
Supercomputing

in Plain English

Applications and
Types of Parallelism

Henry Neeman, Director
OU Supercomputing Center for Education & Research

University of Oklahoma Information Technology
Tuesday April 5 2011

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011 2

This is an experiment!

It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!

NO PROMISES!

So, please bear with us. Hopefully everything will work out

well enough.

If you lose your connection, you can retry the same kind of

connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone

bridge to fall back on.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011 3

Access Grid

If you aren’t sure whether you have AG, you probably don’t.

Tue Apr 5 Axon

Tue Apr 12 Platinum

Tue Apr 19 Mosaic

Tue Apr 26 Monte Carlo

Tue May 3 Helium

Many thanks to

Patrick Calhoun

of OU for setting

these up for us.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011 4

H.323 (Polycom etc)

From an H.323 device (e.g., Polycom, Tandberg, Lifesize, etc):

 If you ARE already registered with the OneNet gatekeeper:

Dial
2500409

 If you AREN'T registered with the OneNet gatekeeper (probably the case):

1. Dial:
164.58.250.47

2. Bring up the virtual keypad.

On some H.323 devices, you can bring up the virtual keypad by typing:
#

3. When asked for the conference ID, enter:
0409

4. On some H.323 devices, you indicate the end of conference ID with:
#

Many thanks to Roger Holder and OneNet for providing this.

http://www.polycom.com/
http://www.tandberg.com/
http://www.lifesize.com/
http://www.onenet.net/
http://www.onenet.net/

H.323 from Internet Explorer

From a Windows PC running Internet Explorer:

1. You MUST have the ability to install software on the PC (or have someone install it for you).

2. Download and install the latest Java Runtime Environment (JRE) from here:
http://www.oracle.com/technetwork/java/javase/downloads/

(Click on the Java Download icon, because that install package includes both the JRE and other

components.)

3. Download and install this video decoder:
http://164.58.250.47/codian_video_decoder.msi

4. Start Internet Explorer.

5. Copy-and-paste this URL into your IE window:
http://164.58.250.47/

6. When that webpage loads, in the upper left, click on “Streaming.”

7. In the textbox labeled Sign-in Name, type your name.

8. In the textbox labeled Conference ID, type this:
0409

9. Click on “Stream this conference.”

10. When that webpage loads, you may see, at the very top, a bar offering you options.

If so, click on it and choose “Install this add-on.”

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011 5

http://www.oracle.com/technetwork/java/javase/downloads/
http://164.58.250.47/codian_video_decoder.msi
http://164.58.250.47/

H.323 from XMeeting (MacOS)

From a Mac running MacOS X:

1. Download XMeeting from
http://xmeeting.sourceforge.net/

2. Install XMeeting as follows:

a. Open the .dmg file.

b. Drag XMeeting into the Applications folder.

3. Open XMeeting from Applications.

4. Skip the setup wizard.

5. In the call box, type

164.58.250.47

6. Click the Call button.

7. From the Remote Control window, when prompted to join the conference,

enter :
0409#

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011 6

http://xmeeting.sourceforge.net/

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011 7

EVO

There’s a quick tutorial on the OSCER education webpage.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011 8

QuickTime Broadcaster

If you cannot connect via the Access Grid, H.323 or iLinc,
then you can connect via QuickTime:

rtsp://129.15.254.141/test_hpc09.sdp

We recommend using QuickTime Player for this, because
we’ve tested it successfully.

We recommend upgrading to the latest version at:

http://www.apple.com/quicktime/

When you run QuickTime Player, traverse the menus

File -> Open URL

Then paste in the rstp URL into the textbox, and click OK.

Many thanks to Kevin Blake of OU for setting up QuickTime
Broadcaster for us.

http://www.apple.com/quicktime/

WebEx

We have only a limited number of WebEx connections, so

please avoid WebEx unless you have NO OTHER WAY

TO CONNECT.

Instructions are available on the OSCER education webpage.

Thanks to Tim Miller of Wake Forest U.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011 9

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011 10

Phone Bridge

If all else fails, you can call into our toll free phone bridge:

US: 1-800-832-0736, *6232874#

International: 303-330-0440, *6232874#

Please mute yourself and use the phone to listen.

Don’t worry, we’ll call out slide numbers as we go.

Please use the phone bridge ONLY if you cannot connect any

other way: the phone bridge is charged per connection per

minute, so our preference is to minimize the number of

connections.

Many thanks to Amy Apon and U Arkansas for providing the

previous toll free phone bridge.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011 11

Please Mute Yourself

No matter how you connect, please mute yourself, so that we

cannot hear you.

At OU, we will turn off the sound on all conferencing

technologies.

That way, we won’t have problems with echo cancellation.

Of course, that means we cannot hear questions.

So for questions, you’ll need to send some kind of text.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011 12

Questions via Text: iLinc or E-mail

Ask questions via e-mail to sipe2011@yahoo.com.

All questions will be read out loud and then answered out loud.

mailto:sipe2011@yahoo.com

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011 13

Thanks for helping!

 OSCER operations staff: Brandon George, Dave Akin, Brett
Zimmerman, Josh Alexander

 Horst Severini, OSCER Associate Director for Remote &
Heterogeneous Computing

 OU Research Campus staff (Patrick Calhoun, Mark McAvoy)

 Kevin Blake, OU IT (videographer)

 John Chapman, Jeff Pummill and Amy Apon, U Arkansas

 James Deaton and Roger Holder, OneNet

 Tim Miller, Wake Forest U

 Jamie Hegarty Schwettmann, i11 Industries

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011 14

This is an experiment!

It’s the nature of these kinds of videoconferences that

FAILURES ARE GUARANTEED TO HAPPEN!

NO PROMISES!

So, please bear with us. Hopefully everything will work out

well enough.

If you lose your connection, you can retry the same kind of

connection, or try connecting another way.

Remember, if all else fails, you always have the toll free phone

bridge to fall back on.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011 15

Supercomputing Exercises

Want to do the “Supercomputing in Plain English” exercises?

 The first exercise is already posted at:

http://www.oscer.ou.edu/education.php

 If you don’t yet have a supercomputer account, you can get
a temporary account, just for the “Supercomputing in Plain
English” exercises, by sending e-mail to:

hneeman@ou.edu

Please note that this account is for doing the exercises only,
and will be shut down at the end of the series.

 This week’s N-Body exercise will give you experience
parallelizing using MPI collective communications.

http://www.oscer.ou.edu/education.php
mailto:hneeman@ou.edu

Mathematica Workshop Tue Apr 5

 OU will be hosting a FREE workshop on Mathematica TODAY:
 Tue Apr 5 3:00pm, right after SiPE

 Available live, in person at SRTC or via videoconferencing

 Also will be recorded for playback

 To register, send e-mail containing the information below to

justinsmith@wolfram.com, with:
 your name;

 your e-mail address;

 your institution/company/agency/organization;

 your department/division;

 your status (undergrad, grad student, staff, faculty, professional etc);

 whether you're a current Mathematica user;

 whether you plan to attend in person at OU, live remotely via

videoconferencing, or afterwards by watching the recorded streaming

video.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011 16

mailto:justinsmith@wolfram.com

Undergraduate Petascale Internships
• NSF support for undergraduate internships involving high-performance

computing in science and engineering.

• Provides a stipend ($5k over the year), a two-week intensive high-performance
computing workshop at the National Center for Supercomputing Applications,

and travel to the SC11 supercomputing conference in November.

• This support is intended to allow you to work with a faculty mentor on your
campus. Have your faculty mentor fill out an intern position description at the

link below. There are also some open positions listed on our site.

• Student applications and position descriptions from faculty are due by March
31, 2011. Selections and notifications will be made by April 15.

http://shodor.org/petascale/participation/internships/

http://shodor.org/petascale/participation/internships/

Summer Workshops 2011

 In Summer 2011, there will be several workshops on HPC

and Computational and Data Enabled Science and

Engineering (CDESE) across the US.

 These will be weeklong intensives, running from Sunday

evening through Saturday morning.

 We’re currently working on where and when those

workshops will be held.

 Once we’ve got that worked out, we’ll announce them and

open up the registration website.

 One of them will be held at OU.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011 18

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011 19

OK Supercomputing Symposium 2011

2006 Keynote:

Dan Atkins

Head of NSF’s

Office of

Cyberinfrastructure

2004 Keynote:
Sangtae Kim

NSF Shared
Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer & Information
Science & Engineering

Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

2008 Keynote:
José Munoz

Deputy Office
Director/ Senior

Scientific Advisor
NSF Office of

Cyberinfrastructure

2009 Keynote:
Douglass Post
Chief Scientist

US Dept of Defense
HPC Modernization

Program

FREE! Wed Oct 12 2011 @ OU
Over 235 registratons already!

Over 150 in the first day, over 200 in the first week, over
225 in the first month.

http://symposium2011.oscer.ou.edu/

Parallel Programming Workshop

FREE! Tue Oct 11 2011 @ OU
FREE! Symposium Wed Oct 12 2011 @ OU2010 Keynote:

Horst Simon
Deputy Director

Lawrence Berkeley
National Laboratory

?
2011 Keynote

to be

announced

http://symposium2011.oscer.ou.edu/

SC11 Education Program

 At the SC11 supercomputing conference, we’ll hold our

annual Education Program, Sat Nov 12 – Tue Nov 15.

 You can apply to attend, either fully funded by SC11 or

self-funded.

 Henry is the SC11 Education Chair.

 We’ll alert everyone once the registration website opens.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011 20

21

Outline

 Monte Carlo: Client-Server

 N-Body: Task Parallelism

 Transport: Data Parallelism

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

Monte Carlo:

Client-Server

[1]

23

Embarrassingly Parallel

An application is known as embarrassingly parallel if its
parallel implementation:

1. can straightforwardly be broken up into roughly equal
amounts of work per processor, AND

2. has minimal parallel overhead (for example, communication
among processors).

We love embarrassingly parallel applications, because they get
near-perfect parallel speedup, sometimes with modest
programming effort.

Embarrassingly parallel applications are also known as
loosely coupled.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

24

Monte Carlo Methods

Monte Carlo is a European city where people gamble; that is,

they play games of chance, which involve randomness.

Monte Carlo methods are ways of simulating (or otherwise

calculating) physical phenomena based on randomness.

Monte Carlo simulations typically are embarrassingly parallel.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

25

Monte Carlo Methods: Example

Suppose you have some physical phenomenon. For example,

consider High Energy Physics, in which we bang tiny

particles together at incredibly high speeds.

BANG!

We want to know, say, the average properties of this
phenomenon.

There are infinitely many ways that two particles can be
banged together.

So, we can’t possibly simulate all of them.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

26

Monte Carlo Methods: Example

Suppose you have some physical phenomenon. For example,

consider High Energy Physics, in which we bang tiny

particles together at incredibly high speeds.

BANG!

There are infinitely many ways that two particles can be
banged together.

So, we can’t possibly simulate all of them.

Instead, we can randomly choose a finite subset of these
infinitely many ways and simulate only the subset.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

27

Monte Carlo Methods: Example

Suppose you have some physical phenomenon. For example,
consider High Energy Physics, in which we bang tiny
particles together at incredibly high speeds.

BANG!

There are infinitely many ways that two particles can be banged
together.

We randomly choose a finite subset of these infinitely many
ways and simulate only the subset.

The average of this subset will be close to the actual average.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

28

Monte Carlo Methods

In a Monte Carlo method, you randomly generate a large number

of example cases (realizations) of a phenomenon, and then

take the average of the properties of these realizations.

When the average of the realizations converges (that is, doesn’t

change substantially if new realizations are generated), then

the Monte Carlo simulation stops.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

29

MC: Embarrassingly Parallel

Monte Carlo simulations are embarrassingly parallel, because
each realization is completely independent of all of the
other realizations.

That is, if you’re going to run a million realizations, then:

1. you can straightforwardly break into roughly (Million / Np)
chunks of realizations, one chunk for each of the Np

processors, AND

2. the only parallel overhead (for example, communication)
comes from tracking the average properties, which doesn’t
have to happen very often.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

30

Serial Monte Carlo (C)

Suppose you have an existing serial Monte Carlo simulation:

int main (int argc, char** argv)

{ /* main */

read_input(…);

for (realization = 0;

realization < number_of_realizations;

realization++) {

generate_random_realization(…);

calculate_properties(…);

} /* for realization */

calculate_average(…);

} /* main */

How would you parallelize this?

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

31

Serial Monte Carlo (F90)

Suppose you have an existing serial Monte Carlo simulation:

PROGRAM monte_carlo

CALL read_input(…)

DO realization = 1, number_of_realizations

CALL generate_random_realization(…)

CALL calculate_properties(…)

END DO

CALL calculate_average(…)

END PROGRAM monte_carlo

How would you parallelize this?

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

32

Parallel Monte Carlo (C)

int main (int argc, char** argv)

{ /* main */

[MPI startup]
if (my_rank == server_rank) {

read_input(…);

}

mpi_error_code = MPI_Bcast(…);

for (realization = 0;

realization < number_of_realizations; realization++) {

generate_random_realization(…);

calculate_realization_properties(…);

calculate_local_running_average(...);

} /* for realization */

if (my_rank == server_rank) {

[collect properties]
}

else {

[send properties]
}

calculate_global_average_from_local_averages(…)

output_overall_average(...)

[MPI shutdown]
} /* main */

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

33

Parallel Monte Carlo (F90)

PROGRAM monte_carlo

[MPI startup]

IF (my_rank == server_rank) THEN

CALL read_input(…)

END IF

CALL MPI_Bcast(…)

DO realization = 1, number_of_realizations

CALL generate_random_realization(…)

CALL calculate_realization_properties(…)

CALL calculate_local_running_average(...)

END DO

IF (my_rank == server_rank) THEN

[collect properties]

ELSE

[send properties]

END IF

CALL calculate_global_average_from_local_averages(…)

CALL output_overall_average(...)

[MPI shutdown]

END PROGRAM monte_carlo

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

N-Body:

Task Parallelism and

Collective

Communication

[2]

35

N Bodies

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

36

N-Body Problems

An N-body problem is a problem involving N “bodies” –
that is, particles (for example, stars, atoms) – each of which
applies a force to all of the others.

For example, if you have N stars, then each of the N stars
exerts a force (gravity) on all of the other N–1 stars.

Likewise, if you have N atoms, then every atom exerts a force
(nuclear) on all of the other N–1 atoms.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

37

1-Body Problem

When N is 1, you have a simple 1-Body Problem: a single

particle, with no forces acting on it.

Given the particle’s position P and velocity V at some time t0,

you can trivially calculate the particle’s position at time t0+Δt:

P(t0+Δt) = P(t0) + VΔt

V(t0+Δt) = V(t0)

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

38

2-Body Problem

When N is 2, you have – surprise! – a 2-Body Problem: exactly
2 particles, each exerting a force that acts on the other.

The relationship between the 2 particles can be expressed as a
differential equation that can be solved analytically,
producing a closed-form solution.

So, given the particles’ initial positions and velocities, you can
trivially calculate their positions and velocities at any later
time.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

39

3-Body Problem

When N is 3, you have – surprise! – a 3-Body Problem: exactly
3 particles, each exerting a force that acts on the other 2.

The relationship between the 3 particles can be expressed as a
differential equation that can be solved using an infinite
series, producing a closed-form solution, due to Karl Fritiof
Sundman in 1912.

However, in practice, the number of terms of the infinite series
that you need to calculate to get a reasonable solution is so
large that the infinite series is impractical, so you’re stuck
with the generalized formulation.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

40

N-Body Problems (N > 3)

When N > 3, you have a general N-Body Problem: N particles,
each exerting a force that acts on the other N-1 particles.

The relationship between the N particles can be expressed as a
differential equation that can be solved using an infinite
series, producing a closed-form solution, due to Qiudong
Wang in 1991.

However, in practice, the number of terms of the infinite series
that you need to calculate to get a reasonable solution is so
large that the infinite series is impractical, so you’re stuck
with the generalized formulation.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

41

N-Body Problems (N > 3)

For N greater than 3, the relationship between the N particles

can be expressed as a differential equation that can be solved

using an infinite series, producing a closed-form solution, but

convergence takes so long that this approach is impractical.

So, numerical simulation is pretty much the only way to study

groups of 3 or more bodies.

Popular applications of N-body codes include:

 astronomy (that is, galaxy formation, cosmology);

 chemistry (that is, protein folding, molecular dynamics).

Note that, for N bodies, there are on the order of N2 forces,

denoted O(N2).

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

42

N Bodies

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

43

Force #1

A

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

44

Force #2

A

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

45

Force #3

A

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

46

Force #4

A

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

47

Force #5

A

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

48

Force #6

A

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

49

Force #N-1

A

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

50

N-Body Problems

Given N bodies, each body exerts a force on all of the other

N – 1 bodies.

Therefore, there are N • (N – 1) forces in total.

You can also think of this as (N • (N – 1)) / 2 forces, in the

sense that the force from particle A to particle B is the same

(except in the opposite direction) as the force from particle

B to particle A.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

51

Aside: Big-O Notation

Let’s say that you have some task to perform on a certain

number of things, and that the task takes a certain amount of

time to complete.

Let’s say that the amount of time can be expressed as a

polynomial on the number of things to perform the task on.

For example, the amount of time it takes to read a book might

be proportional to the number of words, plus the amount of

time it takes to settle into your favorite easy chair.

C1
. N + C2

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

52

Big-O: Dropping the Low Term

C1
. N + C2

When N is very large, the time spent settling into your easy
chair becomes such a small proportion of the total time that
it’s virtually zero.

So from a practical perspective, for large N, the polynomial
reduces to:

C1
. N

In fact, for any polynomial, if N is large, then all of the terms
except the highest-order term are irrelevant.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

53

Big-O: Dropping the Constant

C1
. N

Computers get faster and faster all the time. And there are
many different flavors of computers, having many different
speeds.

So, computer scientists don’t care about the constant, only
about the order of the highest-order term of the polynomial.

They indicate this with Big-O notation:

O(N)

This is often said as: “of order N.”

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

54

N-Body Problems

Given N bodies, each body exerts a force on all of the other

N – 1 bodies.
Therefore, there are N • (N – 1) forces total.

In Big-O notation, that’s O(N2) forces.

So, calculating the forces takes O(N2) time to execute.

But, there are only N particles, each taking up the same amount

of memory, so we say that N-body codes are of:

 O(N) spatial complexity (memory)

 O(N2) time complexity

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

55

O(N2) Forces

Note that this picture shows only the forces between A and everyone else.

A

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

56

How to Calculate?

Whatever your physics is, you have some function, F(Bi,Bj),
that expresses the force between two bodies Bi and Bj.

For example, for stars and galaxies,

F(A,B) = G · mBi
· mBj

/ dist(Bi, Bj)
2

where G is the gravitational constant and m is the mass of the
body in question.

If you have all of the forces for every pair of particles, then

you can calculate their sum, obtaining the force on every

particle.

From that, you can calculate every particle’s new position and

velocity.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

57

How to Parallelize?

Okay, so let’s say you have a nice serial (single-CPU) code

that does an N-body calculation.
How are you going to parallelize it?

You could:

 have a server feed particles to processes;

 have a server feed interactions to processes;

 have each process decide on its own subset of the particles,

and then share around the forces;

 have each process decide its own subset of the interactions,
and then share around the forces.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

58

Do You Need a Server?

Let’s say that you have N bodies, and therefore you have

½ N (N - 1) interactions (every particle interacts with all of

the others, but you don’t need to calculate both Bi Bj and

Bj Bi).

Do you need a server?

Well, can each processor determine, on its own, either

(a) which of the bodies to process, or (b) which of the

interactions to process?

If the answer is yes, then you don’t need a server.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

59

Parallelize How?

Suppose you have Np processors.

Should you parallelize:

 by assigning a subset of N / Np of the bodies to each

processor, OR

 by assigning a subset of ½ N (N - 1) / Np of the interactions

to each processor?

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

60

Data vs. Task Parallelism

 Data Parallelism means parallelizing by giving a subset of

the data to each process, and then each process performs the

same tasks on the different subsets of data.

 Task Parallelism means parallelizing by giving a subset of

the tasks to each process, and then each process performs a

different subset of tasks on the same data.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

61

Data Parallelism for N-Body?

If you parallelize an N-body code by data, then each processor

gets N / Np pieces of data.

For example, if you have 8 bodies and 2 processors, then:
 Processor P0 gets the first 4 bodies;
 Processor P1 gets the second 4 bodies.

But, every piece of data (that is, every body) has to interact
with every other piece of data, to calculate the forces.

So, every processor will have to send all of its data to all of the
other processors, for every single interaction that it
calculates.

That’s a lot of communication!

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

62

Task Parallelism for N-body?

If you parallelize an N-body code by task, then each processor

gets all of the pieces of data that describe the particles (for

example, positions, velocities, masses).

Then, each processor can calculate its subset of the interaction

forces on its own, without talking to any of the other

processors.

But, at the end of the force calculations, everyone has to share all

of the forces that have been calculated, so that each particle

ends up with the total force that acts on it (global reduction).

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

63

MPI_Reduce (C)

Here’s the C syntax for MPI_Reduce:
mpi_error_code =

MPI_Reduce(sendbuffer, recvbuffer,
count, datatype, operation,
root, communicator, mpi_error_code);

For example, to do a sum over all of the particle forces:
mpi_error_code =

MPI_Reduce(

local_particle_force_sum,

global_particle_force_sum,

number_of_particles,

MPI_DOUBLE, MPI_SUM,

server_process, MPI_COMM_WORLD);

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

64

MPI_Reduce (F90)

Here’s the Fortran 90 syntax for MPI_Reduce:
CALL MPI_Reduce(sendbuffer, recvbuffer, &

& count, datatype, operation, &
& root, communicator, mpi_error_code)

For example, to do a sum over all of the particle forces:
CALL MPI_Reduce(&

& local_particle_force_sum, &

& global_particle_force_sum, &

& number_of_particles, &

& MPI_DOUBLE_PRECISION, MPI_SUM, &

& server_process, MPI_COMM_WORLD, &

& mpi_error_code)

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

65

Sharing the Result

In the N-body case, we don’t want just one processor to know
the result of the sum, we want every processor to know.

So, we could do a reduce followed immediately by a broadcast.

But, MPI gives us a routine that packages all of that for us:

MPI_Allreduce.

MPI_Allreduce is just like MPI_Reduce except that

every process gets the result (so we drop the

server_process argument).

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

66

MPI_Allreduce (C)

Here’s the C syntax for MPI_Allreduce:
mpi_error_code =

MPI_Allreduce(

sendbuffer, recvbuffer, count,

datatype, operation,

communicator);

For example, to do a sum over all of the particle forces:
mpi_error_code =

MPI_Allreduce(

local_particle_force_sum,

global_particle_force_sum,

number_of_particles,

MPI_DOUBLE, MPI_SUM,

MPI_COMM_WORLD);

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

67

MPI_Allreduce (F90)

Here’s the Fortran 90 syntax for MPI_Allreduce:
CALL MPI_Allreduce(&

& sendbuffer, recvbuffer, count, &

& datatype, operation, &

& communicator, mpi_error_code)

For example, to do a sum over all of the particle forces:
CALL MPI_Allreduce(&

& local_particle_force_sum, &

& global_particle_force_sum, &

& number_of_particles, &

& MPI_DOUBLE_PRECISION, MPI_SUM, &

& MPI_COMM_WORLD, mpi_error_code)

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

68

Collective Communications

A collective communication is a communication that is shared

among many processes, not just a sender and a receiver.

MPI_Reduce and MPI_Allreduce are collective

communications.

Others include: broadcast, gather/scatter, all-to-all.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

69

Collectives Are Expensive

Collective communications are very expensive relative to

point-to-point communications, because so much more

communication has to happen.

But, they can be much cheaper than doing zillions of point-to-

point communications, if that’s the alternative.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

Transport:

Data Parallelism

[2]

71

What is a Simulation?

All physical science ultimately is expressed as calculus (for

example, differential equations).

Except in the simplest (uninteresting) cases, equations based

on calculus can’t be directly solved on a computer.

Therefore, all physical science on computers has to be

approximated.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

72

I Want the Area Under This Curve!

How can I get the area under this curve?

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

73

A Riemann Sum

Δx

{

yi

Area under the curve ≈ 



n

i

i xy
1

Ceci n’est pas un area under the curve: it’s approximate!

[3]

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

74

A Riemann Sum

Δx

{

yi

Area under the curve ≈ 



n

i

i xy
1

Ceci n’est pas un area under the curve: it’s approximate!

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

75

A Better Riemann Sum

Δx

{

yi

Area under the curve ≈ 



n

i

i xy
1

More, smaller rectangles produce a better approximation.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

76

The Best Riemann Sum

Area under the curve = 





1i

i ydxdxy

In the limit, infinitely many infinitesimally small
rectangles produce the exact area.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

77

The Best Riemann Sum

Area under the curve = 





1i

i ydxdxy

In the limit, infinitely many infinitesimally small
rectangles produce the exact area.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

78

Differential Equations

A differential equation is an equation in which differentials
(for example, dx) appear as variables.

Most physics is best expressed as differential equations.

Very simple differential equations can be solved in “closed
form,” meaning that a bit of algebraic manipulation gets the
exact answer.

Interesting differential equations, like the ones governing
interesting physics, can’t be solved in close form.

Solution: approximate!

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

79

A Discrete Mesh of Data

Data

live

here!

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

Supercomputing in Plain English: Apps & Par Types

BWUPEP2010, UIUC, May 23 - June 4 2010 80

A Discrete Mesh of Data

Data

live

here!

81

Finite Difference

A typical (though not the only) way of approximating the

solution of a differential equation is through finite

differencing: convert each dx (infinitely thin) into a Δx (has

finite nonzero width).

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

82

Navier-Stokes Equation










































 uij

i

j

j

i

j

i

x

u

x

u

xV

F











































 uij

i

j

j

i

j

i

x

u

x

u

xV

F


Differential Equation

Finite Difference Equation

The Navier-Stokes equations governs the

movement of fluids (water, air, etc).

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

83

Cartesian Coordinates

x

y

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

84

Structured Mesh

A structured mesh is like the mesh on the previous slide. It’s

nice and regular and rectangular, and can be stored in a

standard Fortran or C or C++ array of the appropriate

dimension and shape.

REAL,DIMENSION(nx,ny,nz) :: u

float u[nx][ny][nz];

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

85

Flow in Structured Meshes

When calculating flow in a structured mesh, you typically use
a finite difference equation, like so:

unewi,j = F(t, uoldi,j, uoldi-1,j, uoldi+1,j, uoldi,j-1, uoldi,j+1)

for some function F, where uoldi,j is at time t and unewi,j is at

time t + t.

In other words, you calculate the new value of ui,j, based on its
old value as well as the old values of its immediate
neighbors.

Actually, it may use neighbors a few farther away.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

86

Ghost Boundary Zones

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

87

Ghost Boundary Zones

We want to calculate values in the part of the mesh that we

care about, but to do that, we need values on the boundaries.

For example, to calculate unew1,1, you need uold0,1 and uold1,0.

Ghost boundary zones are mesh zones that aren’t really part of

the problem domain that we care about, but that hold

boundary data for calculating the parts that we do care

about.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

88

Using Ghost Boundary Zones (C)

A good basic algorithm for flow that uses ghost boundary

zones is:
for (timestep = 0;

timestep < number_of_timesteps;
timestep++) {

fill_ghost_boundary(…);
advance_to_new_from_old(…);

}

This approach generally works great on a serial code.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

89

Using Ghost Boundary Zones (F90)

A good basic algorithm for flow that uses ghost boundary

zones is:
DO timestep = 1, number_of_timesteps

CALL fill_ghost_boundary(…)
CALL advance_to_new_from_old(…)

END DO

This approach generally works great on a serial code.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

90

Ghost Boundary Zones in MPI

What if you want to parallelize a Cartesian flow code in MPI?

You’ll need to:

 decompose the mesh into submeshes;

 figure out how each submesh talks to its neighbors.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

91

Data Decomposition

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

92

Data Decomposition

We want to split the data into chunks of equal size, and give

each chunk to a processor to work on.

Then, each processor can work independently of all of the

others, except when it’s exchanging boundary data with its

neighbors.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

93

MPI_Cart_*

MPI supports exactly this kind of calculation, with a set of

functions MPI_Cart_*:

 MPI_Cart_create

 MPI_Cart_coords

 MPI_Cart_shift

These routines create and describe a new communicator, one

that replaces MPI_COMM_WORLD in your code.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

94

MPI_Sendrecv

MPI_Sendrecv is just like an MPI_Send followed by an
MPI_Recv, except that it’s much better than that.

With MPI_Send and MPI_Recv, these are your choices:

 Everyone calls MPI_Recv, and then everyone calls
MPI_Send.

 Everyone calls MPI_Send, and then everyone calls
MPI_Recv.

 Some call MPI_Send while others call MPI_Recv,
and then they swap roles.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

95

Why not Recv then Send?

Suppose that everyone calls MPI_Recv, and then everyone

calls MPI_Send.

MPI_Recv(incoming_data, ...);

MPI_Send(outgoing_data, ...);

Well, these routines are blocking, meaning that the

communication has to complete before the process can

continue on farther into the program.

That means that, when everyone calls MPI_Recv, they’re

waiting for someone else to call MPI_Send.

We call this deadlock.

Officially, the MPI standard guarantees that

THIS APPROACH WILL ALWAYS FAIL.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

96

Why not Send then Recv?

Suppose that everyone calls MPI_Send, and then everyone

calls MPI_Recv:

MPI_Send(outgoing_data, ...);

MPI_Recv(incoming_data, ...);

Well, this will only work if there’s enough buffer space

available to hold everyone’s messages until after everyone

is done sending.

Sometimes, there isn’t enough buffer space.

Officially, the MPI standard allows MPI implementers to

support this, but it isn’t part of the official MPI standard;

that is, a particular MPI implementation doesn’t have to

allow it, so THIS WILL SOMETIMES FAIL.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

97

Alternate Send and Recv?

Suppose that some processors call MPI_Send while others
call MPI_Recv, and then they swap roles:

if ((my_rank % 2) == 0) {

MPI_Send(outgoing_data, ...);

MPI_Recv(incoming_data, ...);

}

else {

MPI_Recv(incoming_data, ...);

MPI_Send(outgoing_data, ...);
}

This will work, and is sometimes used, but it can be painful to

manage – especially if you have an odd number of

processors.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

98

MPI_Sendrecv

MPI_Sendrecv allows each processor to simultaneously

send to one processor and receive from another.

For example, P1 could send to P0 while simultaneously
receiving from P2 .

(Note that the send and receive don’t have to literally be
simultaneous, but we can treat them as so in writing the
code.)

This is exactly what we need in Cartesian flow: we want the

boundary data to come in from the east while we send

boundary data out to the west, and then vice versa.

These are called shifts.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

99

MPI_Sendrecv

mpi_error_code =

MPI_Sendrecv(

westward_send_buffer,

westward_send_size, MPI_REAL,

west_neighbor_process, westward_tag,

westward_recv_buffer,

westward_recv_size, MPI_REAL,

east_neighbor_process, westward_tag,

cartesian_communicator, mpi_status);

This call sends to west_neighbor_process the data in

westward_send_buffer, and at the same time receives

from east_neighbor_process a bunch of data that

end up in westward_recv_buffer.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

100

Why MPI_Sendrecv?

The advantage of MPI_Sendrecv is that it allows us the

luxury of no longer having to worry about who should send

when and who should receive when.

This is exactly what we need in Cartesian flow: we want the

boundary information to come in from the east while we

send boundary information out to the west – without us

having to worry about deciding who should do what to who

when.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

101

MPI_Sendrecv

Concept

in Principle

Concept

in practice

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

102

MPI_Sendrecv

Concept

in practice

westward_send_buffer westward_recv_buffer

Actual

Implementation

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

103

What About Edges and Corners?

If your numerical method involves faces, edges and/or corners,

don’t despair.

It turns out that, if you do the following, you’ll handle those

correctly:

 When you send, send the entire ghost boundary’s worth,

including the ghost boundary of the part you’re sending.

 Do in this order:

 all east-west;

 all north-south;

 all up-down.

 At the end, everything will be in the correct place.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

Mathematica Workshop Tue Apr 5

 OU will be hosting a FREE workshop on Mathematica:
 Tue Apr 5 3:00pm, right after SiPE

 Available live, in person at SRTC or via videoconferencing

 Also will be recorded for playback

 To register, send e-mail containing the information below

to justinsmith@wolfram.com, with:
 your name;

 your e-mail address;

 your institution/company/agency/organization;

 your department/division;

 your status (undergrad, grad student, staff, faculty, professional etc);

 whether you're a current Mathematica user;

 whether you plan to attend in person at OU, live remotely via

videoconferencing, or afterwards by watching the recorded

streaming video.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011 104

mailto:justinsmith@wolfram.com

Undergraduate Petascale Internships
• NSF support for undergraduate internships involving high-performance

computing in science and engineering.

• Provides a stipend ($5k over the year), a two-week intensive high-performance
computing workshop at the National Center for Supercomputing Applications,

and travel to the SC11 supercomputing conference in November.

• This support is intended to allow you to work with a faculty mentor on your
campus. Have your faculty mentor fill out an intern position description at the

link below. There are also some open positions listed on our site.

• Student applications and position descriptions from faculty are due by March
31, 2011. Selections and notifications will be made by April 15.

http://shodor.org/petascale/participation/internships/

http://shodor.org/petascale/participation/internships/

Summer Workshops 2011

 In Summer 2011, there will be several workshops on HPC

and Computational and Data Enabled Science and

Engineering (CDESE) across the US.

 These will be weeklong intensives, running from Sunday

evening through Saturday morning.

 We’re currently working on where and when those

workshops will be held.

 Once we’ve got that worked out, we’ll announce them and

open up the registration website.

 One of them will be held at OU.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011 106

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011 107

OK Supercomputing Symposium 2011

2006 Keynote:

Dan Atkins

Head of NSF’s

Office of

Cyberinfrastructure

2004 Keynote:
Sangtae Kim

NSF Shared
Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer & Information
Science & Engineering

Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

2008 Keynote:
José Munoz

Deputy Office
Director/ Senior

Scientific Advisor
NSF Office of

Cyberinfrastructure

2009 Keynote:
Douglass Post
Chief Scientist

US Dept of Defense
HPC Modernization

Program

FREE! Wed Oct 12 2011 @ OU
Over 235 registratons already!

Over 150 in the first day, over 200 in the first week, over
225 in the first month.

http://symposium2011.oscer.ou.edu/

Parallel Programming Workshop

FREE! Tue Oct 11 2011 @ OU
FREE! Symposium Wed Oct 12 2011 @ OU2010 Keynote:

Horst Simon
Deputy Director

Lawrence Berkeley
National Laboratory

?
2011 Keynote

to be

announced

http://symposium2011.oscer.ou.edu/

SC11 Education Program

 At the SC11 supercomputing conference, we’ll hold our

annual Education Program, Sat Nov 12 – Tue Nov 15.

 You can apply to attend, either fully funded by SC11 or

self-funded.

 Henry is the SC11 Education Chair.

 We’ll alert everyone once the registration website opens.

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011 108

Thanks for your
attention!

Questions?
www.oscer.ou.edu

http://www.oscer.ou.edu/

110

References

[1] http://en.wikipedia.org/wiki/Monte_carlo_simulation

[2] http://en.wikipedia.org/wiki/N-body_problem

[3] http://lostbiro.com/blog/wp-

content/uploads/2007/10/Magritte-Pipe.jpg

Supercomputing in Plain English: Apps & Par Types

Tue Apr 5 2011

http://en.wikipedia.org/wiki/Monte_carlo_simulation
http://en.wikipedia.org/wiki/N-body_problem
http://en.wikipedia.org/wiki/N-body_problem
http://en.wikipedia.org/wiki/N-body_problem
http://lostbiro.com/blog/wp-content/uploads/2007/10/Magritte-Pipe.jpg
http://lostbiro.com/blog/wp-content/uploads/2007/10/Magritte-Pipe.jpg
http://lostbiro.com/blog/wp-content/uploads/2007/10/Magritte-Pipe.jpg
http://lostbiro.com/blog/wp-content/uploads/2007/10/Magritte-Pipe.jpg
http://lostbiro.com/blog/wp-content/uploads/2007/10/Magritte-Pipe.jpg

