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This is an experiment! 
It’s the nature of these kinds of videoconferences that 

FAILURES ARE GUARANTEED TO HAPPEN!       
NO PROMISES! 

So, please bear with us. Hopefully everything will work out 
well enough. 

If you lose your connection, you can retry the same kind of 
connection, or try connecting another way. 

Remember, if all else fails, you always have the toll free phone 
bridge to fall back on. 
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H.323 (Polycom etc) #1 
If you want to use H.323 videoconferencing – for example, 

Polycom – then: 
 If you AREN’T registered with the OneNet gatekeeper (which 

is probably the case), then: 
 Dial 164.58.250.47 
 Bring up the virtual keypad.  

On some H.323 devices, you can bring up the virtual keypad by typing:  
#  
(You may want to try without first, then with; some devices won't work 
with the #, but give cryptic error messages about it.) 

 When asked for the conference ID, or if there's no response, enter:  
0409 

 On most but not all H.323 devices, you indicate the end of the ID with:  
# 
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H.323 (Polycom etc) #2 
If you want to use H.323 videoconferencing – for example, 

Polycom – then: 
 If you ARE already registered with the OneNet gatekeeper 

(most institutions aren’t), dial: 
 2500409 

Many thanks to Skyler Donahue and Steven Haldeman of OneNet 
for providing this. 
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Wowza #1 
You can watch from a Windows, MacOS or Linux laptop using 

Wowza from either of the following URLs: 
 
http://www.onenet.net/technical-resources/video/sipe-stream/ 

OR 
https://vcenter.njvid.net/videos/livestreams/page1/ 

 
Wowza behaves a lot like YouTube, except live. 
 
Many thanks to Skyler Donahue and Steven Haldeman of OneNet 

and Bob Gerdes of Rutgers U for providing this. 
 

http://www.onenet.net/technical-resources/video/sipe-stream/
https://vcenter.njvid.net/videos/livestreams/page1/


Wowza #2 
Wowza has been tested on multiple browsers on each of: 
 Windows (7 and 8): IE, Firefox, Chrome, Opera, Safari 
 MacOS X: Safari, Firefox 
 Linux: Firefox, Opera 
We’ve also successfully tested it on devices with: 
 Android 
 iOS 
However, we make no representations on the likelihood of it 
working on your device, because we don’t know which 
versions of Android or iOS it might or might not work with. 
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Wowza #3 
If one of the Wowza URLs fails, try switching over to the other 
one. 
 
If we lose our network connection between OU and OneNet, 
then there may be a slight delay while we set up a direct 
connection to Rutgers. 
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Toll Free Phone Bridge 
IF ALL ELSE FAILS, you can use our toll free phone bridge: 

800-832-0736 
* 623 2847 # 

Please mute yourself and use the phone to listen. 
Don’t worry, we’ll call out slide numbers as we go. 
Please use the phone bridge ONLY if you cannot connect any 

other way: the phone bridge can handle only 100 
simultaneous connections, and we have over 350 participants. 

Many thanks to OU CIO Loretta Early for providing the toll free 
phone bridge. 
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Please Mute Yourself 
No matter how you connect, please mute yourself, so that we 

cannot hear you. 
(For Wowza, you don’t need to do that, because the 

information only goes from us to you, not from you to us.) 
At OU, we will turn off the sound on all conferencing 

technologies. 
That way, we won’t have problems with echo cancellation. 
Of course, that means we cannot hear questions. 
So for questions, you’ll need to send e-mail. 
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Questions via E-mail Only 
Ask questions by sending e-mail to: 
 

sipe2013@gmail.com 
 
All questions will be read out loud and then answered out loud. 

mailto:sipe2013@gmail.com


TENTATIVE Schedule 
Tue Jan 29: Apps & Par Types: What the Heck is 
Supercomputing? 
Tue Jan 29: The Tyranny of the Storage Hierarchy 
Tue March 5: Instruction Level Parallelism 
Tue March 5: Stupid Compiler Tricks 
Tue March 5: Apps & Par Typesory Multithreading 
Tue March 5: Distributed Multiprocessing 
Tue March 5: Applications and Types of Parallelism 
Tue March 12: Multicore Madness 
Tue March 19: NO SESSION (OU's Spring Break) 
Tue March 26: High Throughput Computing 
Tue Apr 2: GPGPU: Number Crunching in Your Graphics Card 
Tue Apr 9: Grab Bag: Scientific Libraries, I/O Libraries, 
Visualization Supercomputing in Plain English: Apps & Par Types 

Tue March 5 2013 11 
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Supercomputing Exercises #1 
Want to do the “Supercomputing in Plain English” exercises? 
 The 3rd exercise will be posted soon at: 

http://www.oscer.ou.edu/education/ 
 If you don’t yet have a supercomputer account, you can get 

a temporary account, just for the “Supercomputing in Plain 
English” exercises, by sending e-mail to: 

hneeman@ou.edu 
Please note that this account is for doing the exercises only, 

and will be shut down at the end of the series. It’s also 
available only to those at institutions in the USA. 

 This week’s Introductory exercise will teach you how to 
compile and run jobs on OU’s big Linux cluster 
supercomputer, which is named Boomer. 

http://www.oscer.ou.edu/education/
mailto:hneeman@ou.edu


Supercomputing Exercises #2 
You’ll be doing the exercises on your own (or you can work 
with others at your local institution if you like). 
These aren’t graded, but we’re available for questions: 

hneeman@ou.edu 
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Thanks for helping! 
 OU IT 

 OSCER operations staff (Brandon George, Dave Akin, Brett Zimmerman, 
Josh Alexander, Patrick Calhoun) 

 Horst Severini, OSCER Associate Director for Remote & Heterogeneous 
Computing 

 Debi Gentis, OU Research IT coordinator 
 Kevin Blake, OU IT (videographer) 
 Chris Kobza, OU IT (learning technologies) 
 Mark McAvoy 

 Kyle Keys, OU National Weather Center 
 James Deaton, Skyler Donahue and Steven Haldeman, OneNet 
 Bob Gerdes, Rutgers U 
 Lisa Ison, U Kentucky 
 Paul Dave, U Chicago 
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This is an experiment! 
It’s the nature of these kinds of videoconferences that 

FAILURES ARE GUARANTEED TO HAPPEN!       
NO PROMISES! 

So, please bear with us. Hopefully everything will work out 
well enough. 

If you lose your connection, you can retry the same kind of 
connection, or try connecting another way. 

Remember, if all else fails, you always have the toll free phone 
bridge to fall back on. 



Coming in 2013! 
From Computational Biophysics to Systems Biology, May 19-21, 

Norman OK 
Great Plains Network Annual Meeting, May 29-31, Kansas City 
XSEDE2013, July 22-25, San Diego CA 
IEEE Cluster 2013, Sep 23-27, Indianapolis IN 
OKLAHOMA SUPERCOMPUTING SYMPOSIUM 2013, 

Oct 1-2, Norman OK 
SC13, Nov 17-22, Denver CO 
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OK Supercomputing Symposium 2013 

2006 Keynote: 
Dan Atkins 

Head of NSF’s 
Office of 

Cyberinfrastructure 

2004 Keynote: 
Sangtae Kim 
NSF Shared  

Cyberinfrastructure 
Division Director 

2003 Keynote: 
Peter Freeman 

NSF 
Computer & Information 
Science & Engineering 

Assistant Director 

2005 Keynote: 
Walt Brooks 

NASA Advanced 
Supercomputing 
Division Director 

2007 Keynote: 
Jay Boisseau 

Director 
Texas Advanced 

Computing Center 
U. Texas Austin 

2008 Keynote:     
José Munoz     

Deputy Office 
Director/ Senior 

Scientific Advisor 
NSF Office of 

Cyberinfrastructure 

2009 Keynote: 
Douglass Post  
Chief Scientist         

US Dept of Defense       
HPC Modernization 

Program 

FREE! Wed Oct 2 2013 @ OU 
Over 235 registra2ons already! 

Over 150 in the first day, over 200 in the first week, 
over 225 in the first month. 

http://symposium2013.oscer.ou.edu/ 

Reception/Poster Session 
Tue Oct 1 2013 @ OU 

Symposium Wed Oct 2 2013 @ OU 

2010 Keynote: 
Horst Simon  

Deputy Director         
Lawrence Berkeley 
National Laboratory 

2013 Keynote     
to be announced! 
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2011 Keynote: 
Barry Schneider  

Program Manager         
National Science 

Foundation 

2012 Keynote: 
Thom Dunning  

Director        
National Center for 

Supercomputing 
Applications 

http://symposium2013.oscer.ou.edu/
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Outline 
 Monte Carlo: Client-Server 
 N-Body: Task Parallelism 
 Transport: Data Parallelism 
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Monte Carlo: 
Client-Server 
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Embarrassingly Parallel 
An application is known as embarrassingly parallel  if its 

parallel implementation: 
1. can straightforwardly be broken up into roughly equal 

amounts of work per processor, AND 
2. has minimal parallel overhead (for example, communication 

among processors). 
We love embarrassingly parallel applications, because they get 

near-perfect parallel speedup, sometimes with modest 
programming effort. 

Embarrassingly parallel applications are also known as     
loosely coupled. 
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Monte Carlo Methods 
Monte Carlo is a European city where people gamble; that is, 

they play games of chance, which involve randomness. 
Monte Carlo methods are ways of simulating (or otherwise 

calculating) physical phenomena based on randomness. 
Monte Carlo simulations typically are embarrassingly parallel. 
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Monte Carlo Methods: Example 
Suppose you have some physical phenomenon. For example, 

consider High Energy Physics, in which we bang tiny 
particles together at incredibly high speeds. 

 
BANG! 

We want to know, say, the average properties of this 
phenomenon. 

There are infinitely many ways that two particles can be 
banged together. 

So, we can’t possibly simulate all of them. 

Supercomputing in Plain English: Apps & Par Types 
Tue March 5 2013 



23 

Monte Carlo Methods: Example 
Suppose you have some physical phenomenon. For example, 

consider High Energy Physics, in which we bang tiny 
particles together at incredibly high speeds. 

 
 

BANG! 
There are infinitely many ways that two particles can be 

banged together. 
So, we can’t possibly simulate all of them. 
Instead, we can randomly choose a finite subset of these 

infinitely many ways and simulate only the subset. 
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Monte Carlo Methods: Example 
Suppose you have some physical phenomenon. For example, 

consider High Energy Physics, in which we bang tiny 
particles together at incredibly high speeds. 

 
 

BANG! 
There are infinitely many ways that two particles can be banged 

together. 
We randomly choose a finite subset of these infinitely many 

ways and simulate only the subset. 
The average of this subset will be close to the actual average. 
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Monte Carlo Methods 
In a Monte Carlo method, you randomly generate a large number 

of example cases (realizations) of a phenomenon, and then 
take the average of the properties of these realizations. 

When the average of the realizations converges (that is, doesn’t 
change substantially if new realizations are generated), then 
the Monte Carlo simulation stops. 
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MC: Embarrassingly Parallel 
 
Monte Carlo simulations are embarrassingly parallel, because 

each realization is completely independent of all of the 
other realizations. 

That is, if you’re going to run a million realizations, then: 
1. you can straightforwardly break into roughly (Million / Np) 

chunks of realizations, one chunk for each of the Np 
processors, AND 

2. the only parallel overhead (for example, communication) 
comes from tracking the average properties, which doesn’t 
have to happen very often. 
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Serial Monte Carlo (C) 
Suppose you have an existing serial Monte Carlo simulation: 
int main (int argc, char** argv) 
{ /* main */ 
  read_input(…); 
  for (realization = 0; 
       realization < number_of_realizations; 
       realization++) { 
    generate_random_realization(…); 
    calculate_properties(…); 
  } /* for realization */ 
  calculate_average(…); 
} /* main */ 

How would you parallelize this? 
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Serial Monte Carlo (F90) 
Suppose you have an existing serial Monte Carlo simulation: 
PROGRAM monte_carlo 
  CALL read_input(…) 
  DO realization = 1, number_of_realizations 
    CALL generate_random_realization(…) 
    CALL calculate_properties(…) 
  END DO 
  CALL calculate_average(…) 
END PROGRAM monte_carlo 

How would you parallelize this? 
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Parallel Monte Carlo (C) 
int main (int argc, char** argv) 
{ /* main */ 
    [MPI startup] 
  if (my_rank == server_rank) { 
    read_input(…); 
  }  
  mpi_error_code = MPI_Bcast(…); 
  for (realization = 0; 
       realization < number_of_realizations / number_of_processes; 
       realization++) { 
    generate_random_realization(…); 
    calculate_realization_properties(…); 
    calculate_local_running_average(...); 
  } /* for realization */ 
  if (my_rank == server_rank) { 
            [collect properties] 
  } 
  else { 
            [send properties] 
  }    
  calculate_global_average_from_local_averages(…) 
  output_overall_average(...) 
    [MPI shutdown] 
} /* main */ 
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Parallel Monte Carlo (F90) 
PROGRAM monte_carlo 
    [MPI startup] 
  IF (my_rank == server_rank) THEN 
    CALL read_input(…) 
  END IF  
  CALL MPI_Bcast(…) 
  DO realization = 1, number_of_realizations / number_of_processes 
    CALL generate_random_realization(…) 
    CALL calculate_realization_properties(…) 
    CALL calculate_local_running_average(...) 
  END DO 
  IF (my_rank == server_rank) THEN 
            [collect properties] 
  ELSE 
            [send properties] 
  END IF    
  CALL calculate_global_average_from_local_averages(…) 
  CALL output_overall_average(...) 
    [MPI shutdown] 
END PROGRAM monte_carlo 
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N-Body: 
Task Parallelism and 

Collective 
Communication 

[2] 
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N Bodies 
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N-Body Problems 
An N-body problem is a problem involving N “bodies” –     

that is, particles (for example, stars, atoms) – each of which 
applies a force to all of the others. 

For example, if you have N stars, then each of the N stars 
exerts a force (gravity) on all of the other N–1 stars. 

Likewise, if you have N atoms, then every atom exerts a force 
(nuclear) on all of the other N–1 atoms. 
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1-Body Problem 
When N is 1, you have a simple 1-Body Problem: a single 

particle, with no forces acting on it. 
Given the particle’s position P and velocity V at some time t0, 

you can trivially calculate the particle’s position at time t0+Δt: 
P(t0+Δt) = P(t0) + VΔt 

V(t0+Δt) = V(t0) 
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2-Body Problem 
When N is 2, you have – surprise! – a 2-Body Problem: exactly 

2 particles, each exerting a force that acts on the other. 
The relationship between the 2 particles can be expressed as a 

differential equation that can be solved analytically, 
producing a closed-form solution. 

So, given the particles’ initial positions and velocities, you can 
trivially calculate their positions and velocities at any later 
time. 
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3-Body Problem 
When N is 3, you have – surprise! – a 3-Body Problem: exactly 

3 particles, each exerting a force that acts on the other 2. 
The relationship between the 3 particles can be expressed as a 

differential equation that can be solved using an infinite 
series, producing a closed-form solution, due to Karl Fritiof 
Sundman in 1912. 

However, in practice, the number of terms of the infinite series 
that you need to calculate to get a reasonable solution is so 
large that the infinite series is impractical, so you’re stuck 
with the generalized formulation. 
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N-Body Problems (N > 3) 
When N > 3, you have a general N-Body Problem: N particles, 

each exerting a force that acts on the other N-1 particles. 
The relationship between the N particles can be expressed as a 

differential equation that can be solved using an infinite 
series, producing a closed-form solution, due to Qiudong 
Wang in 1991. 

However, in practice, the number of terms of the infinite series 
that you need to calculate to get a reasonable solution is so 
large that the infinite series is impractical, so you’re stuck 
with the generalized formulation. 
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N-Body Problems (N > 3) 
For N > 3, the relationship between the N particles can be 

expressed as a differential equation that can be solved using 
an infinite series, producing a closed-form solution, but 
convergence takes so long that this approach is impractical. 

So, numerical simulation is pretty much the only way to study 
groups of 3 or more bodies. 

Popular applications of N-body codes include: 
 astronomy (that is, galaxy formation, cosmology); 
 chemistry (that is, protein folding, molecular dynamics). 
Note that, for N bodies, there are on the order of N2 forces, 

denoted O(N2). 
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N Bodies 
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Force #1 

A 
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Force #2 

A 
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Force #3 

A 
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Force #4 

A 
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Force #5 

A 
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Force #6 

A 
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Force #N-1 

A 
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N-Body Problems 
Given N bodies, each body exerts a force on all of the other    

N – 1 bodies. 
Therefore, there are N • (N – 1) forces in total. 
You can also think of this as (N • (N – 1)) / 2 forces, in the 

sense that the force from particle A to particle B is the same 
(except in the opposite direction) as the force from particle 
B to particle A. 
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Aside: Big-O Notation 
Let’s say that you have some task to perform on a certain 

number of things, and that the task takes a certain amount of 
time to complete. 

Let’s say that the amount of time can be expressed as a 
polynomial on the number of things to perform the task on. 

For example, the amount of time it takes to read a book might 
be proportional to the number of words, plus the amount of 
time it takes to settle into your favorite easy chair. 

 
C1 . N + C2 
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Big-O: Dropping the Low Term 
C1 . N + C2 

When N is very large, the time spent settling into your easy 
chair becomes such a small proportion of the total time that 
it’s virtually zero. 

So from a practical perspective, for large N, the polynomial 
reduces to: 

C1 . N 

In fact, for any polynomial, if N is large, then all of the terms 
except the highest-order term are irrelevant. 
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Big-O: Dropping the Constant 
C1 . N 

Computers get faster and faster all the time. And there are 
many different flavors of computers, having many different 
speeds. 

So, computer scientists don’t care about the constant, only 
about the order of the highest-order term of the polynomial. 

They indicate this with Big-O notation: 
O(N) 

This is often said as: “of order N.” 
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N-Body Problems 
Given N bodies, each body exerts a force on all of the other    

N – 1 bodies. 
Therefore, there are N • (N – 1) forces total. 
In Big-O notation, that’s O(N2) forces. 
So, calculating the forces takes O(N2) time to execute. 
But, there are only N particles, each taking up the same amount 

of memory, so we say that N-body codes are of: 
 O(N)  spatial complexity (memory) 
 O(N2) temporal complexity (calculations) 
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O(N2) Forces 

Note that this picture shows only the forces between A and everyone else. 

A 
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How to Calculate? 
Whatever your physics is, you have some function, F(Bi,Bj), 

that expresses the force between two bodies Bi and Bj. 
For example, for stars and galaxies, 
    F(A,B) = G · mBi · mBj / dist(Bi, Bj)2 
where G is the gravitational constant and m is the mass of the 

body in question. 
If you have all of the forces for every pair of particles, then 

you can calculate their sum, obtaining the force on every 
particle. 

From that, you can calculate every particle’s new position and 
velocity. 
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How to Parallelize? 
Okay, so let’s say you have a nice serial (single-core) code  

that does an N-body calculation. 
How are you going to parallelize it? 
You could: 
 have a server feed particles to processes; 
 have a server feed interactions (particle pairs) to processes; 
 have each process decide on its own subset of the particles, 

and then share around the summed forces on those particles; 
 have each process decide its own subset of the interactions, 

and then share around the summed forces from those 
interactions. 
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Do You Need a Server? 
Let’s say that you have N bodies, and therefore you have        

½ N (N - 1) interactions (every particle interacts with all of 
the others, but you don’t need to calculate both Bi  Bj and 
Bj  Bi). 

Do you need a server? 
Well, can each processor determine, on its own, either           

(a) which of the bodies to process, or (b) which of the 
interactions to process? 

If the answer is yes, then you don’t need a server. 
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Parallelize How? 
Suppose you have Np processors. 
Should you parallelize: 
 by assigning a subset of N / Np of the bodies to each 

processor, OR 
 by assigning a subset of N (N - 1) / Np of the interactions to 

each processor? 
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Data vs. Task Parallelism 
 Data Parallelism means parallelizing by giving a subset of 

the data to each process, and then each process performs the 
same tasks on the different subsets of data. 

 Task Parallelism means parallelizing by giving a subset of 
the tasks to each process, and then each process performs a 
different subset of tasks on the same data. 
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Data Parallelism for N-Body? 
If you parallelize an N-body code by data, then each processor 

gets N / Np pieces of data. 
For example, if you have 8 bodies and 2 processors, then: 
 Processor P0 gets the first 4 bodies; 
 Processor P1 gets the second 4 bodies. 
But, every piece of data (that is, every body) has to interact 

with every other piece of data, to calculate the forces. 
So, every processor will have to send all of its data to all of the 

other processors, for every single interaction that it 
calculates. 

That’s a lot of communication! 
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Task Parallelism for N-body? 
If you parallelize an N-body code by task, then each processor 

gets all of the pieces of data that describe the particles (for 
example, positions, velocities, masses). 

Then, each processor can calculate its subset of the interaction 
forces on its own, without talking to any of the other 
processors. 

But, at the end of the force calculations, everyone has to share all 
of the forces that have been calculated, so that each particle 
ends up with the total force that acts on it (global reduction). 
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MPI_Reduce (C) 
Here’s the C syntax for MPI_Reduce: 
  mpi_error_code = 
    MPI_Reduce(sendbuffer, recvbuffer, 
        count, datatype, operation, 
        root, communicator, mpi_error_code); 
For example, to do a sum over all of the particle forces: 
  mpi_error_code = 
    MPI_Reduce( 
        local_particle_force_sum, 
        global_particle_force_sum, 
        number_of_particles, 
        MPI_DOUBLE, MPI_SUM, 
        server_process, MPI_COMM_WORLD); 
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MPI_Reduce (F90) 
Here’s the Fortran 90 syntax for MPI_Reduce: 
  CALL MPI_Reduce(sendbuffer, recvbuffer,  & 
 &         count, datatype, operation,     & 
 &         root, communicator, mpi_error_code) 
For example, to do a sum over all of the particle forces: 
  CALL MPI_Reduce(                          & 
 &         local_particle_force_sum,        & 
 &         global_particle_force_sum,       & 
 &         number_of_particles,             & 
 &         MPI_DOUBLE_PRECISION, MPI_SUM,   & 
 &         server_process, MPI_COMM_WORLD,  & 
 &         mpi_error_code) 
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Sharing the Result 
In the N-body case, we don’t want just one processor to know 

the result of the sum, we want every processor to know. 
So, we could do a reduce followed immediately by a broadcast. 
But, MPI gives us a routine that packages all of that for us: 
MPI_Allreduce. 

MPI_Allreduce is just like MPI_Reduce except that 
every process gets the result (so we drop the 
server_process argument). 
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MPI_Allreduce (C) 
Here’s the C syntax for MPI_Allreduce: 
  mpi_error_code = 
    MPI_Allreduce( 
        sendbuffer, recvbuffer, count, 
        datatype, operation, 
        communicator); 
For example, to do a sum over all of the particle forces: 
  mpi_error_code = 
    MPI_Allreduce( 
        local_particle_force_sum, 
        global_particle_force_sum, 
        number_of_particles, 
        MPI_DOUBLE, MPI_SUM, 
        MPI_COMM_WORLD); 
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MPI_Allreduce (F90) 
Here’s the Fortran 90 syntax for MPI_Allreduce: 
  CALL MPI_Allreduce(                      & 
 &         sendbuffer, recvbuffer, count,  & 
 &         datatype, operation,            & 
 &         communicator, mpi_error_code) 
For example, to do a sum over all of the particle forces: 
  CALL MPI_Allreduce(                      & 
 &         local_particle_force_sum,       & 
 &         global_particle_force_sum,      & 
 &         number_of_particles,            & 
 &         MPI_DOUBLE_PRECISION, MPI_SUM,  &     
 &         MPI_COMM_WORLD, mpi_error_code) 
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Collective Communications 
A collective communication is a communication that is shared 

among many processes, not just a sender and a receiver. 
MPI_Reduce and MPI_Allreduce are collective 

communications. 
Others include: broadcast, gather/scatter, all-to-all. 
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Collectives Are Expensive, But Cheap 
Collective communications are very expensive relative to 

point-to-point communications, because so much more 
communication has to happen. 

But, they can be much cheaper than doing zillions of point-to-
point communications, if that’s the alternative. 
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What is a Simulation? 
All physical science ultimately is expressed as calculus (for 

example, differential equations). 
Except in the simplest (uninteresting) cases, equations based 

on calculus can’t be directly solved on a computer. 
Therefore, all physical science on computers has to be 

approximated. 
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I Want the Area Under This Curve! 

How can I get the area under this curve? 
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A Riemann Sum 

Δx 

{ 

yi 

Area under the curve  ≈ ∑
=

∆
n

i
i xy

1

Ceci n’est pas un area under the curve: it’s approximate! 

[3] 
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A Riemann Sum 

Δx 

{ 

yi 

Area under the curve  ≈ ∑
=

∆
n

i
i xy

1

Ceci n’est pas un area under the curve: it’s approximate! 
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A Better Riemann Sum 

Δx 

{ 

yi 

Area under the curve  ≈ ∑
=

∆
n

i
i xy

1

More, smaller rectangles produce a better approximation. 
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The Best Riemann Sum 

Area under the curve  = ∑ ∫
∞

=

≡
1i

i ydxdxy

In the limit, infinitely many infinitesimally small 
rectangles produce the exact area. 
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The Best Riemann Sum 

Area under the curve  = ∑ ∫
∞

=

≡
1i

i ydxdxy

In the limit, infinitely many infinitesimally small 
rectangles produce the exact area. 
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Differential Equations 
A differential equation is an equation in which differentials 

(for example, dx) appear as variables. 
Most physics is best expressed as differential equations. 
Very simple differential equations can be solved in “closed 

form,” meaning that a bit of algebraic manipulation gets the 
exact answer. 

Interesting differential equations, like the ones governing 
interesting physics, can’t be solved in close form. 

Solution: approximate! 
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A Discrete Mesh of Data 

Data 
live 

here! 
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Finite Difference 
A typical (though not the only) way of approximating the 

solution of a differential equation is through finite 
differencing: convert each dx (infinitely thin) into a Δx (has 
finite nonzero width). 
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Navier-Stokes Equation 
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Differential Equation 

Finite Difference Equation 

The Navier-Stokes equations governs the 
movement of fluids (water, air, etc). 
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Cartesian Coordinates 

x 

y 

Supercomputing in Plain English: Apps & Par Types 
Tue March 5 2013 



81 

Structured Mesh 
A structured mesh is like the mesh on the previous slide. It’s 

nice and regular and rectangular, and can be stored in a 
standard Fortran or C or C++ array of the appropriate 
dimension and shape. 

 
REAL,DIMENSION(nx,ny,nz) :: u 

 
float u[nx][ny][nz]; 
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Flow in Structured Meshes 
When calculating flow in a structured mesh, you typically use 

a finite difference equation, like so: 
    unewi,j = F(∆t, uoldi,j, uoldi-1,j, uoldi+1,j, uoldi,j-1, uoldi,j+1) 
for some function F, where uoldi,j is at time t and unewi,j is at 

time t + ∆t. 
In other words, you calculate the new value of ui,j, based on its 

old value as well as the old values of its immediate 
neighbors. 

Actually, it may use neighbors a few farther away. 
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Ghost Boundary Zones 
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Ghost Boundary Zones 
We want to calculate values in the part of the mesh that we 

care about, but to do that, we need values on the boundaries. 
For example, to calculate unew1,1, you need uold0,1 and uold1,0. 
Ghost boundary zones are mesh zones that aren’t really part of 

the problem domain that we care about, but that hold 
boundary data for calculating the parts that we do care 
about. 
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Using Ghost Boundary Zones (C) 

A good basic algorithm for flow that uses ghost boundary 
zones is: 

for (timestep = 0; 
     timestep <  number_of_timesteps; 
     timestep++) { 
  fill_ghost_boundary(…); 
  advance_to_new_from_old(…); 
} 
This approach generally works great on a serial code. 
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Using Ghost Boundary Zones (F90) 

A good basic algorithm for flow that uses ghost boundary 
zones is: 

DO timestep = 1, number_of_timesteps 
  CALL fill_ghost_boundary(…) 
  CALL advance_to_new_from_old(…) 
END DO 
This approach generally works great on a serial code. 
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Ghost Boundary Zones in MPI 
What if you want to parallelize a Cartesian flow code in MPI? 
You’ll need to: 
 decompose the mesh into submeshes; 
 figure out how each submesh talks to its neighbors. 
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Data Decomposition 
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Data Decomposition 
We want to split the data into chunks of equal size, and give 

each chunk to a processor to work on. 
Then, each processor can work independently of all of the 

others, except when it’s exchanging boundary data with its 
neighbors. 
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MPI_Cart_* 

MPI supports exactly this kind of calculation, with a set of 
functions MPI_Cart_*: 

  MPI_Cart_create 
  MPI_Cart_coords 
  MPI_Cart_shift 
These routines create and describe a new communicator, one 

that replaces MPI_COMM_WORLD in your code. 
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MPI_Sendrecv 
MPI_Sendrecv is just like an MPI_Send followed by an 
MPI_Recv, except that it’s much better than that. 

With MPI_Send and MPI_Recv, these are your choices: 
 Everyone calls MPI_Recv, and then everyone calls 
MPI_Send. 

 Everyone calls MPI_Send, and then everyone calls 
MPI_Recv. 

 Some call MPI_Send while others call MPI_Recv,       
and then they swap roles. 
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Why not Recv then Send? 
Suppose that everyone calls MPI_Recv, and then everyone 

calls MPI_Send. 
    MPI_Recv(incoming_data, ...); 
    MPI_Send(outgoing_data, ...); 
Well, these routines are blocking, meaning that the 

communication has to complete before the process can 
continue on farther into the program. 

That means that, when everyone calls MPI_Recv, they’re 
waiting for someone else to call MPI_Send. 

We call this deadlock. 
Officially, the MPI standard guarantees that                          

THIS APPROACH WILL ALWAYS FAIL. 
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Why not Send then Recv? 
Suppose that everyone calls MPI_Send, and then everyone 

calls MPI_Recv: 
    MPI_Send(outgoing_data, ...); 
    MPI_Recv(incoming_data, ...); 
Well, this will only work if there’s enough buffer space 

available to hold everyone’s messages until after everyone 
is done sending. 

Sometimes, there isn’t enough buffer space. 
Officially, the MPI standard allows MPI implementers to 

support this, but it isn’t part of the official MPI standard; 
that is, a particular MPI implementation doesn’t have to 
allow it, so THIS WILL SOMETIMES FAIL. 
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Alternate Send and Recv? 
Suppose that some processors call MPI_Send while others 

call MPI_Recv, and then they swap roles: 
  if ((my_rank % 2) == 0) { 
    MPI_Send(outgoing_data, ...); 
    MPI_Recv(incoming_data, ...); 
  } 
  else { 
    MPI_Recv(incoming_data, ...); 
    MPI_Send(outgoing_data, ...); 
  } 
This will work, and is sometimes used, but it can be painful to 

manage – especially if you have an odd number of 
processors. 
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MPI_Sendrecv 
MPI_Sendrecv allows each processor to simultaneously 

send to one processor and receive from another. 
For example, P1 could send to P0 while simultaneously 

receiving from P2 . 
(Note that the send and receive don’t have to literally be 

simultaneous, but we can treat them as so in writing the 
code.) 

This is exactly what we need in Cartesian flow: we want the 
boundary data to come in from the east while we send 
boundary data out to the west, and then vice versa. 

These are called shifts. 
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MPI_Sendrecv 
  mpi_error_code = 
    MPI_Sendrecv( 
        westward_send_buffer, 
        westward_send_size, MPI_REAL, 
        west_neighbor_process, westward_tag, 
        westward_recv_buffer, 
        westward_recv_size, MPI_REAL, 
        east_neighbor_process, westward_tag, 
        cartesian_communicator, mpi_status); 

This call sends to west_neighbor_process the data in 
westward_send_buffer, and at the same time receives 
from east_neighbor_process a bunch of data that 
end up in westward_recv_buffer. 
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Why MPI_Sendrecv? 
The advantage of MPI_Sendrecv is that it allows us the 

luxury of no longer having to worry about who should send 
when and who should receive when. 

This is exactly what we need in Cartesian flow: we want the 
boundary information to come in from the east while we 
send boundary information out to the west – without us 
having to worry about deciding who should do what to who 
when. 
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MPI_Sendrecv 

Concept 
in Principle 

Concept 
in practice 
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MPI_Sendrecv 

Concept 
in practice 

westward_send_buffer westward_recv_buffer 

Actual 
Implementation 
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What About Edges and Corners? 
If your numerical method involves faces, edges and/or corners, 

don’t despair. 
It turns out that, if you do the following, you’ll handle those 

correctly: 
 When you send, send the entire ghost boundary’s worth, 

including the ghost boundary of the part you’re sending. 
 Do in this order: 

 all east-west; 
 all north-south; 
 all up-down. 

 At the end, everything will be in the correct place. 
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attention! 
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