers Play

 Scalar Optimizations

 Loop Optimizations

 Inlining

 Tricks You Can Play with Compilers

 Profiling

 Hardware counters

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 46

Compiler Design

The people who design compilers have a lot of experience

working with the languages commonly used in High

Performance Computing:

 Fortran: 50ish years

 C: 40ish years

 C++: 25ish years, plus C experience

So, they’ve come up with clever ways to make programs

run faster.

Tricks Compilers Play

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 48

Scalar Optimizations

 Copy Propagation

 Constant Folding

 Dead Code Removal

 Strength Reduction

 Common Subexpression Elimination

 Variable Renaming

 Loop Optimizations

Not every compiler does all of these, so it sometimes can be
worth doing these by hand.

Much of this discussion is from [2] and [6].

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 49

Copy Propagation (F90)

x = y

z = 1 + x

x = y

z = 1 + y

Has data dependency

No data dependency

Compile

Before

After

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 50

Copy Propagation (C)

x = y;

z = 1 + x;

x = y;

z = 1 + y;

Has data dependency

No data dependency

Compile

Before

After

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 51

Constant Folding (F90)

add = 100

aug = 200

sum = add + aug

Notice that sum is actually the sum of two constants, so the

compiler can precalculate it, eliminating the addition that

otherwise would be performed at runtime.

sum = 300

Before After

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 52

Constant Folding (C)

add = 100;

aug = 200;

sum = add + aug;

Notice that sum is actually the sum of two constants, so the

compiler can precalculate it, eliminating the addition that

otherwise would be performed at runtime.

sum = 300;

Before After

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 53

Dead Code Removal (F90)

var = 5

PRINT *, var

STOP

PRINT *, var * 2

Since the last statement never executes, the compiler can

eliminate it.

var = 5

PRINT *, var

STOP

Before After

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 54

Dead Code Removal (C)

var = 5;

printf("%d", var);

exit(-1);

printf("%d", var * 2);

Since the last statement never executes, the compiler can

eliminate it.

var = 5;

printf("%d", var);

exit(-1);

Before After

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 55

Strength Reduction (F90)

x = y ** 2.0

a = c / 2.0

x = y * y

a = c * 0.5

Before After

Raising one value to the power of another, or dividing, is more

expensive than multiplying. If the compiler can tell that the

power is a small integer, or that the denominator is a constant,

it’ll use multiplication instead.

Note: In Fortran, “y ** 2.0” means “y to the power 2.”

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 56

Strength Reduction (C)

x = pow(y, 2.0);

a = c / 2.0;

x = y * y;

a = c * 0.5;

Before After

Raising one value to the power of another, or dividing, is more

expensive than multiplying. If the compiler can tell that the

power is a small integer, or that the denominator is a constant,

it’ll use multiplication instead.

Note: In C, “pow(y, 2.0)” means “y to the power 2.”

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 57

Common Subexpression Elimination (F90)

d = c * (a / b)

e = (a / b) * 2.0

adivb = a / b

d = c * adivb

e = adivb * 2.0

Before After

The subexpression (a / b) occurs in both assignment

statements, so there’s no point in calculating it twice.

This is typically only worth doing if the common

subexpression is expensive to calculate.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 58

Common Subexpression Elimination (C)

d = c * (a / b);

e = (a / b) * 2.0;

adivb = a / b;

d = c * adivb;

e = adivb * 2.0;

Before After

The subexpression (a / b) occurs in both assignment

statements, so there’s no point in calculating it twice.

This is typically only worth doing if the common

subexpression is expensive to calculate.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 59

Variable Renaming (F90)

x = y * z

q = r + x * 2

x = a + b

x0 = y * z

q = r + x0 * 2

x = a + b

Before After

The original code has an output dependency, while the new

code doesn’t – but the final value of x is still correct.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 60

Variable Renaming (C)

x = y * z;

q = r + x * 2;

x = a + b;

x0 = y * z;

q = r + x0 * 2;

x = a + b;

Before After

The original code has an output dependency, while the new

code doesn’t – but the final value of x is still correct.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 61

Loop Optimizations

 Hoisting Loop Invariant Code

 Unswitching

 Iteration Peeling

 Index Set Splitting

 Loop Interchange

 Unrolling

 Loop Fusion

 Loop Fission

Not every compiler does all of these, so it sometimes can be

worth doing some of these by hand.
Much of this discussion is from [3] and [6].

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 62

Hoisting Loop Invariant Code (F90)

DO i = 1, n

a(i) = b(i) + c * d

e = g(n)

END DO

Before

temp = c * d

DO i = 1, n

a(i) = b(i) + temp

END DO

e = g(n)

After

Code that

doesn’t change

inside the loop is

known as

loop invariant.

It doesn’t need

to be calculated

over and over.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 63

Hoisting Loop Invariant Code (C)

for (i = 0; i < n; i++) {

a[i] = b[i] + c * d;

e = g(n);

}

Before

temp = c * d;

for (i = 0; i < n; i++) {

a[i] = b[i] + temp;

}

e = g(n);

After

Code that

doesn’t change

inside the loop is

known as

loop invariant.

It doesn’t need

to be calculated

over and over.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 64

Unswitching (F90)

DO i = 1, n
DO j = 2, n
IF (t(i) > 0) THEN
a(i,j) = a(i,j) * t(i) + b(j)

ELSE
a(i,j) = 0.0

END IF
END DO

END DO

DO i = 1, n
IF (t(i) > 0) THEN
DO j = 2, n
a(i,j) = a(i,j) * t(i) + b(j)

END DO
ELSE
DO j = 2, n
a(i,j) = 0.0

END DO
END IF

END DO

Before

After

The condition is
j-independent.

So, it can migrate
outside the j loop.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 65

Unswitching (C)
for (i = 0; i < n; i++) {

for (j = 1; j < n; j++) {
if (t[i] > 0)
a[i][j] = a[i][j] * t[i] + b[j];

}

else {
a[i][j] = 0.0;

}
}

}

for (i = 0; i < n; i++) {
if (t[i] > 0) {
for (j = 1; j < n; j++) {
a[i][j] = a[i][j] * t[i] + b[j];

}
}

else {
for (j = 1; j < n; j++) {
a[i][j] = 0.0;

}
}

}

Before

After

The condition is
j-independent.

So, it can migrate
outside the j loop.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 66

Iteration Peeling (F90)
DO i = 1, n

IF ((i == 1) .OR. (i == n)) THEN

x(i) = y(i)

ELSE

x(i) = y(i + 1) + y(i – 1)

END IF

END DO

x(1) = y(1)

DO i = 2, n - 1

x(i) = y(i + 1) + y(i – 1)

END DO

x(n) = y(n)

Before

After

We can eliminate the IF by peeling the weird iterations.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 67

Iteration Peeling (C)
for (i = 0; i < n; i++) {

if ((i == 0) || (i == (n – 1))) {

x[i] = y[i];

}

else {

x[i] = y[i + 1] + y[i – 1];

}

}

x[0] = y[0];

for (i = 1; i < n – 1; i++) {

x[i] = y[i + 1] + y[i – 1];

}

x[n-1] = y[n-1];

Before

After

We can eliminate the IF by peeling the weird iterations.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 68

Index Set Splitting (F90)

DO i = 1, n
a(i) = b(i) + c(i)
IF (i > 10) THEN
d(i) = a(i) + b(i – 10)

END IF
END DO

DO i = 1, 10
a(i) = b(i) + c(i)

END DO
DO i = 11, n
a(i) = b(i) + c(i)
d(i) = a(i) + b(i – 10)

END DO

Before

After

Note that this is a generalization of peeling.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 69

Index Set Splitting (C)

for (i = 0; i < n; i++) {
a[i] = b[i] + c[i];
if (i >= 10) {
d[i] = a[i] + b[i – 10];

}
}

for (i = 0; i < 10; i++) {
a[i] = b[i] + c[i];

}
for (i = 10; i < n; i++) {
a[i] = b[i] + c[i];
d[i] = a[i] + b[i – 10];

}

Before

After

Note that this is a generalization of peeling.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 70

Loop Interchange (F90)

DO i = 1, ni

DO j = 1, nj

a(i,j) = b(i,j)

END DO

END DO

DO j = 1, nj

DO i = 1, ni

a(i,j) = b(i,j)

END DO

END DO

Array elements a(i,j) and a(i+1,j) are near each

other in memory, while a(i,j+1) may be far, so it makes

sense to make the i loop be the inner loop. (This is

reversed in C, C++ and Java.)

Before After

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 71

Loop Interchange (C)

for (j = 0; j < nj; j++) {

for (i = 0; i < ni; i++) {

a[i][j] = b[i][j];

}

}

for (i = 0; i < ni; i++) {

for (j = 0; j < nj; j++) {

a[i][j] = b[i][j];

}

}

Array elements a[i][j] and a[i][j+1] are near each

other in memory, while a[i+1][j] may be far, so it makes

sense to make the j loop be the inner loop. (This is

reversed in Fortran.)

Before After

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 72

Unrolling (F90)

DO i = 1, n

a(i) = a(i)+b(i)

END DO

DO i = 1, n, 4

a(i) = a(i) + b(i)

a(i+1) = a(i+1) + b(i+1)

a(i+2) = a(i+2) + b(i+2)

a(i+3) = a(i+3) + b(i+3)

END DO

Before

After

You generally shouldn’t unroll by hand.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 73

Unrolling (C)

for (i = 0; i < n; i++) {

a[i] = a[i] + b[i];

}

for (i = 0; i < n; i += 4) {

a[i] = a[i] + b[i];

a[i+1] = a[i+1] + b[i+1];

a[i+2] = a[i+2] + b[i+2];

a[i+3] = a[i+3] + b[i+3];

}

Before

After

You generally shouldn’t unroll by hand.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 74

Why Do Compilers Unroll?
We saw last time that a loop with a lot of operations gets

better performance (up to some point), especially if there
are lots of arithmetic operations but few main memory
loads and stores.

Unrolling creates multiple operations that typically load from
the same, or adjacent, cache lines.

So, an unrolled loop has more operations without increasing
the memory accesses by much.

Also, unrolling decreases the number of comparisons on the
loop counter variable, and the number of branches to the
top of the loop.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 75

Loop Fusion (F90)

DO i = 1, n

a(i) = b(i) + 1
END DO

DO i = 1, n
c(i) = a(i) / 2

END DO

DO i = 1, n
d(i) = 1 / c(i)

END DO

DO i = 1, n
a(i) = b(i) + 1
c(i) = a(i) / 2
d(i) = 1 / c(i)

END DO

As with unrolling, this has fewer branches. It also has fewer
total memory references.

Before

After

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 76

Loop Fusion (C)

for (i = 0; i < n; i++) {

a[i] = b[i] + 1;
}

for (i = 0; i < n; i++) {
c[i] = a[i] / 2;

}

for (i = 0; i < n; i++) {
d[i] = 1 / c[i];

}

for (i = 0; i < n; i++) {
a[i] = b[i] + 1;
c[i] = a[i] / 2;
d[i] = 1 / c[i];

}

As with unrolling, this has fewer branches. It also has fewer
total memory references.

Before

After

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 77

Loop Fission (F90)

DO i = 1, n
a(i) = b(i) + 1
c(i) = a(i) / 2
d(i) = 1 / c(i)

END DO

DO i = 1, n
a(i) = b(i) + 1

END DO

DO i = 1, n
c(i) = a(i) / 2

END DO

DO i = 1, n
d(i) = 1 / c(i)

END DO

Fission reduces the cache footprint and the number of
operations per iteration.

Before

After

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 78

Loop Fission (C)

for (i = 0; i < n; i++) {
a[i] = b[i] + 1;
c[i] = a[i] / 2;
d[i] = 1 / c[i];

}

for (i = 0; i < n; i++) {

a[i] = b[i] + 1;
}

for (i = 0; i < n; i++) {
c[i] = a[i] / 2;

}

for (i = 0; i < n; i++) {
d[i] = 1 / c[i];

}

Fission reduces the cache footprint and the number of
operations per iteration.

Before

After

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 79

To Fuse or to Fizz?

The question of when to perform fusion versus when to

perform fission, like many many optimization questions, is

highly dependent on the application, the platform and a lot

of other issues that get very, very complicated.

Compilers don’t always make the right choices.

That’s why it’s important to examine the actual behavior of the

executable.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 80

Inlining (F90)

DO i = 1, n

a(i) = func(i)

END DO
…

REAL FUNCTION func (x)
…

func = x * 3

END FUNCTION func

DO i = 1, n

a(i) = i * 3

END DO

Before After

When a function or subroutine is inlined, its contents are

transferred directly into the calling routine, eliminating the

overhead of making the call.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 81

Inlining (C)

for (i = 0;

i < n; i++) {
a[i] = func(i+1);

}
…
float func (x) {

…
return x * 3;

}

for (i = 0;

i < n; i++) {
a[i] = (i+1) * 3;

}

Before After

When a function or subroutine is inlined, its contents are

transferred directly into the calling routine, eliminating the

overhead of making the call.

Tricks You Can Play

with Compilers

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 83

The Joy of Compiler Options

Every compiler has a different set of options that you can set.

Among these are options that control single processor

optimization: superscalar, pipelining, vectorization, scalar

optimizations, loop optimizations, inlining and so on.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 84

Example Compile Lines

 IBM XL
xlf90 –O –qmaxmem=-1 –qarch=auto
–qtune=auto –qcache=auto –qhot

 Intel
ifort –O –march=core2 –mtune=core2

 Portland Group f90
pgf90 –O3 -fastsse –tp core2-64

 NAG f95
f95 –O4 –Ounsafe –ieee=nonstd

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 85

What Does the Compiler Do? #1

Example: NAG f95 compiler [4]

f95 –O<level> source.f90

Possible levels are –O0, -O1, -O2, -O3, -O4:
-O0 No optimisation. …

-O1 Minimal quick optimisation.

-O2 Normal optimisation.

-O3 Further optimisation.

-O4 Maximal optimisation.

The man page is pretty cryptic.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 86

What Does the Compiler Do? #2

Example: Intel ifort compiler [5]

ifort –O<level> source.f90

Possible levels are –O0, -O1, -O2, -O3:
-O0 Disables all -O<n> optimizations. …

-O1 ... [E]nables optimizations for speed. …

-O2 …

Inlining of intrinsics.

Intra-file interprocedural optimizations, which include:
inlining, constant propagation, forward substitution, routine
attribute propagation, variable address-taken analysis, dead
static function elimination, and removal of unreferenced
variables.

-O3 Enables -O2 optimizations plus more aggressive
optimizations, such as prefetching, scalar replacement, and
loop transformations. Enables optimizations for maximum
speed, but does not guarantee higher performance unless loop
and memory access transformations take place. …

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 87

Arithmetic Operation Speeds
Ordered Arithmetic Operations

0

100

200

300

400

500

600

ra
d
d

ia
d
d

rs
u
m

is
u
m

rs
u
b

is
u
b

rm
u
l

im
u
l

rm
am

im
am

rm
ad

im
ad

rd
iv

id
iv

rp
o
w

im
o
d

rs
q
rt

rc
o
s

re
x
p

rl
o
g

i2
r

r2
i

M
F

L
O

P
/s

Intel/Xeon PGI/Xeon NAG/Xeon xl/POWER4

Better

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 88

Optimization Performance

 Performance

0

10

20

30

40

50

60

70

80

ra
d
d

ia
d
d

rs
u
m

is
u
m

rs
u
b

is
u
b

rm
u
l

im
u
l

rd
iv

id
iv

Operation

M
F

L
O

P
/s

Pentium3 NAG O0 Pentium3 NAG O4 Pentium3 Vast no opt Pentium3 Vast opt

Better

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 89

More Optimized Performance

Performance

0

50

100

150

200

250
rm

am

im
am

rm
ad

im
ad

rd
o
t

re
u
c

rl
o
t8

rl
o
t1

0

rl
o
t1

2

rl
o
t1

6

rl
o
t2

0

rl
o
t2

4

Operation

M
F

L
O

P
/s

Pentium3 NAG O0 Pentium3 NAG 04

Pentium3 VAST no opt Pentium3 VAST opt

Better

Profiling

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 91

Profiling

Profiling means collecting data about how a program executes.

The two major kinds of profiling are:

 Subroutine profiling

 Hardware timing

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 92

Subroutine Profiling

Subroutine profiling means finding out how much time is

spent in each routine.

The 90-10 Rule: Typically, a program spends 90% of its

runtime in 10% of the code.

Subroutine profiling tells you what parts of the program to

spend time optimizing and what parts you can ignore.

Specifically, at regular intervals (e.g., every millisecond), the

program takes note of what instruction it’s currently on.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 93

Profiling Example

On GNU compilers systems:

gcc –O –g -pg …

The –g -pg options tell the compiler to set the executable up

to collect profiling information.

Running the executable generates a file named gmon.out,

which contains the profiling information.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 94

Profiling Example (cont’d)

When the run has completed, a file named gmon.out has

been generated.

Then:

gprof executable

produces a list of all of the routines and how much time was

spent in each.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 95

Profiling Result

% cumulative self self total

time seconds seconds calls ms/call ms/call name

27.6 52.72 52.72 480000 0.11 0.11 longwave_ [5]

24.3 99.06 46.35 897 51.67 51.67 mpdata3_ [8]

7.9 114.19 15.13 300 50.43 50.43 turb_ [9]

7.2 127.94 13.75 299 45.98 45.98 turb_scalar_ [10]

4.7 136.91 8.96 300 29.88 29.88 advect2_z_ [12]

4.1 144.79 7.88 300 26.27 31.52 cloud_ [11]

3.9 152.22 7.43 300 24.77 212.36 radiation_ [3]

2.3 156.65 4.43 897 4.94 56.61 smlr_ [7]

2.2 160.77 4.12 300 13.73 24.39 tke_full_ [13]

1.7 163.97 3.20 300 10.66 10.66 shear_prod_ [15]

1.5 166.79 2.82 300 9.40 9.40 rhs_ [16]

1.4 169.53 2.74 300 9.13 9.13 advect2_xy_ [17]

1.3 172.00 2.47 300 8.23 15.33 poisson_ [14]

1.2 174.27 2.27 480000 0.00 0.12 long_wave_ [4]

1.0 176.13 1.86 299 6.22 177.45 advect_scalar_ [6]

0.9 177.94 1.81 300 6.04 6.04 buoy_ [19]

...

Undergraduate Petascale Internships
• NSF support for undergraduate internships involving high-performance

computing in science and engineering.

• Provides a stipend ($5k over the year), a two-week intensive high-performance
computing workshop at the National Center for Supercomputing Applications,

and travel to the SC11 supercomputing conference in November.

• This support is intended to allow you to work with a faculty mentor on your
campus. Have your faculty mentor fill out an intern position description at the

link below. There are also some open positions listed on our site.

• Student applications and position descriptions from faculty are due by March
31, 2011. Selections and notifications will be made by April 15.

http://shodor.org/petascale/participation/internships/

http://shodor.org/petascale/participation/internships/

Summer Workshops 2011

 In Summer 2011, there will be several workshops on HPC

and Computational and Data Enabled Science and

Engineering (CDESE) across the US.

 These will be weeklong intensives, running from Sunday

evening through Saturday morning.

 We’re currently working on where and when those

workshops will be held.

 Once we’ve got that worked out, we’ll announce them and

open up the registration website.

 One of them will be held at OU.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 97

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 98

OK Supercomputing Symposium 2011

2006 Keynote:

Dan Atkins

Head of NSF’s

Office of

Cyberinfrastructure

2004 Keynote:
Sangtae Kim

NSF Shared
Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer & Information
Science & Engineering

Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

2008 Keynote:
José Munoz

Deputy Office
Director/ Senior

Scientific Advisor
NSF Office of

Cyberinfrastructure

2009 Keynote:
Douglass Post
Chief Scientist

US Dept of Defense
HPC Modernization

Program

FREE! Wed Oct 12 2011 @ OU
Over 235 registratons already!

Over 150 in the first day, over 200 in the first week, over
225 in the first month.

http://symposium2011.oscer.ou.edu/

Parallel Programming Workshop

FREE! Tue Oct 11 2011 @ OU
FREE! Symposium Wed Oct 12 2011 @ OU2010 Keynote:

Horst Simon
Deputy Director

Lawrence Berkeley
National Laboratory

?
2011 Keynote

to be

announced

http://symposium2011.oscer.ou.edu/

SC11 Education Program

 At the SC11 supercomputing conference, we’ll hold our

annual Education Program, Sat Nov 12 – Tue Nov 15.

 You can apply to attend, either fully funded by SC11 or

self-funded.

 Henry is the SC11 Education Chair.

 We’ll alert everyone once the registration website opens.

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 99

Thanks for your
attention!

Questions?
www.oscer.ou.edu

http://www.oscer.ou.edu/

Supercomputing in Plain English: Compiler Tricks

Tue March 1 2011 101

References

[1] Kevin Dowd and Charles Severance, High Performance Computing,

2nd ed. O’Reilly, 1998, p. 173-191.

[2] Ibid, p. 91-99.

[3] Ibid, p. 146-157.
[4] NAG f95 man page, version 5.1.

[5] Intel ifort man page, version 10.1.

[6] Michael Wolfe, High Performance Compilers for Parallel Computing,

Addison-Wesley Publishing Co., 1996.

[7] Kevin R. Wadleigh and Isom L. Crawford, Software Optimization for High

Performance Computing, Prentice Hall PTR, 2000, pp. 14-15.

