
Supercomputing
in Plain English

Applications and Types of Parallelism
Henry Neeman, Director

OU Supercomputing Center for Education & Research (OSCER)
University of Oklahoma

Tuesday March 5 2013

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013 2

This is an experiment!
It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone
bridge to fall back on.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013 3

H.323 (Polycom etc) #1
If you want to use H.323 videoconferencing – for example,

Polycom – then:
 If you AREN’T registered with the OneNet gatekeeper (which

is probably the case), then:
 Dial 164.58.250.47
 Bring up the virtual keypad.

On some H.323 devices, you can bring up the virtual keypad by typing:

(You may want to try without first, then with; some devices won't work
with the #, but give cryptic error messages about it.)

 When asked for the conference ID, or if there's no response, enter:
0409

 On most but not all H.323 devices, you indicate the end of the ID with:

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013 4

H.323 (Polycom etc) #2
If you want to use H.323 videoconferencing – for example,

Polycom – then:
 If you ARE already registered with the OneNet gatekeeper

(most institutions aren’t), dial:
 2500409

Many thanks to Skyler Donahue and Steven Haldeman of OneNet
for providing this.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013 5

Wowza #1
You can watch from a Windows, MacOS or Linux laptop using

Wowza from either of the following URLs:

http://www.onenet.net/technical-resources/video/sipe-stream/

OR
https://vcenter.njvid.net/videos/livestreams/page1/

Wowza behaves a lot like YouTube, except live.

Many thanks to Skyler Donahue and Steven Haldeman of OneNet

and Bob Gerdes of Rutgers U for providing this.

http://www.onenet.net/technical-resources/video/sipe-stream/
https://vcenter.njvid.net/videos/livestreams/page1/

Wowza #2
Wowza has been tested on multiple browsers on each of:
 Windows (7 and 8): IE, Firefox, Chrome, Opera, Safari
 MacOS X: Safari, Firefox
 Linux: Firefox, Opera
We’ve also successfully tested it on devices with:
 Android
 iOS
However, we make no representations on the likelihood of it
working on your device, because we don’t know which
versions of Android or iOS it might or might not work with.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013 6

Wowza #3
If one of the Wowza URLs fails, try switching over to the other
one.

If we lose our network connection between OU and OneNet,
then there may be a slight delay while we set up a direct
connection to Rutgers.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013 7

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013 8

Toll Free Phone Bridge
IF ALL ELSE FAILS, you can use our toll free phone bridge:

800-832-0736
* 623 2847 #

Please mute yourself and use the phone to listen.
Don’t worry, we’ll call out slide numbers as we go.
Please use the phone bridge ONLY if you cannot connect any

other way: the phone bridge can handle only 100
simultaneous connections, and we have over 350 participants.

Many thanks to OU CIO Loretta Early for providing the toll free
phone bridge.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013 9

Please Mute Yourself
No matter how you connect, please mute yourself, so that we

cannot hear you.
(For Wowza, you don’t need to do that, because the

information only goes from us to you, not from you to us.)
At OU, we will turn off the sound on all conferencing

technologies.
That way, we won’t have problems with echo cancellation.
Of course, that means we cannot hear questions.
So for questions, you’ll need to send e-mail.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013 10

Questions via E-mail Only
Ask questions by sending e-mail to:

sipe2013@gmail.com

All questions will be read out loud and then answered out loud.

mailto:sipe2013@gmail.com

TENTATIVE Schedule
Tue Jan 29: Apps & Par Types: What the Heck is
Supercomputing?
Tue Jan 29: The Tyranny of the Storage Hierarchy
Tue March 5: Instruction Level Parallelism
Tue March 5: Stupid Compiler Tricks
Tue March 5: Apps & Par Typesory Multithreading
Tue March 5: Distributed Multiprocessing
Tue March 5: Applications and Types of Parallelism
Tue March 12: Multicore Madness
Tue March 19: NO SESSION (OU's Spring Break)
Tue March 26: High Throughput Computing
Tue Apr 2: GPGPU: Number Crunching in Your Graphics Card
Tue Apr 9: Grab Bag: Scientific Libraries, I/O Libraries,
Visualization Supercomputing in Plain English: Apps & Par Types

Tue March 5 2013 11

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013 12

Supercomputing Exercises #1
Want to do the “Supercomputing in Plain English” exercises?
 The 3rd exercise will be posted soon at:

http://www.oscer.ou.edu/education/
 If you don’t yet have a supercomputer account, you can get

a temporary account, just for the “Supercomputing in Plain
English” exercises, by sending e-mail to:

hneeman@ou.edu
Please note that this account is for doing the exercises only,

and will be shut down at the end of the series. It’s also
available only to those at institutions in the USA.

 This week’s Introductory exercise will teach you how to
compile and run jobs on OU’s big Linux cluster
supercomputer, which is named Boomer.

http://www.oscer.ou.edu/education/
mailto:hneeman@ou.edu

Supercomputing Exercises #2
You’ll be doing the exercises on your own (or you can work
with others at your local institution if you like).
These aren’t graded, but we’re available for questions:

hneeman@ou.edu

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013 13

mailto:hneeman@ou.edu

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013 14

Thanks for helping!
 OU IT

 OSCER operations staff (Brandon George, Dave Akin, Brett Zimmerman,
Josh Alexander, Patrick Calhoun)

 Horst Severini, OSCER Associate Director for Remote & Heterogeneous
Computing

 Debi Gentis, OU Research IT coordinator
 Kevin Blake, OU IT (videographer)
 Chris Kobza, OU IT (learning technologies)
 Mark McAvoy

 Kyle Keys, OU National Weather Center
 James Deaton, Skyler Donahue and Steven Haldeman, OneNet
 Bob Gerdes, Rutgers U
 Lisa Ison, U Kentucky
 Paul Dave, U Chicago

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013 15

This is an experiment!
It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!
NO PROMISES!

So, please bear with us. Hopefully everything will work out
well enough.

If you lose your connection, you can retry the same kind of
connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone
bridge to fall back on.

Coming in 2013!
From Computational Biophysics to Systems Biology, May 19-21,

Norman OK
Great Plains Network Annual Meeting, May 29-31, Kansas City
XSEDE2013, July 22-25, San Diego CA
IEEE Cluster 2013, Sep 23-27, Indianapolis IN
OKLAHOMA SUPERCOMPUTING SYMPOSIUM 2013,

Oct 1-2, Norman OK
SC13, Nov 17-22, Denver CO

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013 16

17

OK Supercomputing Symposium 2013

2006 Keynote:
Dan Atkins

Head of NSF’s
Office of

Cyberinfrastructure

2004 Keynote:
Sangtae Kim
NSF Shared

Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer & Information
Science & Engineering

Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

2008 Keynote:
José Munoz

Deputy Office
Director/ Senior

Scientific Advisor
NSF Office of

Cyberinfrastructure

2009 Keynote:
Douglass Post
Chief Scientist

US Dept of Defense
HPC Modernization

Program

FREE! Wed Oct 2 2013 @ OU
Over 235 registra2ons already!

Over 150 in the first day, over 200 in the first week,
over 225 in the first month.

http://symposium2013.oscer.ou.edu/

Reception/Poster Session
Tue Oct 1 2013 @ OU

Symposium Wed Oct 2 2013 @ OU

2010 Keynote:
Horst Simon

Deputy Director
Lawrence Berkeley
National Laboratory

2013 Keynote
to be announced!

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

2011 Keynote:
Barry Schneider

Program Manager
National Science

Foundation

2012 Keynote:
Thom Dunning

Director
National Center for

Supercomputing
Applications

http://symposium2013.oscer.ou.edu/

18

Outline
 Monte Carlo: Client-Server
 N-Body: Task Parallelism
 Transport: Data Parallelism

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

Monte Carlo:
Client-Server

[1]

20

Embarrassingly Parallel
An application is known as embarrassingly parallel if its

parallel implementation:
1. can straightforwardly be broken up into roughly equal

amounts of work per processor, AND
2. has minimal parallel overhead (for example, communication

among processors).
We love embarrassingly parallel applications, because they get

near-perfect parallel speedup, sometimes with modest
programming effort.

Embarrassingly parallel applications are also known as
loosely coupled.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

21

Monte Carlo Methods
Monte Carlo is a European city where people gamble; that is,

they play games of chance, which involve randomness.
Monte Carlo methods are ways of simulating (or otherwise

calculating) physical phenomena based on randomness.
Monte Carlo simulations typically are embarrassingly parallel.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

22

Monte Carlo Methods: Example
Suppose you have some physical phenomenon. For example,

consider High Energy Physics, in which we bang tiny
particles together at incredibly high speeds.

BANG!

We want to know, say, the average properties of this
phenomenon.

There are infinitely many ways that two particles can be
banged together.

So, we can’t possibly simulate all of them.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

23

Monte Carlo Methods: Example
Suppose you have some physical phenomenon. For example,

consider High Energy Physics, in which we bang tiny
particles together at incredibly high speeds.

BANG!
There are infinitely many ways that two particles can be

banged together.
So, we can’t possibly simulate all of them.
Instead, we can randomly choose a finite subset of these

infinitely many ways and simulate only the subset.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

24

Monte Carlo Methods: Example
Suppose you have some physical phenomenon. For example,

consider High Energy Physics, in which we bang tiny
particles together at incredibly high speeds.

BANG!
There are infinitely many ways that two particles can be banged

together.
We randomly choose a finite subset of these infinitely many

ways and simulate only the subset.
The average of this subset will be close to the actual average.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

25

Monte Carlo Methods
In a Monte Carlo method, you randomly generate a large number

of example cases (realizations) of a phenomenon, and then
take the average of the properties of these realizations.

When the average of the realizations converges (that is, doesn’t
change substantially if new realizations are generated), then
the Monte Carlo simulation stops.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

26

MC: Embarrassingly Parallel

Monte Carlo simulations are embarrassingly parallel, because

each realization is completely independent of all of the
other realizations.

That is, if you’re going to run a million realizations, then:
1. you can straightforwardly break into roughly (Million / Np)

chunks of realizations, one chunk for each of the Np
processors, AND

2. the only parallel overhead (for example, communication)
comes from tracking the average properties, which doesn’t
have to happen very often.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

27

Serial Monte Carlo (C)
Suppose you have an existing serial Monte Carlo simulation:
int main (int argc, char** argv)
{ /* main */
 read_input(…);
 for (realization = 0;
 realization < number_of_realizations;
 realization++) {
 generate_random_realization(…);
 calculate_properties(…);
 } /* for realization */
 calculate_average(…);
} /* main */

How would you parallelize this?

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

28

Serial Monte Carlo (F90)
Suppose you have an existing serial Monte Carlo simulation:
PROGRAM monte_carlo
 CALL read_input(…)
 DO realization = 1, number_of_realizations
 CALL generate_random_realization(…)
 CALL calculate_properties(…)
 END DO
 CALL calculate_average(…)
END PROGRAM monte_carlo

How would you parallelize this?

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

29

Parallel Monte Carlo (C)
int main (int argc, char** argv)
{ /* main */
 [MPI startup]
 if (my_rank == server_rank) {
 read_input(…);
 }
 mpi_error_code = MPI_Bcast(…);
 for (realization = 0;
 realization < number_of_realizations / number_of_processes;
 realization++) {
 generate_random_realization(…);
 calculate_realization_properties(…);
 calculate_local_running_average(...);
 } /* for realization */
 if (my_rank == server_rank) {
 [collect properties]
 }
 else {
 [send properties]
 }
 calculate_global_average_from_local_averages(…)
 output_overall_average(...)
 [MPI shutdown]
} /* main */

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

30

Parallel Monte Carlo (F90)
PROGRAM monte_carlo
 [MPI startup]
 IF (my_rank == server_rank) THEN
 CALL read_input(…)
 END IF
 CALL MPI_Bcast(…)
 DO realization = 1, number_of_realizations / number_of_processes
 CALL generate_random_realization(…)
 CALL calculate_realization_properties(…)
 CALL calculate_local_running_average(...)
 END DO
 IF (my_rank == server_rank) THEN
 [collect properties]
 ELSE
 [send properties]
 END IF
 CALL calculate_global_average_from_local_averages(…)
 CALL output_overall_average(...)
 [MPI shutdown]
END PROGRAM monte_carlo

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

N-Body:
Task Parallelism and

Collective
Communication

[2]

32

N Bodies

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

33

N-Body Problems
An N-body problem is a problem involving N “bodies” –

that is, particles (for example, stars, atoms) – each of which
applies a force to all of the others.

For example, if you have N stars, then each of the N stars
exerts a force (gravity) on all of the other N–1 stars.

Likewise, if you have N atoms, then every atom exerts a force
(nuclear) on all of the other N–1 atoms.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

34

1-Body Problem
When N is 1, you have a simple 1-Body Problem: a single

particle, with no forces acting on it.
Given the particle’s position P and velocity V at some time t0,

you can trivially calculate the particle’s position at time t0+Δt:
P(t0+Δt) = P(t0) + VΔt

V(t0+Δt) = V(t0)

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

35

2-Body Problem
When N is 2, you have – surprise! – a 2-Body Problem: exactly

2 particles, each exerting a force that acts on the other.
The relationship between the 2 particles can be expressed as a

differential equation that can be solved analytically,
producing a closed-form solution.

So, given the particles’ initial positions and velocities, you can
trivially calculate their positions and velocities at any later
time.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

36

3-Body Problem
When N is 3, you have – surprise! – a 3-Body Problem: exactly

3 particles, each exerting a force that acts on the other 2.
The relationship between the 3 particles can be expressed as a

differential equation that can be solved using an infinite
series, producing a closed-form solution, due to Karl Fritiof
Sundman in 1912.

However, in practice, the number of terms of the infinite series
that you need to calculate to get a reasonable solution is so
large that the infinite series is impractical, so you’re stuck
with the generalized formulation.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

37

N-Body Problems (N > 3)
When N > 3, you have a general N-Body Problem: N particles,

each exerting a force that acts on the other N-1 particles.
The relationship between the N particles can be expressed as a

differential equation that can be solved using an infinite
series, producing a closed-form solution, due to Qiudong
Wang in 1991.

However, in practice, the number of terms of the infinite series
that you need to calculate to get a reasonable solution is so
large that the infinite series is impractical, so you’re stuck
with the generalized formulation.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

38

N-Body Problems (N > 3)
For N > 3, the relationship between the N particles can be

expressed as a differential equation that can be solved using
an infinite series, producing a closed-form solution, but
convergence takes so long that this approach is impractical.

So, numerical simulation is pretty much the only way to study
groups of 3 or more bodies.

Popular applications of N-body codes include:
 astronomy (that is, galaxy formation, cosmology);
 chemistry (that is, protein folding, molecular dynamics).
Note that, for N bodies, there are on the order of N2 forces,

denoted O(N2).

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

39

N Bodies

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

40

Force #1

A

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

41

Force #2

A

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

42

Force #3

A

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

43

Force #4

A

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

44

Force #5

A

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

45

Force #6

A

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

46

Force #N-1

A

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

47

N-Body Problems
Given N bodies, each body exerts a force on all of the other

N – 1 bodies.
Therefore, there are N • (N – 1) forces in total.
You can also think of this as (N • (N – 1)) / 2 forces, in the

sense that the force from particle A to particle B is the same
(except in the opposite direction) as the force from particle
B to particle A.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

48

Aside: Big-O Notation
Let’s say that you have some task to perform on a certain

number of things, and that the task takes a certain amount of
time to complete.

Let’s say that the amount of time can be expressed as a
polynomial on the number of things to perform the task on.

For example, the amount of time it takes to read a book might
be proportional to the number of words, plus the amount of
time it takes to settle into your favorite easy chair.

C1 . N + C2

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

49

Big-O: Dropping the Low Term
C1 . N + C2

When N is very large, the time spent settling into your easy
chair becomes such a small proportion of the total time that
it’s virtually zero.

So from a practical perspective, for large N, the polynomial
reduces to:

C1 . N

In fact, for any polynomial, if N is large, then all of the terms
except the highest-order term are irrelevant.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

50

Big-O: Dropping the Constant
C1 . N

Computers get faster and faster all the time. And there are
many different flavors of computers, having many different
speeds.

So, computer scientists don’t care about the constant, only
about the order of the highest-order term of the polynomial.

They indicate this with Big-O notation:
O(N)

This is often said as: “of order N.”

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

51

N-Body Problems
Given N bodies, each body exerts a force on all of the other

N – 1 bodies.
Therefore, there are N • (N – 1) forces total.
In Big-O notation, that’s O(N2) forces.
So, calculating the forces takes O(N2) time to execute.
But, there are only N particles, each taking up the same amount

of memory, so we say that N-body codes are of:
 O(N) spatial complexity (memory)
 O(N2) temporal complexity (calculations)

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

52

O(N2) Forces

Note that this picture shows only the forces between A and everyone else.

A

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

53

How to Calculate?
Whatever your physics is, you have some function, F(Bi,Bj),

that expresses the force between two bodies Bi and Bj.
For example, for stars and galaxies,
 F(A,B) = G · mBi · mBj / dist(Bi, Bj)2
where G is the gravitational constant and m is the mass of the

body in question.
If you have all of the forces for every pair of particles, then

you can calculate their sum, obtaining the force on every
particle.

From that, you can calculate every particle’s new position and
velocity.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

54

How to Parallelize?
Okay, so let’s say you have a nice serial (single-core) code

that does an N-body calculation.
How are you going to parallelize it?
You could:
 have a server feed particles to processes;
 have a server feed interactions (particle pairs) to processes;
 have each process decide on its own subset of the particles,

and then share around the summed forces on those particles;
 have each process decide its own subset of the interactions,

and then share around the summed forces from those
interactions.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

55

Do You Need a Server?
Let’s say that you have N bodies, and therefore you have

½ N (N - 1) interactions (every particle interacts with all of
the others, but you don’t need to calculate both Bi Bj and
Bj Bi).

Do you need a server?
Well, can each processor determine, on its own, either

(a) which of the bodies to process, or (b) which of the
interactions to process?

If the answer is yes, then you don’t need a server.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

56

Parallelize How?
Suppose you have Np processors.
Should you parallelize:
 by assigning a subset of N / Np of the bodies to each

processor, OR
 by assigning a subset of N (N - 1) / Np of the interactions to

each processor?

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

57

Data vs. Task Parallelism
 Data Parallelism means parallelizing by giving a subset of

the data to each process, and then each process performs the
same tasks on the different subsets of data.

 Task Parallelism means parallelizing by giving a subset of
the tasks to each process, and then each process performs a
different subset of tasks on the same data.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

58

Data Parallelism for N-Body?
If you parallelize an N-body code by data, then each processor

gets N / Np pieces of data.
For example, if you have 8 bodies and 2 processors, then:
 Processor P0 gets the first 4 bodies;
 Processor P1 gets the second 4 bodies.
But, every piece of data (that is, every body) has to interact

with every other piece of data, to calculate the forces.
So, every processor will have to send all of its data to all of the

other processors, for every single interaction that it
calculates.

That’s a lot of communication!

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

59

Task Parallelism for N-body?
If you parallelize an N-body code by task, then each processor

gets all of the pieces of data that describe the particles (for
example, positions, velocities, masses).

Then, each processor can calculate its subset of the interaction
forces on its own, without talking to any of the other
processors.

But, at the end of the force calculations, everyone has to share all
of the forces that have been calculated, so that each particle
ends up with the total force that acts on it (global reduction).

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

60

MPI_Reduce (C)
Here’s the C syntax for MPI_Reduce:
 mpi_error_code =
 MPI_Reduce(sendbuffer, recvbuffer,
 count, datatype, operation,
 root, communicator, mpi_error_code);
For example, to do a sum over all of the particle forces:
 mpi_error_code =
 MPI_Reduce(
 local_particle_force_sum,
 global_particle_force_sum,
 number_of_particles,
 MPI_DOUBLE, MPI_SUM,
 server_process, MPI_COMM_WORLD);

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

61

MPI_Reduce (F90)
Here’s the Fortran 90 syntax for MPI_Reduce:
 CALL MPI_Reduce(sendbuffer, recvbuffer, &
 & count, datatype, operation, &
 & root, communicator, mpi_error_code)
For example, to do a sum over all of the particle forces:
 CALL MPI_Reduce(&
 & local_particle_force_sum, &
 & global_particle_force_sum, &
 & number_of_particles, &
 & MPI_DOUBLE_PRECISION, MPI_SUM, &
 & server_process, MPI_COMM_WORLD, &
 & mpi_error_code)

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

62

Sharing the Result
In the N-body case, we don’t want just one processor to know

the result of the sum, we want every processor to know.
So, we could do a reduce followed immediately by a broadcast.
But, MPI gives us a routine that packages all of that for us:
MPI_Allreduce.

MPI_Allreduce is just like MPI_Reduce except that
every process gets the result (so we drop the
server_process argument).

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

63

MPI_Allreduce (C)
Here’s the C syntax for MPI_Allreduce:
 mpi_error_code =
 MPI_Allreduce(
 sendbuffer, recvbuffer, count,
 datatype, operation,
 communicator);
For example, to do a sum over all of the particle forces:
 mpi_error_code =
 MPI_Allreduce(
 local_particle_force_sum,
 global_particle_force_sum,
 number_of_particles,
 MPI_DOUBLE, MPI_SUM,
 MPI_COMM_WORLD);

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

64

MPI_Allreduce (F90)
Here’s the Fortran 90 syntax for MPI_Allreduce:
 CALL MPI_Allreduce(&
 & sendbuffer, recvbuffer, count, &
 & datatype, operation, &
 & communicator, mpi_error_code)
For example, to do a sum over all of the particle forces:
 CALL MPI_Allreduce(&
 & local_particle_force_sum, &
 & global_particle_force_sum, &
 & number_of_particles, &
 & MPI_DOUBLE_PRECISION, MPI_SUM, &
 & MPI_COMM_WORLD, mpi_error_code)

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

65

Collective Communications
A collective communication is a communication that is shared

among many processes, not just a sender and a receiver.
MPI_Reduce and MPI_Allreduce are collective

communications.
Others include: broadcast, gather/scatter, all-to-all.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

66

Collectives Are Expensive, But Cheap
Collective communications are very expensive relative to

point-to-point communications, because so much more
communication has to happen.

But, they can be much cheaper than doing zillions of point-to-
point communications, if that’s the alternative.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

Transport:
Data Parallelism

[2]

68

What is a Simulation?
All physical science ultimately is expressed as calculus (for

example, differential equations).
Except in the simplest (uninteresting) cases, equations based

on calculus can’t be directly solved on a computer.
Therefore, all physical science on computers has to be

approximated.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

69

I Want the Area Under This Curve!

How can I get the area under this curve?

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

70

A Riemann Sum

Δx

{

yi

Area under the curve ≈ ∑
=

∆
n

i
i xy

1

Ceci n’est pas un area under the curve: it’s approximate!

[3]

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

71

A Riemann Sum

Δx

{

yi

Area under the curve ≈ ∑
=

∆
n

i
i xy

1

Ceci n’est pas un area under the curve: it’s approximate!

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

72

A Better Riemann Sum

Δx

{

yi

Area under the curve ≈ ∑
=

∆
n

i
i xy

1

More, smaller rectangles produce a better approximation.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

73

The Best Riemann Sum

Area under the curve = ∑ ∫
∞

=

≡
1i

i ydxdxy

In the limit, infinitely many infinitesimally small
rectangles produce the exact area.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

74

The Best Riemann Sum

Area under the curve = ∑ ∫
∞

=

≡
1i

i ydxdxy

In the limit, infinitely many infinitesimally small
rectangles produce the exact area.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

75

Differential Equations
A differential equation is an equation in which differentials

(for example, dx) appear as variables.
Most physics is best expressed as differential equations.
Very simple differential equations can be solved in “closed

form,” meaning that a bit of algebraic manipulation gets the
exact answer.

Interesting differential equations, like the ones governing
interesting physics, can’t be solved in close form.

Solution: approximate!

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

76

A Discrete Mesh of Data

Data
live

here!

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013 77

A Discrete Mesh of Data

Data
live

here!

78

Finite Difference
A typical (though not the only) way of approximating the

solution of a differential equation is through finite
differencing: convert each dx (infinitely thin) into a Δx (has
finite nonzero width).

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

79

Navier-Stokes Equation

⋅∇+

∂

∂
+

∂
∂

∂
∂

= uij
i

j

j

i

j

i

x
u

x
u

xV
F λδη

⋅∇+

∆

∆
+

∆
∆

∆
∆

= uij
i

j

j

i

j

i

x
u

x
u

xV
F λδη

Differential Equation

Finite Difference Equation

The Navier-Stokes equations governs the
movement of fluids (water, air, etc).

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

These are only here to frighten you

80

Cartesian Coordinates

x

y

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

81

Structured Mesh
A structured mesh is like the mesh on the previous slide. It’s

nice and regular and rectangular, and can be stored in a
standard Fortran or C or C++ array of the appropriate
dimension and shape.

REAL,DIMENSION(nx,ny,nz) :: u

float u[nx][ny][nz];

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

82

Flow in Structured Meshes
When calculating flow in a structured mesh, you typically use

a finite difference equation, like so:
 unewi,j = F(∆t, uoldi,j, uoldi-1,j, uoldi+1,j, uoldi,j-1, uoldi,j+1)
for some function F, where uoldi,j is at time t and unewi,j is at

time t + ∆t.
In other words, you calculate the new value of ui,j, based on its

old value as well as the old values of its immediate
neighbors.

Actually, it may use neighbors a few farther away.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

83

Ghost Boundary Zones

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

84

Ghost Boundary Zones
We want to calculate values in the part of the mesh that we

care about, but to do that, we need values on the boundaries.
For example, to calculate unew1,1, you need uold0,1 and uold1,0.
Ghost boundary zones are mesh zones that aren’t really part of

the problem domain that we care about, but that hold
boundary data for calculating the parts that we do care
about.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

85

Using Ghost Boundary Zones (C)

A good basic algorithm for flow that uses ghost boundary
zones is:

for (timestep = 0;
 timestep < number_of_timesteps;
 timestep++) {
 fill_ghost_boundary(…);
 advance_to_new_from_old(…);
}
This approach generally works great on a serial code.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

86

Using Ghost Boundary Zones (F90)

A good basic algorithm for flow that uses ghost boundary
zones is:

DO timestep = 1, number_of_timesteps
 CALL fill_ghost_boundary(…)
 CALL advance_to_new_from_old(…)
END DO
This approach generally works great on a serial code.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

87

Ghost Boundary Zones in MPI
What if you want to parallelize a Cartesian flow code in MPI?
You’ll need to:
 decompose the mesh into submeshes;
 figure out how each submesh talks to its neighbors.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

88

Data Decomposition

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

89

Data Decomposition
We want to split the data into chunks of equal size, and give

each chunk to a processor to work on.
Then, each processor can work independently of all of the

others, except when it’s exchanging boundary data with its
neighbors.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

90

MPI_Cart_*

MPI supports exactly this kind of calculation, with a set of
functions MPI_Cart_*:

 MPI_Cart_create
 MPI_Cart_coords
 MPI_Cart_shift
These routines create and describe a new communicator, one

that replaces MPI_COMM_WORLD in your code.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

91

MPI_Sendrecv
MPI_Sendrecv is just like an MPI_Send followed by an
MPI_Recv, except that it’s much better than that.

With MPI_Send and MPI_Recv, these are your choices:
 Everyone calls MPI_Recv, and then everyone calls
MPI_Send.

 Everyone calls MPI_Send, and then everyone calls
MPI_Recv.

 Some call MPI_Send while others call MPI_Recv,
and then they swap roles.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

92

Why not Recv then Send?
Suppose that everyone calls MPI_Recv, and then everyone

calls MPI_Send.
 MPI_Recv(incoming_data, ...);
 MPI_Send(outgoing_data, ...);
Well, these routines are blocking, meaning that the

communication has to complete before the process can
continue on farther into the program.

That means that, when everyone calls MPI_Recv, they’re
waiting for someone else to call MPI_Send.

We call this deadlock.
Officially, the MPI standard guarantees that

THIS APPROACH WILL ALWAYS FAIL.
Supercomputing in Plain English: Apps & Par Types

Tue March 5 2013

93

Why not Send then Recv?
Suppose that everyone calls MPI_Send, and then everyone

calls MPI_Recv:
 MPI_Send(outgoing_data, ...);
 MPI_Recv(incoming_data, ...);
Well, this will only work if there’s enough buffer space

available to hold everyone’s messages until after everyone
is done sending.

Sometimes, there isn’t enough buffer space.
Officially, the MPI standard allows MPI implementers to

support this, but it isn’t part of the official MPI standard;
that is, a particular MPI implementation doesn’t have to
allow it, so THIS WILL SOMETIMES FAIL.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

94

Alternate Send and Recv?
Suppose that some processors call MPI_Send while others

call MPI_Recv, and then they swap roles:
 if ((my_rank % 2) == 0) {
 MPI_Send(outgoing_data, ...);
 MPI_Recv(incoming_data, ...);
 }
 else {
 MPI_Recv(incoming_data, ...);
 MPI_Send(outgoing_data, ...);
 }
This will work, and is sometimes used, but it can be painful to

manage – especially if you have an odd number of
processors.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

95

MPI_Sendrecv
MPI_Sendrecv allows each processor to simultaneously

send to one processor and receive from another.
For example, P1 could send to P0 while simultaneously

receiving from P2 .
(Note that the send and receive don’t have to literally be

simultaneous, but we can treat them as so in writing the
code.)

This is exactly what we need in Cartesian flow: we want the
boundary data to come in from the east while we send
boundary data out to the west, and then vice versa.

These are called shifts.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

96

MPI_Sendrecv
 mpi_error_code =
 MPI_Sendrecv(
 westward_send_buffer,
 westward_send_size, MPI_REAL,
 west_neighbor_process, westward_tag,
 westward_recv_buffer,
 westward_recv_size, MPI_REAL,
 east_neighbor_process, westward_tag,
 cartesian_communicator, mpi_status);

This call sends to west_neighbor_process the data in
westward_send_buffer, and at the same time receives
from east_neighbor_process a bunch of data that
end up in westward_recv_buffer.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

97

Why MPI_Sendrecv?
The advantage of MPI_Sendrecv is that it allows us the

luxury of no longer having to worry about who should send
when and who should receive when.

This is exactly what we need in Cartesian flow: we want the
boundary information to come in from the east while we
send boundary information out to the west – without us
having to worry about deciding who should do what to who
when.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

98

MPI_Sendrecv

Concept
in Principle

Concept
in practice

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

99

MPI_Sendrecv

Concept
in practice

westward_send_buffer westward_recv_buffer

Actual
Implementation

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

100

What About Edges and Corners?
If your numerical method involves faces, edges and/or corners,

don’t despair.
It turns out that, if you do the following, you’ll handle those

correctly:
 When you send, send the entire ghost boundary’s worth,

including the ghost boundary of the part you’re sending.
 Do in this order:

 all east-west;
 all north-south;
 all up-down.

 At the end, everything will be in the correct place.

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

101

OK Supercomputing Symposium 2013

2006 Keynote:
Dan Atkins

Head of NSF’s
Office of

Cyberinfrastructure

2004 Keynote:
Sangtae Kim
NSF Shared

Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer & Information
Science & Engineering

Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

2008 Keynote:
José Munoz

Deputy Office
Director/ Senior

Scientific Advisor
NSF Office of

Cyberinfrastructure

2009 Keynote:
Douglass Post
Chief Scientist

US Dept of Defense
HPC Modernization

Program

FREE! Wed Oct 2 2013 @ OU
Over 235 registra2ons already!

Over 150 in the first day, over 200 in the first week,
over 225 in the first month.

http://symposium2013.oscer.ou.edu/

Reception/Poster Session
Tue Oct 1 2013 @ OU

Symposium Wed Oct 2 2013 @ OU

2010 Keynote:
Horst Simon

Deputy Director
Lawrence Berkeley
National Laboratory

2013 Keynote
to be announced!

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

2011 Keynote:
Barry Schneider

Program Manager
National Science

Foundation

2012 Keynote:
Thom Dunning

Director
National Center for

Supercomputing
Applications

http://symposium2013.oscer.ou.edu/

Thanks for your
attention!

Questions?
www.oscer.ou.edu

http://www.oscer.ou.edu/

103

References

[1] http://en.wikipedia.org/wiki/Monte_carlo_simulation
[2] http://en.wikipedia.org/wiki/N-body_problem
[3] http://lostbiro.com/blog/wp-
content/uploads/2007/10/Magritte-Pipe.jpg

Supercomputing in Plain English: Apps & Par Types
Tue March 5 2013

http://en.wikipedia.org/wiki/Monte_carlo_simulation
http://en.wikipedia.org/wiki/N-body_problem
http://lostbiro.com/blog/wp-content/uploads/2007/10/Magritte-Pipe.jpg
http://lostbiro.com/blog/wp-content/uploads/2007/10/Magritte-Pipe.jpg

	Supercomputing�in Plain English�Applications and Types of Parallelism
	This is an experiment!
	H.323 (Polycom etc) #1
	H.323 (Polycom etc) #2
	Wowza #1
	Wowza #2
	Wowza #3
	Toll Free Phone Bridge
	Please Mute Yourself
	Questions via E-mail Only
	TENTATIVE Schedule
	Supercomputing Exercises #1
	Supercomputing Exercises #2
	Thanks for helping!
	This is an experiment!
	Coming in 2013!
	OK Supercomputing Symposium 2013
	Outline
	Monte Carlo:�Client-Server
	Embarrassingly Parallel
	Monte Carlo Methods
	Monte Carlo Methods: Example
	Monte Carlo Methods: Example
	Monte Carlo Methods: Example
	Monte Carlo Methods
	MC: Embarrassingly Parallel
	Serial Monte Carlo (C)
	Serial Monte Carlo (F90)
	Parallel Monte Carlo (C)
	Parallel Monte Carlo (F90)
	N-Body:�Task Parallelism and Collective Communication
	N Bodies
	N-Body Problems
	1-Body Problem
	2-Body Problem
	3-Body Problem
	N-Body Problems (N > 3)
	N-Body Problems (N > 3)
	N Bodies
	Force #1
	Force #2
	Force #3
	Force #4
	Force #5
	Force #6
	Force #N-1
	N-Body Problems
	Aside: Big-O Notation
	Big-O: Dropping the Low Term
	Big-O: Dropping the Constant
	N-Body Problems
	O(N2) Forces
	How to Calculate?
	How to Parallelize?
	Do You Need a Server?
	Parallelize How?
	Data vs. Task Parallelism
	Data Parallelism for N-Body?
	Task Parallelism for N-body?
	MPI_Reduce (C)
	MPI_Reduce (F90)
	Sharing the Result
	MPI_Allreduce (C)
	MPI_Allreduce (F90)
	Collective Communications
	Collectives Are Expensive, But Cheap
	Transport:�Data Parallelism
	What is a Simulation?
	I Want the Area Under This Curve!
	A Riemann Sum
	A Riemann Sum
	A Better Riemann Sum
	The Best Riemann Sum
	The Best Riemann Sum
	Differential Equations
	A Discrete Mesh of Data
	A Discrete Mesh of Data
	Finite Difference
	Navier-Stokes Equation
	Cartesian Coordinates
	Structured Mesh
	Flow in Structured Meshes
	Ghost Boundary Zones
	Ghost Boundary Zones
	Using Ghost Boundary Zones (C)
	Using Ghost Boundary Zones (F90)
	Ghost Boundary Zones in MPI
	Data Decomposition
	Data Decomposition
	MPI_Cart_*
	MPI_Sendrecv
	Why not Recv then Send?
	Why not Send then Recv?
	Alternate Send and Recv?
	MPI_Sendrecv
	MPI_Sendrecv
	Why MPI_Sendrecv?
	MPI_Sendrecv
	MPI_Sendrecv
	What About Edges and Corners?
	OK Supercomputing Symposium 2013
	Thanks for your attention!���Questions?�www.oscer.ou.edu
	References

