
Supercomputing
in Plain English

Applications and Types of Parallelism
Henry Neeman, University of Oklahoma

Director, OU Supercomputing Center for Education & Research (OSCER)
Assistant Vice President, Information Technology – Research Strategy Advisor

Associate Professor, Gallogly College of Engineering
Adjunct Associate Professor, School of Computer Science

Tuesday March 27 2018



Supercomputing in Plain English: Apps & Par Types
Tue March 27 2018 2

This is an experiment!
It’s the nature of these kinds of videoconferences that 

FAILURES ARE GUARANTEED TO HAPPEN!       
NO PROMISES!

So, please bear with us. Hopefully everything will work out 
well enough.

If you lose your connection, you can retry the same kind of 
connection, or try connecting another way.

Remember, if all else fails, you always have the phone bridge 
to fall back on.

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.



Supercomputing in Plain English: Apps & Par Types
Tue March 27 2018 3

PLEASE MUTE YOURSELF
No matter how you connect, PLEASE MUTE YOURSELF,  

so that we cannot hear you.
At OU, we will turn off the sound on all conferencing 

technologies.
That way, we won’t have problems with echo cancellation.
Of course, that means we cannot hear questions.
So for questions, you’ll need to send e-mail:

supercomputinginplainenglish@gmail.com

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

mailto:supercomputinginplainenglish@gmail.com


Download the Slides Beforehand
Before the start of the session, please download the slides from 
the Supercomputing in Plain English website:

http://www.oscer.ou.edu/education/

That way, if anything goes wrong, you can still follow along 
with just audio.

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Apps & Par Types
Tue March 27 2018 4

http://www.oscer.ou.edu/education/


Supercomputing in Plain English: Apps & Par Types
Tue March 27 2018 5

Zoom
Go to:

http://zoom.us/j/979158478

Many thanks Eddie Huebsch, OU CIO, for providing this.

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

http://zoom.us/j/979158478


Supercomputing in Plain English: Apps & Par Types
Tue March 27 2018 6

YouTube
You can watch from a Windows, MacOS or Linux laptop or an 

Android or iOS handheld using YouTube.
Go to YouTube via your preferred web browser or app, and then 

search for:
Supercomputing InPlainEnglish

(InPlainEnglish is all one word.)
Many thanks to Skyler Donahue of OneNet for providing this.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.



Supercomputing in Plain English: Apps & Par Types
Tue March 27 2018 7

Twitch
You can watch from a Windows, MacOS or Linux laptop or an 

Android or iOS handheld using Twitch.
Go to:

http://www.twitch.tv/sipe2018

Many thanks to Skyler Donahue of OneNet for providing this.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

http://www.twitch.tv/sipe2018


Supercomputing in Plain English: Apps & Par Types
Tue March 27 2018 8

Wowza #1
You can watch from a Windows, MacOS or Linux laptop using 

Wowza from the following URL:

http://jwplayer.onenet.net/streams/sipe.html

If that URL fails, then go to:

http://jwplayer.onenet.net/streams/sipebackup.html

Many thanks to Skyler Donahue of OneNet for providing this.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

http://jwplayer.onenet.net/streams/sipe.html
http://jwplayer.onenet.net/streams/sipebackup.html


Wowza #2
Wowza has been tested on multiple browsers on each of:
 Windows 10: IE, Firefox, Chrome, Opera, Safari
 MacOS: Safari, Firefox
 Linux: Firefox, Opera
We’ve also successfully tested it via apps on devices with:
 Android
 iOS
Many thanks to Skyler Donahue of OneNet for providing this.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Apps & Par Types
Tue March 27 2018 9



Supercomputing in Plain English: Apps & Par Types
Tue March 27 2018 10

Toll Free Phone Bridge
IF ALL ELSE FAILS, you can use our US TOLL phone bridge:

405-325-6688
684 684 #

NOTE: This is for US call-ins ONLY.
PLEASE MUTE YOURSELF and use the phone to listen.
Don’t worry, we’ll call out slide numbers as we go.
Please use the phone bridge ONLY IF you cannot connect any 

other way: the phone bridge can handle only 100 simultaneous 
connections, and we have over 1000 participants.

Many thanks to OU CIO Eddie Huebsch for providing the    
phone bridge..



Supercomputing in Plain English: Apps & Par Types
Tue March 27 2018 11

Please Mute Yourself
No matter how you connect, PLEASE MUTE YOURSELF,  

so that we cannot hear you.
(For YouTube, Twitch and Wowza, you don’t need to do that, 

because the information only goes from us to you, not from 
you to us.)

At OU, we will turn off the sound on all conferencing 
technologies.

That way, we won’t have problems with echo cancellation.
Of course, that means we cannot hear questions.
So for questions, you’ll need to send e-mail.
PLEASE MUTE YOURSELF.



Supercomputing in Plain English: Apps & Par Types
Tue March 27 2018 12

Questions via E-mail Only
Ask questions by sending e-mail to:

supercomputinginplainenglish@gmail.com

All questions will be read out loud and then answered out loud.

DON’T USE CHAT OR VOICE FOR QUESTIONS!

No one will be monitoring any of the chats, and if we can hear 
your question, you’re creating an echo cancellation problem.

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.

mailto:supercomputinginplainenglish@gmail.com


Onsite: Talent Release Form
If you’re attending onsite, you MUST do one of the following:
 complete and sign the Talent Release Form,
OR
 sit behind the cameras (where you can’t be seen) and don’t 

talk at all.

If you aren’t onsite, then PLEASE MUTE YOURSELF.

Supercomputing in Plain English: Apps & Par Types
Tue March 27 2018 13



TENTATIVE Schedule
Tue Jan 23: Storage: What the Heck is Supercomputing?
Tue Jan 30: The Tyranny of the Storage Hierarchy Part I
Tue Feb  6: The Tyranny of the Storage Hierarchy Part II
Tue Feb 13: Instruction Level Parallelism
Tue Feb 20: Stupid Compiler Tricks
Tue Feb 27: Apps & Par Types Multithreading
Tue March   6: Distributed Multiprocessing
Tue March 13: NO SESSION (Henry business travel)
Tue March 20: NO SESSION (OU's Spring Break)
Tue March 27: Applications and Types of Parallelism
Tue Apr   3: Multicore Madness
Tue Apr 10: High Throughput Computing
Tue Apr 17: NO SESSION (Henry business travel)
Tue Apr 24: GPGPU: Number Crunching in Your Graphics Card
Tue May  1: Grab Bag: Scientific Libraries, I/O Libraries, Visualization

Supercomputing in Plain English: Apps & Par Types
Tue March 27 2018 14



Supercomputing in Plain English: Apps & Par Types
Tue March 27 2018 15

Thanks for helping!
 OU IT

 OSCER operations staff (Dave Akin, Patrick Calhoun, Kali 
McLennan, Jason Speckman, Brett Zimmerman)

 OSCER Research Computing Facilitators (Jim Ferguson, 
Horst Severini)

 Debi Gentis, OSCER Coordinator
 Kyle Dudgeon, OSCER Manager of Operations
 Ashish Pai, Managing Director for Research IT Services
 The OU IT network team
 OU CIO Eddie Huebsch

 OneNet: Skyler Donahue
 Oklahoma State U: Dana Brunson



Supercomputing in Plain English: Apps & Par Types
Tue March 27 2018 16

This is an experiment!
It’s the nature of these kinds of videoconferences that 

FAILURES ARE GUARANTEED TO HAPPEN!       
NO PROMISES!

So, please bear with us. Hopefully everything will work out 
well enough.

If you lose your connection, you can retry the same kind of 
connection, or try connecting another way.

Remember, if all else fails, you always have the phone bridge 
to fall back on.

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.



Coming in 2018!
 Coalition for Advancing Digital Research & Education (CADRE) Conference:       

Apr 17-18 2018 @ Oklahoma State U, Stillwater OK USA
https://hpcc.okstate.edu/cadre-conference

 Linux Clusters Institute workshops
http://www.linuxclustersinstitute.org/workshops/

 Introductory HPC Cluster System Administration: May 14-18 2018 @ U Nebraska, Lincoln NE USA
 Intermediate HPC Cluster System Administration: Aug 13-17 2018 @ Yale U, New Haven CT USA

 Great Plains Network Annual Meeting: details coming soon
 Advanced Cyberinfrastructure Research & Education Facilitators (ACI-REF) Virtual 

Residency Aug 5-10 2018, U Oklahoma, Norman OK USA
 PEARC 2018, July 22-27, Pittsburgh PA USA

https://www.pearc18.pearc.org/

 IEEE Cluster 2018, Sep 10-13, Belfast UK
https://cluster2018.github.io

 OKLAHOMA SUPERCOMPUTING SYMPOSIUM 2018, Sep 25-26 2018 @ OU
 SC18 supercomputing conference, Nov 11-16 2018, Dallas TX USA

http://sc18.supercomputing.org/

Supercomputing in Plain English: Apps & Par Types
Tue March 27 2018 17

https://hpcc.okstate.edu/cadre-conference
http://www.linuxclustersinstitute.org/workshops/
https://www.pearc18.pearc.org/
https://cluster2018.github.io/
http://sc18.supercomputing.org/


18

Outline
 Monte Carlo: Client-Server
 N-Body: Task Parallelism
 Transport: Data Parallelism

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



Monte Carlo:
Client-Server

[1]



20

Embarrassingly Parallel
An application is known as embarrassingly parallel

if its parallel implementation:
1. can straightforwardly be broken up into 

roughly equal amounts of work per processor, AND
2. has minimal parallel overhead (for example, 

communication among processors).
We love embarrassingly parallel applications,                  

because they get near-perfect parallel speedup, 
sometimes with modest programming effort.

Embarrassingly parallel applications are also known as     
loosely coupled.

(“Embarrassingly” as in “an embarrassment of riches.”)

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



21

Monte Carlo Methods
Monte Carlo is a European city where people gamble; that is, 

they play games of chance, which involve randomness.
Monte Carlo methods are ways of simulating (or otherwise 

calculating) physical phenomena based on randomness.
Monte Carlo simulations typically are embarrassingly parallel.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types

https://i1.wp.com/www.vrfitnessinsider.com/wp-content/uploads/2017/05/casino-royale.jpg?resize=1068%2C444&ssl=1

https://i1.wp.com/www.vrfitnessinsider.com/wp-content/uploads/2017/05/casino-royale.jpg?resize=1068%2C444&ssl=1


22

Monte Carlo Methods: Example
Suppose you have some physical phenomenon. For example, 

consider High Energy Physics, in which we 
bang tiny particles together at incredibly high speeds.

BANG!
We want to know, for example, the average properties of 

this phenomenon.
There are infinitely many ways that two particles can be 

banged together.
So, we can’t possibly simulate all of them.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



23

Monte Carlo Methods: Example
Suppose you have some physical phenomenon. For example, 

consider High Energy Physics, in which we 
bang tiny particles together at incredibly high speeds.

BANG!
There are infinitely many ways that two particles can be 

banged together.
So, we can’t possibly simulate all of them.
Instead, we can randomly choose a finite subset of 

these infinitely many ways and simulate only the subset.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



24

Monte Carlo Methods: Example
Suppose you have some physical phenomenon. For example, 

consider High Energy Physics, in which we 
bang tiny particles together at incredibly high speeds.

BANG!
There are infinitely many ways that two particles can be   

banged together.
We randomly choose a finite subset of 

these infinitely many ways and simulate only the subset.
The average of this subset will be close to the actual average.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



25

Monte Carlo Methods
In a Monte Carlo method, you randomly generate a large number 

of example cases (realizations) of a phenomenon, and then 
take the average of the properties of these realizations.

When the average of the realizations converges (that is, 
doesn’t change substantially if more realizations are generated), 
then the Monte Carlo simulation stops.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



26

MC: Embarrassingly Parallel

Monte Carlo simulations are embarrassingly parallel, because 
each realization is completely independent of all of the 
other realizations.

That is, if you’re going to run a million realizations, then:
1. you can straightforwardly break into 

roughly (Million / Np) chunks of realizations, 
one chunk for each of the Np processors, AND

2. the only parallel overhead (for example, communication) 
comes from tracking the average properties, 
which doesn’t have to happen very often.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



27

Serial Monte Carlo (C)
Suppose you have an existing serial Monte Carlo simulation:
int main (int argc, char** argv)
{ /* main */

…
read_input(…);
for (realization = 0;

realization < number_of_realizations;
realization++) {

generate_random_realization(…);
calculate_properties(…);

} /* for realization */
calculate_average(…);

} /* main */

How would you parallelize this?

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



28

Serial Monte Carlo (F90)
Suppose you have an existing serial Monte Carlo simulation:
PROGRAM monte_carlo

…
CALL read_input(…)
DO realization = 1, number_of_realizations

CALL generate_random_realization(…)
CALL calculate_properties(…)

END DO
CALL calculate_average(…)

END PROGRAM monte_carlo

How would you parallelize this?

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



29

Parallel Monte Carlo (C)
int main (int argc, char** argv)
{ /* main */

[MPI startup]
if (my_rank == server_rank) {
read_input(…);

} 
mpi_error_code = MPI_Bcast(…);
for (realization = 0;

realization < number_of_realizations / number_of_processes;
realization++) {

generate_random_realization(…);
calculate_realization_properties(…);
calculate_local_running_average(...);

} /* for realization */
if (my_rank == server_rank) {

[receive properties]
}
else {

[send properties]
}   
calculate_global_average_from_local_averages(…)
output_overall_average(...)
[MPI shutdown]

} /* main */

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



30

Parallel Monte Carlo (F90)
PROGRAM monte_carlo

[MPI startup]
IF (my_rank == server_rank) THEN
CALL read_input(…)

END IF 
CALL MPI_Bcast(…)
DO realization = 1, number_of_realizations / number_of_processes
CALL generate_random_realization(…)
CALL calculate_realization_properties(…)
CALL calculate_local_running_average(...)

END DO
IF (my_rank == server_rank) THEN

[receive properties]
ELSE

[send properties]
END IF   
CALL calculate_global_average_from_local_averages(…)
CALL output_overall_average(...)
[MPI shutdown]

END PROGRAM monte_carlo

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



N-Body:
Task Parallelism and 

Collective 
Communication

[2]



32

N Bodies

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



33

N-Body Problems
An N-body problem is a problem involving N “bodies” 

– that is, particles of some size (for example, stars, atoms) –
each of which applies a force to all of the others.

For example, if you have N stars, then 
each of the N stars exerts a force (gravity) 
on all of the other N–1 stars.

Likewise, if you have N atoms, then 
each atom exerts a force (nuclear) 
on all of the other N–1 atoms.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



34

1-Body Problem
When N is 1, you have a simple 1-Body Problem: 

a single particle, with no forces acting on it.
Given the particle’s position P and velocity V at some time t0, 

you can trivially calculate the particle’s position at time t0+Δt:
P(t0+Δt) = P(t0) + VΔt

V(t0+Δt) = V(t0)

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



35

2-Body Problem
When N is 2, you have – surprise! – a 2-Body Problem: 

exactly 2 particles, each exerting a force that acts on the other.
The relationship between the 2 particles can be expressed as 

a differential equation that can be solved analytically, 
producing a closed-form solution.

So, given the particles’ initial positions and velocities, 
you can trivially calculate their positions and velocities          
at any later time.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



36

3-Body Problem
When N is 3, you have – surprise! – a 3-Body Problem: 

exactly 3 particles, each exerting a force that acts on the other 2.
The relationship between the 3 particles can be expressed as 

a differential equation that can be solved using an infinite series, 
producing a closed-form solution, due to Karl Fritiof Sundman
in 1912.

However, in practice, the number of terms of the infinite series 
that you need to calculate to get a reasonable solution                
is so large that the infinite series solution is impractical –
so you’re stuck with the generalized formulation.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types

http://en.wikipedia.org/wiki/N-body_problem

http://en.wikipedia.org/wiki/N-body_problem


37

N-Body Problems (N > 3)
When N > 3, you have a general N-Body Problem: N particles, 

each exerting a force that acts on the other N-1 particles.
The relationship between the N particles can be expressed as   

a differential equation that can be solved using an infinite 
series, producing a closed-form solution, due to 
Qiudong Wang in 1991.[3]

However, in practice, the number of terms of the infinite series 
that you need to calculate to get a reasonable solution         
is so large that the infinite series is impractical, so 
you’re stuck with the generalized formulation.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



38

N-Body Problems (N > 3)
For N > 3, the relationship between the N particles can be 

expressed as a differential equation that can be solved using 
an infinite series, producing a closed-form solution, but 
convergence takes so long that this approach is impractical.

So, numerical simulation is pretty much the only way to study 
groups of 3 or more bodies.

Popular applications of N-body codes include:
 astronomy (that is, galaxy formation, cosmology);
 chemistry (that is, protein folding, molecular dynamics).
Note that, for N bodies, there are on the order of N2 forces, 

denoted O(N2).

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



39

N Bodies

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



40

Force #1

A

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



41

Force #2

A

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



42

Force #3

A

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



43

Force #4

A

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



44

Force #5

A

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



45

Force #6

A

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



46

Force #N-1

A

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



47

N-Body Problems
Given N bodies, each body exerts a force on all of the other    

N – 1 bodies.
Therefore, there are N • (N – 1) forces in total.
You can also think of this as (N • (N – 1)) / 2 forces, 

in the sense that the force from particle A to particle B is 
the same (except in the opposite direction) as                     
the force from particle B to particle A.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



48

Aside: Big-O Notation
Let’s say that you have some task to perform on 

a certain number of things, and that the task takes 
a certain amount of time to complete.

Let’s say that the amount of time can be expressed as a 
polynomial on the number of things to perform the task on.

For example, the amount of time it takes to read a book 
might be proportional to the number of words, plus           
the amount of time it takes to settle into 
your favorite easy chair.

C1
. N + C2

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



49

Big-O: Dropping the Low Term
C1

. N + C2

When N is very large, the time spent settling into                
your easy chair becomes such a small proportion of 
the total time that it’s virtually zero.

So from a practical perspective, for large N, 
the polynomial reduces to:

C1
. N

In fact, for any polynomial, if N is large, then                         
all of the terms except the highest-order term are irrelevant.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



50

Big-O: Dropping the Constant
C1

. N
Computers get faster and faster all the time.
And there are many different flavors of computers, 

having many different speeds.
So, computer scientists don’t care about the constant;           

they only care about the order of the highest-order term of 
the polynomial.

They indicate this with Big-O notation:
O(N), O(N2), O(N3), etc

This is often said as: “of order N,” “of order N-squared,”      
“of order N-cubed,” etc.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



51

N-Body Problems
Given N bodies, each body exerts a force on 

all of the other    N – 1 bodies.
Therefore, there are N • (N – 1) forces total, or N2 - N.
In Big-O notation, that’s O(N2) forces.
So, calculating the forces takes O(N2) time to execute.
But, there are only N particles, each taking up 

the same amount of memory, so we say that N-body codes are:
 O(N)  spatial complexity (memory)
 O(N2) temporal complexity (calculations)

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



52

O(N2) Forces

Note that this picture shows only the forces between A and everyone else.

A

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



53

How to Calculate?
Whatever your physics is, you have some function, F(Bi,Bj), 

that expresses the force between two bodies Bi and Bj, i ≠ j.
For example, for stars and galaxies,

F(A,B) = G · mBi · mBj / dist(Bi, Bj)2

where G is the gravitational constant and m is the mass of the 
body in question.

If you have all of the forces for every pair of particles, then 
you can calculate their sum, obtaining the force on every 
particle.

From that, you can calculate every particle’s new position and 
velocity.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



54

How to Parallelize?
Okay, so let’s say you have a nice serial (single-core) code  

that does an N-body calculation.
How are you going to parallelize it?
You could:
 have a server feed particles to processes;
 have a server feed interactions (particle pairs) to processes;
 have each process decide on its own subset of the particles, 

and then share around the summed forces on those particles;
 have each process decide its own subset of the interactions, 

and then share around the summed forces from those 
interactions.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



55

Do You Need a Server?
Let’s say that you have N bodies, and therefore you have        

½ N (N - 1) interactions (every particle interacts with all of 
the others, but you don’t need to calculate both Bi Bj and 
Bj Bi).

Do you need a server?
Well, can each processor determine, on its own, either           

(a) which of the bodies to process, or                                  
(b) which of the interactions to process?

If the answer is yes, then you don’t need a server.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



56

Parallelize How?
Suppose you have Np processors.
Should you parallelize:
 by assigning a subset of N / Np of the bodies

to each processor,
OR
 by assigning a subset of N (N - 1) / Np of the interactions

to each processor?

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



57

Data vs. Task Parallelism
 Data Parallelism means parallelizing by giving a subset of 

the data to each process, and then each process performs 
the same tasks on the different subsets of data.

 Task Parallelism means parallelizing by giving a subset of 
the tasks to each process, and then each process performs    
a different subset of tasks on the same data.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



58

Data Parallelism for N-Body?
If you parallelize an N-body code by data, then each processor 

gets N / Np pieces of data.
For example, if you have 8 bodies and 2 processors, then:
 Processor P0 gets the first 4 bodies;
 Processor P1 gets the second 4 bodies.
But, every piece of data (that is, every body) has to interact 

with every other piece of data, to calculate the forces.
So, every processor will have to send all of its data to all of  

the other processors, for every single interaction that it 
calculates.

That’s a lot of communication!

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



59

Task Parallelism for N-body?
If you parallelize an N-body code by task, then each processor 

gets all of the pieces of data that describe the particles        
(for example, positions, velocities, masses).

Then, each processor can calculate its subset of the interaction 
forces on its own, without talking to any of the other 
processors.

But, at the end of the force calculations, everyone has to share  
all of the forces that have been calculated, so that each particle 
ends up with the total force that acts on it (global reduction).

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



60

MPI_Reduce (C)
Here’s the C syntax for MPI_Reduce:

mpi_error_code =
MPI_Reduce(sendbuffer, recvbuffer,

count, datatype, operation,
root, communicator);

(Here, “root” means the MPI rank that gets the result.)
For example, to do a sum over all of the particle forces:

mpi_error_code =
MPI_Reduce(

local_particle_force_sum,
global_particle_force_sum,
number_of_particles,
MPI_DOUBLE, MPI_SUM,
server_process, MPI_COMM_WORLD);

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



61

MPI_Reduce (F90)
Here’s the Fortran 90 syntax for MPI_Reduce:

CALL MPI_Reduce(sendbuffer, recvbuffer,  &
&         count, datatype, operation,     &
&         root, communicator, mpi_error_code)

(Here, “root” means the MPI rank that gets the result.)
For example, to do a sum over all of the particle forces:

CALL MPI_Reduce(                          &
&         local_particle_force_sum,        &
&         global_particle_force_sum,       &
&         number_of_particles,             &
&         MPI_DOUBLE_PRECISION, MPI_SUM,   &
&         server_process, MPI_COMM_WORLD,  &
&         mpi_error_code)

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



62

Sharing the Result
In the N-body case, we don’t want just one processor to know 

the result of the sum, we want every processor to know.
So, we could do a reduce followed immediately by a broadcast.
But, MPI gives us a routine that packages all of that for us:
MPI_Allreduce.

MPI_Allreduce is just like MPI_Reduce except that 
every process gets the result (so we drop the
server_process argument).

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



63

MPI_Allreduce (C)
Here’s the C syntax for MPI_Allreduce:
mpi_error_code =
MPI_Allreduce(

sendbuffer, recvbuffer, count,
datatype, operation,
communicator);

For example, to do a sum over all of the particle forces:
mpi_error_code =
MPI_Allreduce(

local_particle_force_sum,
global_particle_force_sum,
number_of_particles,
MPI_DOUBLE, MPI_SUM,
MPI_COMM_WORLD);

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



64

MPI_Allreduce (F90)
Here’s the Fortran 90 syntax for MPI_Allreduce:
CALL MPI_Allreduce(                      &
&         sendbuffer, recvbuffer, count,  &
&         datatype, operation,            &
&         communicator, mpi_error_code)

For example, to do a sum over all of the particle forces:
CALL MPI_Allreduce(                      &
&         local_particle_force_sum,       &
&         global_particle_force_sum,      &
&         number_of_particles,            &
&         MPI_DOUBLE_PRECISION, MPI_SUM,  &    
&         MPI_COMM_WORLD, mpi_error_code)

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



65

Collective Communications
A collective communication is a communication that is shared 

among many processes, not just a sender and a receiver.
MPI_Reduce and MPI_Allreduce are collective 

communications.
Others include: broadcast, gather/scatter, all-to-all.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



66

Collectives Are Expensive, But Cheap
Collective communications are very expensive relative to 

point-to-point communications, because so much more 
communication has to happen.

But, they can be much cheaper than doing zillions of point-to-
point communications, if that’s the alternative.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



Transport:
Data Parallelism

[2]



68

What is a Simulation?
Much physical science ultimately is expressed as calculus     

(for example, differential equations).
Except in the simplest (uninteresting) cases, equations based 

on calculus can’t be directly solved on a computer.
Therefore, most physical science on computers has to be 

approximated.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



69

I Want the Area Under This Curve!

How can I get the area under this curve?

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



70

A Riemann Sum

Δx

{

yi

Area under the curve  ≈ ∑
=

∆
n

i
i xy

1

Is the area under the curve the sum of the rectangle areas?

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



71

A Riemann Sum

Δx

{

yi

Area under the curve  ≈ ∑
=

∆
n

i
i xy

1

Ceci n’est pas un area under the curve: it’s approximate!

[4]

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



72

A Riemann Sum

Δx

{

yi

Area under the curve  ≈ ∑
=

∆
n

i
i xy

1

Ceci n’est pas un area under the curve: it’s approximate!

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



73

A Better Riemann Sum

Δx

{

yi

Area under the curve  ≈ ∑
=

∆
n

i
i xy

1

More, smaller rectangles produce a better approximation.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



74

The Best Riemann Sum

Area under the curve  =∑ ∫
∞

=

≡
1i

i ydxdxy

In the limit, infinitely many infinitesimally small 
rectangles produce the exact area.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



75

The Best Riemann Sum

Area under the curve  =∑ ∫
∞

=

≡
1i

i ydxdxy

In the limit, infinitely many infinitesimally small 
rectangles produce the exact area.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



76

Differential Equations
A differential equation is an equation in which differentials 

(for example, dx) appear as variables.
Much physics is best expressed as differential equations.
Very simple differential equations can be solved in         

“closed form,” meaning that a bit of algebraic manipulation 
gets the exact answer.

Interesting differential equations, like the ones governing 
interesting physics, can’t be solved in close form.

Solution: approximate!

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



77

A Discrete Mesh of Data

Data 
live 

here!

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



Supercomputing in Plain English: Apps & Par Types
Tue March 27 2018 78

A Discrete Mesh of Data

Data 
live 

here!



79

Finite Difference
A typical (though not the only) way of approximating the 

solution of a differential equation is through finite 
differencing:

Convert each dx (infinitessimally thin) into 
a Δx (has finite nonzero width).

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



80

Navier-Stokes Equation












⋅∇+











∂

∂
+

∂
∂

∂
∂

= uij
i

j

j

i

j

i

x
u

x
u

xV
F λδη












⋅∇+











∆

∆
+

∆
∆

∆
∆

= uij
i

j

j

i

j

i

x
u

x
u

xV
F λδη

Differential Equation

Finite Difference Equation

The Navier-Stokes equations governs the 
movement of fluids (water, air, etc).

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types

These are only here to frighten you ....



81

Cartesian Coordinates

x

y

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



82

Structured Mesh
A structured mesh is like the mesh on the previous slide. It’s 

nice and regular and rectangular, and can be stored in a 
standard Fortran or C or C++ array of the appropriate 
dimension and shape.

REAL,DIMENSION(nx,ny,nz) :: u

float u[nx][ny][nz];

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



83

Flow in Structured Meshes
When calculating flow in a structured mesh, you typically use 

a finite difference equation, like so:
unewi,j = F(∆t, uoldi,j, uoldi-1,j, uoldi+1,j, uoldi,j-1, uoldi,j+1)

for some function F, where uoldi,j is at time t and unewi,j is at 
time t + ∆t.

In other words, you calculate the new value of ui,j, based on its 
old value as well as the old values of its immediate 
neighbors.

Actually, it may use neighbors a few farther away.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



84

Ghost Boundary Zones

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



85

Ghost Boundary Zones
We want to calculate values in the part of the mesh that we 

care about, but to do that, we need values on the boundaries.
For example, to calculate unew1,1, you need uold0,1 and uold1,0.
Ghost boundary zones are mesh zones that aren’t really part of 

the problem domain that we care about, but that hold 
boundary data for calculating the parts that we do care about.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



86

Using Ghost Boundary Zones (C)

A good basic algorithm for flow that uses ghost boundary zones is:
for (timestep = 0;

timestep <  number_of_timesteps;
timestep++) {

fill_ghost_boundary(…);
advance_to_new_from_old(…);

}
This approach generally works great on a serial code.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



87

Using Ghost Boundary Zones (F90)

A good basic algorithm for flow that uses ghost boundary zones is:
DO timestep = 1, number_of_timesteps
CALL fill_ghost_boundary(…)
CALL advance_to_new_from_old(…)

END DO
This approach generally works great on a serial code.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



88

Ghost Boundary Zones in MPI
What if you want to parallelize a Cartesian flow code in MPI?
You’ll need to:
 decompose the mesh into submeshes;
 figure out how each submesh talks to its neighbors.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



89

Data Decomposition

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



90

Data Decomposition
We want to split the data into chunks of equal size, and give 

each chunk to a processor to work on.
Then, each processor can work independently of all of the 

others, except when it’s exchanging boundary data with its 
neighbors.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



91

MPI_Cart_*

MPI supports exactly this kind of calculation, with a set of 
functions MPI_Cart_*:

 MPI_Cart_create
 MPI_Cart_coords
 MPI_Cart_shift

These routines create and describe a new communicator, one 
that replaces MPI_COMM_WORLD in your code.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



92

MPI_Sendrecv
MPI_Sendrecv is just like an MPI_Send followed by an
MPI_Recv, except that it’s much better than that.

With MPI_Send and MPI_Recv, these are your choices:
 Everyone calls MPI_Recv, and then everyone calls
MPI_Send.

 Everyone calls MPI_Send, and then everyone calls
MPI_Recv.

 Some call MPI_Send while others call MPI_Recv, 
and then they swap roles.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



93

Why not Recv then Send?
Suppose that everyone calls MPI_Recv, and then everyone 

calls MPI_Send.
MPI_Recv(incoming_data, ...);
MPI_Send(outgoing_data, ...);

Well, these routines are blocking, meaning that the 
communication has to complete before the process can 
continue on farther into the program.

That means that, when everyone calls MPI_Recv,        
they’re waiting for someone else to call MPI_Send.

We call this deadlock.
Officially, the MPI standard guarantees that                          

THIS APPROACH WILL ALWAYS FAIL.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



94

Why not Send then Recv?
Suppose that everyone calls MPI_Send, and then everyone 

calls MPI_Recv:
MPI_Send(outgoing_data, ...);
MPI_Recv(incoming_data, ...);

Well, this will only work if there’s enough buffer space
available to hold everyone’s messages until after everyone 
is done sending.

Sometimes, there isn’t enough buffer space.
Officially, the MPI standard allows MPI implementers to 

support this, but it isn’t part of the official MPI standard; 
that is, a particular MPI implementation doesn’t have to 
allow it, so THIS WILL SOMETIMES FAIL.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



95

Alternate Send and Recv?
Suppose that some processors call MPI_Send while others 

call MPI_Recv, and then they swap roles:
if ((my_rank % 2) == 0) {
MPI_Send(outgoing_data, ...);
MPI_Recv(incoming_data, ...);

}
else {
MPI_Recv(incoming_data, ...);
MPI_Send(outgoing_data, ...);

}
This will work, and is sometimes used, but it can be painful to 

manage – especially if you have an odd number of 
processors.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



96

MPI_Sendrecv

MPI_Sendrecv allows each processor to simultaneously 
send to one processor and receive from another.

For example, P1 could send to P0 while simultaneously 
receiving from P2 .

(Note that the send and receive don’t have to literally be 
simultaneous, but we can treat them as so in writing the 
code.)

This is exactly what we need in Cartesian flow: we want the 
boundary data to come in from the east while we send 
boundary data out to the west, and then vice versa.

These are called shifts.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



97

MPI_Sendrecv
mpi_error_code =

MPI_Sendrecv(
westward_send_buffer,
westward_send_size, MPI_REAL,
west_neighbor_process, westward_tag,
westward_recv_buffer,
westward_recv_size, MPI_REAL,
east_neighbor_process, westward_tag,
cartesian_communicator, mpi_status);

This call sends to west_neighbor_process the data in
westward_send_buffer, and at the same time receives 
from east_neighbor_process a bunch of data that 
end up in westward_recv_buffer.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



98

Why MPI_Sendrecv?
The advantage of MPI_Sendrecv is that it allows us the 

luxury of no longer having to worry about 
who should send when and who should receive when.

This is exactly what we need in Cartesian flow: we want 
the boundary information to come in from the east 
while we send boundary information out to the west –
without us having to worry about deciding 
who should do what to who when.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



99

MPI_Sendrecv

Concept
in Principle

Concept
in practice

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



100

MPI_Sendrecv

Concept
in practice

westward_send_buffer westward_recv_buffer

Actual
Implementation

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



101

What About Edges and Corners?
If your numerical method involves faces, edges and/or corners, 

don’t despair.
It turns out that, if you do the following, you’ll handle those 

correctly:
 When you send, send the entire ghost boundary’s worth, 

including the ghost boundary of the part you’re sending.
 Do in this order:

 all east-west;
 all north-south;
 all up-down.

 At the end, everything will be in the correct place.

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types



TENTATIVE Schedule
Tue Jan 23: Storage: What the Heck is Supercomputing?
Tue Jan 30: The Tyranny of the Storage Hierarchy Part I
Tue Feb  6: The Tyranny of the Storage Hierarchy Part II
Tue Feb 13: Instruction Level Parallelism
Tue Feb 20: Stupid Compiler Tricks
Tue Feb 27: Apps & Par Types Multithreading
Tue March   6: Distributed Multiprocessing
Tue March 13: NO SESSION (Henry business travel)
Tue March 20: NO SESSION (OU's Spring Break)
Tue March 27: Applications and Types of Parallelism
Tue Apr   3: Multicore Madness
Tue Apr 10: High Throughput Computing
Tue Apr 17: NO SESSION (Henry business travel)
Tue Apr 24: GPGPU: Number Crunching in Your Graphics Card
Tue May  1: Grab Bag: Scientific Libraries, I/O Libraries, Visualization

Supercomputing in Plain English: Apps & Par Types
Tue March 27 2018 102



Supercomputing in Plain English: Apps & Par Types
Tue March 27 2018 103

Thanks for helping!
 OU IT

 OSCER operations staff (Dave Akin, Patrick Calhoun, Kali 
McLennan, Jason Speckman, Brett Zimmerman)

 OSCER Research Computing Facilitators (Jim Ferguson, 
Horst Severini)

 Debi Gentis, OSCER Coordinator
 Kyle Dudgeon, OSCER Manager of Operations
 Ashish Pai, Managing Director for Research IT Services
 The OU IT network team
 OU CIO Eddie Huebsch

 OneNet: Skyler Donahue
 Oklahoma State U: Dana Brunson



Supercomputing in Plain English: Apps & Par Types
Tue March 27 2018 104

This is an experiment!
It’s the nature of these kinds of videoconferences that 

FAILURES ARE GUARANTEED TO HAPPEN!       
NO PROMISES!

So, please bear with us. Hopefully everything will work out 
well enough.

If you lose your connection, you can retry the same kind of 
connection, or try connecting another way.

Remember, if all else fails, you always have the phone bridge 
to fall back on.

PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.
PLEASE MUTE YOURSELF.



Coming in 2018!
 Coalition for Advancing Digital Research & Education (CADRE) Conference:       

Apr 17-18 2018 @ Oklahoma State U, Stillwater OK USA
https://hpcc.okstate.edu/cadre-conference

 Linux Clusters Institute workshops
http://www.linuxclustersinstitute.org/workshops/

 Introductory HPC Cluster System Administration: May 14-18 2018 @ U Nebraska, Lincoln NE USA
 Intermediate HPC Cluster System Administration: Aug 13-17 2018 @ Yale U, New Haven CT USA

 Great Plains Network Annual Meeting: details coming soon
 Advanced Cyberinfrastructure Research & Education Facilitators (ACI-REF) Virtual 

Residency Aug 5-10 2018, U Oklahoma, Norman OK USA
 PEARC 2018, July 22-27, Pittsburgh PA USA

https://www.pearc18.pearc.org/

 IEEE Cluster 2018, Sep 10-13, Belfast UK
https://cluster2018.github.io

 OKLAHOMA SUPERCOMPUTING SYMPOSIUM 2018, Sep 25-26 2018 @ OU
 SC18 supercomputing conference, Nov 11-16 2018, Dallas TX USA

http://sc18.supercomputing.org/

Supercomputing in Plain English: Apps & Par Types
Tue March 27 2018 105

https://hpcc.okstate.edu/cadre-conference
http://www.linuxclustersinstitute.org/workshops/
https://www.pearc18.pearc.org/
https://cluster2018.github.io/
http://sc18.supercomputing.org/


Thanks for your 
attention!

Questions?
www.oscer.ou.edu

http://www.oscer.ou.edu/


107

References

[1] http://en.wikipedia.org/wiki/Monte_carlo_simulation
[2] http://en.wikipedia.org/wiki/N-body_problem
[3] http://adsbit.harvard.edu//full/1991CeMDA..50...73W/0000087.000.html
[4] http://lostbiro.com/blog/wp-content/uploads/2007/10/Magritte-Pipe.jpg

Tue March 27 2018
Supercomputing in Plain English: Apps & Par Types

http://en.wikipedia.org/wiki/Monte_carlo_simulation
http://en.wikipedia.org/wiki/N-body_problem
http://adsbit.harvard.edu/full/1991CeMDA..50...73W/0000087.000.html
http://lostbiro.com/blog/wp-content/uploads/2007/10/Magritte-Pipe.jpg

	Supercomputing�in Plain English�Applications and Types of Parallelism
	This is an experiment!
	PLEASE MUTE YOURSELF
	Download the Slides Beforehand
	Zoom
	YouTube
	Twitch
	Wowza #1
	Wowza #2
	Toll Free Phone Bridge
	Please Mute Yourself
	Questions via E-mail Only
	Onsite: Talent Release Form
	TENTATIVE Schedule
	Thanks for helping!
	This is an experiment!
	Coming in 2018!
	Outline
	Monte Carlo:�Client-Server
	Embarrassingly Parallel
	Monte Carlo Methods
	Monte Carlo Methods: Example
	Monte Carlo Methods: Example
	Monte Carlo Methods: Example
	Monte Carlo Methods
	MC: Embarrassingly Parallel
	Serial Monte Carlo (C)
	Serial Monte Carlo (F90)
	Parallel Monte Carlo (C)
	Parallel Monte Carlo (F90)
	N-Body:�Task Parallelism and Collective Communication
	N Bodies
	N-Body Problems
	1-Body Problem
	2-Body Problem
	3-Body Problem
	N-Body Problems (N > 3)
	N-Body Problems (N > 3)
	N Bodies
	Force #1
	Force #2
	Force #3
	Force #4
	Force #5
	Force #6
	Force #N-1
	N-Body Problems
	Aside: Big-O Notation
	Big-O: Dropping the Low Term
	Big-O: Dropping the Constant
	N-Body Problems
	O(N2) Forces
	How to Calculate?
	How to Parallelize?
	Do You Need a Server?
	Parallelize How?
	Data vs. Task Parallelism
	Data Parallelism for N-Body?
	Task Parallelism for N-body?
	MPI_Reduce (C)
	MPI_Reduce (F90)
	Sharing the Result
	MPI_Allreduce (C)
	MPI_Allreduce (F90)
	Collective Communications
	Collectives Are Expensive, But Cheap
	Transport:�Data Parallelism
	What is a Simulation?
	I Want the Area Under This Curve!
	A Riemann Sum
	A Riemann Sum
	A Riemann Sum
	A Better Riemann Sum
	The Best Riemann Sum
	The Best Riemann Sum
	Differential Equations
	A Discrete Mesh of Data
	A Discrete Mesh of Data
	Finite Difference
	Navier-Stokes Equation
	Cartesian Coordinates
	Structured Mesh
	Flow in Structured Meshes
	Ghost Boundary Zones
	Ghost Boundary Zones
	Using Ghost Boundary Zones (C)
	Using Ghost Boundary Zones (F90)
	Ghost Boundary Zones in MPI
	Data Decomposition
	Data Decomposition
	MPI_Cart_*
	MPI_Sendrecv
	Why not Recv then Send?
	Why not Send then Recv?
	Alternate Send and Recv?
	MPI_Sendrecv
	MPI_Sendrecv
	Why MPI_Sendrecv?
	MPI_Sendrecv
	MPI_Sendrecv
	What About Edges and Corners?
	TENTATIVE Schedule
	Thanks for helping!
	This is an experiment!
	Coming in 2018!
	Thanks for your attention!���Questions?�www.oscer.ou.edu
	References

