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Specialization: 
Natures way of Extracting More Performance in Resource Limited Environment
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Powerful General Purpose Many Lighter Weight
(post-Dennard scarcity)

Many Different Specialized
(Post-Moore Scarcity)

Xeon, Power KNL AMD, Cavium/Marvell, GPU
Apple, Google, Amazon

Samba Nova



Extreme Hardware Specialization is Happening Now!
This trend is already well underway in broader electronics industry  
Cell phones and even megadatacenters (Google TPU, Microsoft FPGAs…)
(and it will happen to HPC too… will we be ready?) 29 different heterogeneous 

accelerators in Apple A8 (2016)
40+ different heterogeneous 

accelerators in Apple A11 (2019)



 

4. AcWiYaWe​ performs the nonlinear function of the artificial neuron, with options for ReLU, Sigmoid, and so on. Its 
inputs are the Accumulators, and its output is the Unified Buffer. It can also perform the pooling operations needed 
for convolutions using the dedicated hardware on the die, as it is connected to nonlinear function logic. 

5. WUiWe_HoVW_MemoU\​ writes data from the Unified Buffer into the CPU host memory. 
The other instructions are alternate host memory read/write, set configuration, two versions of synchronization, interrupt host, 
debug-tag, nop, and halt. The CISC MatrixMultiply instruction is 12 bytes, of which 3 are Unified Buffer address; 2 are 
accumulator address; 4 are length (sometimes 2 dimensions for convolutions); and the rest are opcode and flags.  

The philosophy of the TPU microarchitecture is to keep the matrix unit busy. It uses a 4-stage pipeline for these CISC 
instructions, where each instruction executes in a separate stage. The plan was to hide the execution of the other instructions 
by overlapping their execution with the ​MaWUi[MXlWiSl\​ instruction. Toward that end, the ​Read_WeighWV​ instruction 
follows the decoupled-access/execute philosophy [Smi82], in that it can complete after sending its address but before the 
weight is fetched from Weight Memory. The matrix unit will stall if the input activation or weight data is not ready.  

We don’t have clean pipeline overlap diagrams, because our CISC instructions can occupy a station for thousands of 
clock cycles, unlike the traditional RISC pipeline with one clock cycle per stage. Interesting cases occur when the activations 
for one network layer must complete before the matrix multiplications of the next layer can begin; we see a “delay slot,” 
where the matrix unit waits for explicit synchronization before safely reading from the Unified Buffer. 

As reading a large SRAM uses much more power than arithmetic, the matrix unit uses systolic execution to save energy 
by reducing reads and writes of the Unified Buffer [Kun80][Ram91][Ovt15b]. Figure 4 shows that data flows in from the left, 
and the weights are loaded from the top. A given 256-element multiply-accumulate operation moves through the matrix as a 
diagonal wavefront. The weights are preloaded, and take effect with the advancing wave alongside the first data of a new 
block. Control and data are pipelined to give the illusion that the 256 inputs are read at once, and that they instantly update 
one location of each of 256 accumulators. From a correctness perspective, software is unaware of the systolic nature of the 
matrix unit, but for performance, it does worry about the latency of the unit. 

The TPU software stack had to be compatible with those developed for CPUs and GPUs so that applications could be 
ported quickly to the TPU. The portion of the application run on the TPU is typically written in TensorFlow and is compiled 
into an API that can run on GPUs or TPUs [Lar16]. Like GPUs, the TPU stack is split into a User Space Driver and a Kernel 
Driver. The Kernel Driver is lightweight and handles only memory management and interrupts. It is designed for long-term 
stability. The User Space driver changes frequently. It sets up and controls TPU execution, reformats data into TPU order, 
translates API calls into TPU instructions, and turns them into an application binary. The User Space driver compiles a model 
the first time it is evaluated, caching the program image and writing the weight image into the TPU’s weight memory; the 
second and following evaluations run at full speed. The TPU runs most models completely from inputs to outputs, 
maximizing the ratio of TPU compute time to I/O time. Computation is often done one layer at a time, with overlapped 
execution allowing the matrix multiply unit to hide most non-critical-path operations. 

 
 

 
FigXUe 3. ​TPU Printed Circuit Board. It can be inserted in the slot FigXUe 4. ​Systolic data flow of the Matrix Multiply Unit. Software 
for an SATA disk in a server, but the card uses PCIe Gen3 x16. has the illusion that each 256B input is read at once, and they instantly  

update one location of each of 256 accumulator RAMs. 
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Large Scale Datacenters also Moving to Specialized Acceleration
The Google TPU
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Deployed in Google datacenters since 2015
• “Purpose Built” actually works  - Only hard to use if 

accelerators was designed for something else

• Could we use TPU-like ideas for HPC?

• Specialization will be necessary to meet energy-efficiency 
and performance requirements for the future of DOE science!

Model MHz 

Measured  
Watts TOPS/s GOPS/s /Watt

GB/s On-Chip 
Memory 

Idle Busy 8b FP 8b FP 

Haswell 2300 41 145 2.6 1.3 18 9 51 51 MiB 

NVIDIA K80 560 24 98 -- 2.8 29 160 8 MiB 

TPU 700 28 40 92 -- 2,300 34 28 MiB

Notional exascale system:
2,300 GOPS/W à?  288 GF/W (dp)  à a 3.5 MW Exaflop system!     



Amazon AWS Graviton Custom ARM  SoC (and others)
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AWS CEO Andy Jassy:

“AWS isn't going to wait for the 
tech supply chain to innovate 
for it and is making a statement 
with performance comparisons 
against an Intel Xeon-based 
instance. The EC2 team was 
clear that Graviton2 sends a 
message to vendors that they 
need to move faster and AWS 
is not going to hold back its 
cadence based on suppliers.”



Why does it Matter?
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Why should we specialize? 



HEP: Computing challenges for Particle Tracking

Exponential growth of the current ATLAS Inner 
Detector reconstruction time with increased 
luminosity …

… but computing power no longer increasing at 
exponential rates!

New approaches must be developed to satisfy 
growing computing demands of the experiment



Impacts of Moore’s Law Tapering on DOE Science
Jim Siegrist May 2018 
presentation to HEP 
Advisory Panel

• Computing capacity for LHC-II 
off by $850M compared to 
original estimates

• A major factor in mis-projection 
was due to earlier assumption 
that Moore’s Law would 
continue unabated

11

HEP Computing Strategy

` Successful implementation of the broad science program envisioned by P5 will 
require an equally broad and foresighted approach to the computing challenges

` Meeting these challenges will require us to work together to more effectively share 
resources (hardware, software, and expertise) and appropriately integrate 
commercial computing and HPC advances

` Last year OHEP stood up an internal working group charged with:
` Developing and maintaining an HEP Computing Resource Management Strategy, and

` Recommending actions to implement the strategy

` Working group began by conducting an initial survey of the computing needs from 
each of the three physics Frontiers, and assembled this into a preliminary model
` Energy Frontier portion alone was a

large factor beyond the current 
computing budget

` Large data volumes with the HL-LHC 
require correspondingly large amounts 
of computing to analyze it

` Grid-only solution:        $850M ± 200M
` Using the e[periments¶ estimates of future 

HPC use reduces this to $650M ± 150M 

Fall 2017

DOE HEP Status at HEPAP - May 2018 26



Mission Need doesn’t end with Exascale

• HENP: compute requirements grow exponentially relative 
to luminousity

• BES Light Sources & CryoEM: Double-exponential growth 
of camera data rates (100k FPS)

• Cloud-Resolving Climate Models:  Kilometer scale climate 
models still out of reach ( ~1 SYD in 2010, ~5 SYD in 2020)

• What if we are successful in creating AI driven (no-human 
in the loop) experiments?  What kind of data processing 
would be needed to keep up with that?

- 12 -

A. Salzburger - CHEP2018

A. Salzburger (CERN)  
for the ACTS team

Community Driven Common  
(Tracking) Software
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Architecture Specialization for Science
(hardware is design around the algorithms) can’t design effective hardware without applied math

Materials
Density Functional 

Theory (DFT)

Use O(n) algorithm
Dominated by FFTs

FPGA or ASIC

CryoEM
Accelerator
LBNL detector
750 GB / sec

Custom ASIC near 
detector

Genomics 
Accelerator
String matching

Hashing
2-8bit (ACTG)

FPGA

Digital fluid 
Accelerator

3D integration
Petascale chip
1024-layers
General / special 

HPC solution

- 15 -

But what are the right specializations to include?
What is the cost model (we know we cannot afford to spin our own chips from scratch)

What is the right partnership/economic model for the future of HPC?
The role government research is to understand these trade-offs.



Post Exascale: Heterogeneous Computing  Research Directions

Specialization

Purpose built machines 
for big science targets.
Example: Google TPU. For DOE, 
DFT is 25% of workload

Heterogeneous 
Integration

Co-integration of many 
heterogeneous accelerators

Example: Apple Bionic chip, AWS 
Graviton2, Project38.

Resource Disaggregation
Photonic MCMs to enable 
reconfigurable nodes/systems 
Example: Facebook/Google.  
Just DRAM utilization diversity in 
DOE could benefit from this.

Project 38

• Fixed Function Accelerators & COTS IP (Extreme Heterogeneity)
• RISC-V and ARM cores
• Fixed function FFT (Generated by SPIRAL)

• Word Granularity Scratchpad Memory (Gather Scatter):
• Gather-scatter within processor tile 
• more effective SIMD

• Recoding engine (Efficient programmable FSM & data reorg.)
• Sub-word granularity and high control irregularity
• Handles branch-heavy code (avg. 20x improvement over processor core)
• One lane is 1/100th the size of a x86 processor core

• Hardware Message Queues (Lightweight Interprocessor Communication)
• Gather-scatter between processor tiles
• Async between tiles to eliminate overhead of barriers
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Dispatch Unit Action Unit

Adder

ALU

MUX

ARB

memory
slice

grid ’processors’

particle ’processors’

buffers

get {index,delta}

put {index,delta}

Particles
(streamed from memory)

ARB

memory
slice

ARB

memory
slice

ARB

memory
slice

ARB

memory
slice

ARB

memory
slice

ARB

memory
slice

ARB

memory
slice

particles/s < STREAM/64B

8 updates/particle (classic)

32 updates/particle (Gyro)

Throughput > 32*particles/s

could be private caches or 

cache banks

(n.b., grid >> SPM)

sized for memory latency,

load balance

PIC Charge(mass) Deposition
for(i=0..#particles)

for(0..7 points) // x4 for Gyro
grid[ foo(pos[i],point) ] += goo(pos[i],point);

29/66
FFT butterfly calculation scheme
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Specialization

Purpose built machines 
for big science targets.
Example: Google TPU. For DOE, 
DFT is 25% of workload

Heterogeneous 
Integration

Co-integration of many 
heterogeneous accelerators

Example: Apple Bionic chip, AWS
Graviton2, Project38.

Resource Disaggregation
Photonic MCMs to enable 
reconfigurable nodes/systems 
Example: Facebook/Google.  
Just DRAM utilization diversity in 
DOE could benefit from this.

Project 38

• Fixed Function Accelerators & COTS IP (Extreme Heterogeneity)
• RISC-V and ARM cores
• Fixed function FFT (Generated by SPIRAL)

• Word Granularity Scratchpad Memory (Gather Scatter):
• Gather-scatter within processor tile 
• more effective SIMD

• Recoding engine (Efficient programmable FSM & data reorg.)
• Sub-word granularity and high control irregularity
• Handles branch-heavy code (avg. 20x improvement over processor core)
• One lane is 1/100th the size of a x86 processor core

• Hardware Message Queues (Lightweight Interprocessor Communication)
• Gather-scatter between processor tiles
• Async between tiles to eliminate overhead of barriers
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memory
slice

particles/s < STREAM/64B

8 updates/particle (classic)

32 updates/particle (Gyro)

Throughput > 32*particles/s

could be private caches or 

cache banks

(n.b., grid >> SPM)

sized for memory latency,

load balance

PIC Charge(mass) Deposition
for(i=0..#particles)

for(0..7 points) // x4 for Gyro
grid[ foo(pos[i],point) ] += goo(pos[i],point);

29/66
FFT butterfly calculation scheme
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Algorithm-Driven Design of Programmable Hardware Accelerators

25%+ of DOE 
workload is 
Density 
Functional 
Theory (DFT)

• What: Design the hardware acceleration 
around the target algorithm/application

– Purpose-built acceleration
– Science-led reference algorithm design

• Why: Huge opportunities to improve 
performance density and efficiency

– FFT hardware accelerator 50x-100x faster than GPU 
(using SPIRAL generator)

• How: Target Density Functional Theory
1. Large fraction of the DOE workload
2. Mature code base and algorithm
3. LS3DF formulation minimizes off-chip 

communication and scales O(N)

Example: LS3DF/Density Functional Theory (DFT)



The DFT kernel for each fragment 
Communication Avoiding LS3DF Formulation – Scales O(N)

DFT algorithm 

The all-band CG  (AB-CG) method for HΨi=εiΨi.  The 
time consuming steps are indicated by the asterisk 
sign.  The other parts will be called collectively as the 
Fortran-do-loops.  

3D parallel FFT 
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LS3DF O(N) Algorithm Formulation 
Minimizes off-chip Communication

Compute Intensive Kernels
Targeted for HW Specialization

CGRA 
or

FPGA



Von-Neumann Instruction Processors vs. Hardware Circuits
(must redesign for static dataflow and deep flow-through pipelines)

FPGA (Field Programmable Gate Array): Granularity 
of these operations and wires are single bits

CGRA (Coarse Grain Reconfigurable Array): 
Programmability & ALUs at word granularity

improves speed and density!!
(Cerebras, GraphCore, SambaNova, LPU)

ASIC or Chiplet (custom circuit): Another factor of 
10x on density and energy efficiency.



Algorithm Reformulated as Custom Circuit

2
3

DRAM

GEMM

iFFT1D FFT1D

Point wise

DRAM

GEMM

iFFT3D

FFT3D

Point 
wise

See Also Torsten Hoefler “StreamBLAS” for FPGA



Preliminary Performance on CGRA HY

[42, 256]
84 KB

1D iDFT
GeMV-r  [96, 84][84, 256] = r [96, 256]
GeMV-i  [96, 84][84, 256] = i  [96, 256]

Row Par = 3
Inst Par = 8

Total Cycles = 
(96/16/3)*(84+26+96/16*2)*(256/8) = 7.8 K

Batch size = 96^2
Micro batch  = 1

[96, 256]
192 KB

Contraction
GeMV -r [128x8, 96]*[96, 256] = r [128x8, 256]
GeMV-i  [128x8, 96]*[96, 256] = i [128x8, 256]

Row Par = 32
Inst Par = 8

Total Cycles =  (128*8/16/32)*(96+26+ 
96/16*2+32)(256/8) = 10.6K

[128x8,256]
2 MB

Plane Wave input
[96^2 x 84, 256]
756 MB

Contraction output
[128 x 8, 256]
2 MBTotal Cycles = 7.8K + 10.6K*96^2 + 2K = 97.6 M  

Latency = 97.6 M / 1.25 G = 78 ms
DDR BW Required = (756 + 3456 + 2 = 4214 MB)/ 78 ms  = 53 GB/s

Accumulator

sum –r 96^2 of  [128x8, 256] = r [128x8, 
256]
sum –I 96^2 of  [128x8, 256] = i  [128x8, 
256]

Inst Par = 8

Total Cycles = 2K

[128x8, 256]
2 MB

Projector,  Real
[128x8, 96^3]
3456 MB

nl
in
e

Eigenvalue Problem:

Hpsi

Orthogonalization

Projection

Eigenvalue Problem Dataflow Algorithm Reformulation Mapping onto Custom Hardware

Platform
Time for 
Contraction

Speedup 
over CPU

Speedup 
over GPU

CPU (Haswell/Cori 
Phase 1) node 1.375 1

GPU (NVIDIA 1080) 0.5 2.75 1

CGRA (Samba Nova) 
unoptimized 0.23 6 2.2

CGRA (Samba Nova) 
optimized 0.023 60 21.7

Results                             or GPU

Delivered Speedups (compared to 
optimized code) of “custom” DFT 

accelerator running on CGRAThom Popovici, Andrew Canning (FFTx), Zhengji Zhang (NERSC)
Franz Francetti (CMU/FFTx)



Heterogeneous Integration

2
5
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Specialization

Purpose built machines 
for big science targets.
Example: Google TPU. For DOE, 
DFT is 25% of workload

Heterogeneous 
Integration

Co-integration of many 
heterogeneous accelerators

Example: Apple Bionic chip, AWS
Graviton2, Project38.

Resource Disaggregation
Photonic MCMs to enable 
reconfigurable nodes/systems 
Example: Facebook/Google.  
Just DRAM utilization diversity in 
DOE could benefit from this.

Project 38

• Fixed Function Accelerators & COTS IP (Extreme Heterogeneity)
• RISC-V and ARM cores
• Fixed function FFT (Generated by SPIRAL)

• Word Granularity Scratchpad Memory (Gather Scatter):
• Gather-scatter within processor tile 
• more effective SIMD

• Recoding engine (Efficient programmable FSM & data reorg.)
• Sub-word granularity and high control irregularity
• Handles branch-heavy code (avg. 20x improvement over processor core)
• One lane is 1/100th the size of a x86 processor core

• Hardware Message Queues (Lightweight Interprocessor Communication)
• Gather-scatter between processor tiles
• Async between tiles to eliminate overhead of barriers
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memory
slice

particles/s < STREAM/64B

8 updates/particle (classic)

32 updates/particle (Gyro)

Throughput > 32*particles/s

could be private caches or 

cache banks

(n.b., grid >> SPM)

sized for memory latency,

load balance

PIC Charge(mass) Deposition
for(i=0..#particles)

for(0..7 points) // x4 for Gyro
grid[ foo(pos[i],point) ] += goo(pos[i],point);

29/66
FFT butterfly calculation scheme
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Project 38 (P38) is a set of vendor-agnostic architectural explorations involving DOD, the DOE 
Office of Science, and NNSA
§ Near-term goal: Quantify the performance value and identify the potential costs of specific architectural concepts against a 

limited set of applications of interest to both the DOE and DOD. 
§ Long-term goal: Develop an enduring capability for DOE and DOD to jointly explore architectural innovations and quantify 

their value. 
§ Stretch goal:  Specification of a shared, purpose built architecture to drive future DOE-DOD collaborations and 

investments. (purpose-built HPC by 2025)

Project38: HPC Improvements Through Innovative Architecture
Cross-agency architectural exploration

Accomplishments
• Released initial project report through NITRD in 2020 that 

identifies 8 promising architecture enhancements that can 
significantly improve application performance.

• Working with Arm, AMD (LBL/ANL/PNNL), and Micron
(Sandia/LLNL) to assess feasibility and develop cost models 

• ANL evaluating impact of diverse specializations on the 
programming environment & compiler technologies.

Phase1 Report: https://www.nitrd.gov/Presentations/files/HPC-Performance-Improvements-Project-38.pdf

Reusable IP blocks for 
Diverse accelerators

Affordable heterogeneous 
co-integration using chiplets

COTS
Internal 
Design & 

Production
Traditional DOE 
Procurement

ECP Aggressive 
Vendor

Innovative 
USG

Related Effort at LANL
Jason Pruett

“Tailored Computing”
(whitepaper forthcoming)

https://www.nitrd.gov/Presentations/files/HPC-Performance-Improvements-Project-38.pdf


Recapping Key P38 Technology Explorations
• Fixed Function Accelerators & COTS IP (Extreme Heterogeneity)

– RISC-V and ARM cores
– Fixed function FFT (Generated by SPIRAL)

• Word Granularity Scratchpad Memory (Gather Scatter):
– Gather-scatter within processor tile 
– more effective SIMD

• Recoding engine (Efficient programmable FSM & data reorg.)
– Sub-word granularity and high control irregularity
– Handles branch-heavy code (avg. 20x improvement over processor core)
– One lane is 1/100th the size of a x86 processor core

• Hardware Message Queues (Lightweight Interprocessor Communication)
– Gather-scatter between processor tiles
– Async between tiles to eliminate overhead of barriers
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8 updates/particle (classic)

32 updates/particle (Gyro)

Throughput > 32*particles/s

could be private caches or 

cache banks

(n.b., grid >> SPM)

sized for memory latency,

load balance

PIC Charge(mass) Deposition
for(i=0..#particles)

for(0..7 points) // x4 for Gyro
grid[ foo(pos[i],point) ] += goo(pos[i],point);
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FFT butterfly calculation scheme
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Fixed Function Accelerators Design Study
Dark Silicon 

• What if HPC adopted SmartPhone
SoC Strategy -- mix fixed-function 
accelerators with programmable cores

• Target commonly used scientific 
primitives/libraries 
– BLAS (level 1,2,3)
– FFT (FFTW or SPIRAL interface) 
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FFT butterfly calculation scheme
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FFT Example With FFTx (Francetti, Popovic, Canning)

For FFT of size N
– Storage    = N * operand_size
– Compute = 5/2 * N * log2(N) FLOPs
– Use Pseudo-2D algorithm for large FFTs

Single FFT Accelerator Resource
• Assumptions: Spiral HW Generator

– 1GHz @ 14nm technology node
– 2M point transform (data off-chip)
– HPC Challenge Benchmark: Single precision 

(Float32) complex, out-of-place 
• Limit: 100 GB/s off-chip memory

– 16k points on-chip engine
– Analytic model for FP limit ~1.5TFLOPs SP
– 4.5mm2 area for compute @ 14nm

• Limit: 1TB/s off-chip memory
– ~10k MADD + ~5k add -> 15k FP@1GHz
Analytical model for FP limit ~15TFLOPs SP
– 47mm2 area for compute @14nm



IP Reuse is Key
This is the *real* power of the ARM ecosystem (its not just about Arm cores or Cavium)

3
5

«aQd IP RHXVH LV CRPPRQ IRU Multicore SoCs«
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Average #
 of IP Blocks

2016 average:
• 175 IP blocks
• 80% reuse

IP Reuse is increasingly important and shows no signs of slowing

18 blocks

55 blocks

110 blocks

52 blocks

SEMICO Research Corporation, 2014

DLVWULbXWLRQ SWaWHPHQW ³A´ (ASSURYHd IRU PXbOLc RHOHaVH, DLVWULbXWLRQ UQOLPLWHd) 6

• Leverage commodity ecosystems
• Get commercially supported IP where 

there is a market to support it
• Use open-source IP where the 

government needs to develop technology 
to serve its needs

• Partner with system integrators & chip 
vendors for realization of systems   

( new sustainable economic model for HPC)



Resource Disaggregation

3
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Specialization

Purpose built machines 
for big science targets.
Example: Google TPU. For DOE, 
DFT is 25% of workload

Heterogeneous 
Integration

Co-integration of many 
heterogeneous accelerators

Example: Apple Bionic chip, AWS
Graviton2, Project38.

Resource Disaggregation
Photonic MCMs to enable 
reconfigurable nodes/systems 
Example: Facebook/Google.  
Just DRAM utilization diversity in 
DOE could benefit from this.

Project 38

• Fixed Function Accelerators & COTS IP (Extreme Heterogeneity)
• RISC-V and ARM cores
• Fixed function FFT (Generated by SPIRAL)

• Word Granularity Scratchpad Memory (Gather Scatter):
• Gather-scatter within processor tile 
• more effective SIMD

• Recoding engine (Efficient programmable FSM & data reorg.)
• Sub-word granularity and high control irregularity
• Handles branch-heavy code (avg. 20x improvement over processor core)
• One lane is 1/100th the size of a x86 processor core

• Hardware Message Queues (Lightweight Interprocessor Communication)
• Gather-scatter between processor tiles
• Async between tiles to eliminate overhead of barriers
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Adder

ALU

MUX

ARB

memory
slice

grid ’processors’

particle ’processors’

buffers

get {index,delta}

put {index,delta}

Particles
(streamed from memory)

ARB

memory
slice
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memory
slice

ARB

memory
slice
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memory
slice

ARB

memory
slice

ARB

memory
slice

ARB

memory
slice

particles/s < STREAM/64B

8 updates/particle (classic)

32 updates/particle (Gyro)

Throughput > 32*particles/s

could be private caches or 

cache banks

(n.b., grid >> SPM)

sized for memory latency,

load balance

PIC Charge(mass) Deposition
for(i=0..#particles)

for(0..7 points) // x4 for Gyro
grid[ foo(pos[i],point) ] += goo(pos[i],point);
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FFT butterfly calculation scheme
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DFT: 25% of 
NERSC workload



Diverse Node Configurations for Datacenter Workloads

CPU

TOR

GPU TORCPU

GPU

TOR

CPU
NVR
AMNVR
AMNVR
AMNVR
AM

CPU

GPU

TOR

CPU
HBM
HBM
HBM
HBM

TORTOR

Training
• 8 connections: GPU 
• 8 links to HBM 

(weights)
• 8 links: to NVRAM
• 1 links: to CPU 

(control)

Inference
• 16 links to TOR 

(streaming data)
• 8 links HBM (weights)
• 1 link: CPU

Data Mining
• 6-links: HBM
• 15 links: NVRAM 

(capacity)
• 4 links: CPU 

(branchy code)

Graph Analytics
• 16 links HBM
• 8 links TOR
• 1 Link CPU

GPUTOR CPUNVRAM HBM



Memory Disaggregation

Overestimate: maxrss x ranks_per_node
Assumes memory balance across MPI ranks.

About 15% of NERSC workload 
uses more than 75% of the 
available memory per node.

And ~25% uses more than 50% 
of available memory.

But 75% of Haswell job hours 
(60% of KNL) use < 25% memory

Brian Austin: NERSC Workload Analysis



Disaggregated Node/Rack Architecture

4
1

Most solutions current disaggregation solutions use Interconnect bandwidth (1 – 10 GB/s) 
But this is significantly inferior to RAM bandwidth (100 GB/s – 1 TB/s) 

Current server

Current rack

Disaggregated rack

Pool and compose



Interposers are the right point of intersection where copper pin 
bandwidth density could match photonics bandwidth density!

• Good News: Extend Bandwidth Density 
and lower power/bit

• Bad News: Limited (~2cm) reach
– Cannot get outside of the package (but 

we need to!!!!)

4
3

4© 2017 Paul D. Franzon

Attachment technologies

z Solder micobumps
~ Today typically 40 Pm pitch 
~ 25 Pm pitch demonstrated
~ Potential for 5 Pm pitch

z Copper-copper
~ Copper-copper compression 

| @ high temperature (> 400 C)
~ Hybrid bonding

| @ low temperature (Ziptronix DBI)
~ Typical 2 – 5 Pm pitch
~ Potential for sub-1 Pm pitch

| Enabled by sub-1 Pm alignment tools

IBM

Ziptronix



Impedance Matching to our Packaging Technology

4
4

4© 2017 Paul D. Franzon

Attachment technologies

z Solder micobumps
~ Today typically 40 Pm pitch 
~ 25 Pm pitch demonstrated
~ Potential for 5 Pm pitch

z Copper-copper
~ Copper-copper compression 

| @ high temperature (> 400 C)
~ Hybrid bonding

| @ low temperature (Ziptronix DBI)
~ Typical 2 – 5 Pm pitch
~ Potential for sub-1 Pm pitch

| Enabled by sub-1 Pm alignment tools

IBM

Ziptronix

- 17.5 dBm
Sensitivity of 

Receiver @ 10Gb/s

15.0dB
2.3dB

6.2dB
2.3dB-2.5dBm

(0.56mW)

clk

dataReceiverclk
data

clk
datadata

clk
clk gen

0.56 
pJ/bit

0.2 
pJ/bit

0.75 pJ/bit

0.2 pJ/bit

0.4 
pJ/bit

0.1 pJ/bit

2.3dB

1.9dB

Total: 2.2 pJ/bit

WPE: 10%

In-package integration

Solder Microbumps
& Copper Pillars @ 10Gbps

Wide and Slow!

DWDM Using Silicon Photonics

Ring Resonators @ 10 Gigabits/sec per chan
Many channels to get bandwidth density

Wide and Slow!

Comb Laser Sources

Single laser to efficiently 
generate 100s of frequencies

Wide and Slow!



Photonic MCM (Multi-Chip Module)

45

Comb Laser Source with 
DWDM Silicon Photonics

Wide-and Slow for high speed links 

ASIC Circuits

Through-Silicon 
Via

Photonic 
Interposer

ASIC
Chip

CMOS Photonic Control Logic

Modulator Optical waveguide Photodetector Fiber coupler

Photonic SiP

clk

da
ta

TIA

clk

da
ta

TIA

clk clk clk

data

R

C

clk

da
ta

TIA

clk gen

Silicon waveguide Silicon waveguide

Scales to 100s of ls

Soliton Comb

Normal GVD Comb



Photonic MCM (Multi-Chip Module)

Compute MCM

HBM MCM NVRAM MCM

NVM

NVM

NVM

NVM

RX

RX

TX

TX

Packet 
Switching MCM

RX

RX

TX

TX

To other nodes

CPU/GPU

HBM MCM

CP
U

GP
U

RA
M

NV
M

Optical switch 46

High-Density fiber coupling array 
with 24 fibers = 6-12 Tb/s bi-
directional = 0.75 – 1.5 TB/s

ASIC Circuits

Through-Silicon 
Via

Photonic 
Interposer

ASIC
Chip

CMOS Photonic Control Logic

Modulator Optical waveguide Photodetector Fiber coupler

Photonic SiP

Fiber carrying 0.5 - 1 Tb/s 

Fiber coupler 
pitch: 10s of um
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CPU GPU
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TORTOR

Training
• 8 connections: Peer GPU 
• 8 links to HBM (weights)
• 8 links: to NVRAM
• 1 links: to CPU (control)

Inference
• 16 links to TOR 

(streaming data)
• 8 links HBM (weights)
• 1 link: CPU

Data Mining
• 6-links: HBM
• 15 links: NVRAM (capacity)
• 4 links: CPU (branchy code)

Graph Analytics
• 16 links HBM
• 8 links TOR
• 1 Link CPU
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PINE: Photonic Integrated Networked Energy Efficient Datacenters
Resource Disaggregation to custom-assemble diverse accelerators for diverse workload requirements

1) Energy-bandwidth 
optimized optical links

2) Embedded silicon 
photonics into OC-MCMs

3) Bandwidth steering for 
Custom Node Connectivity
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1 Tb/second per fiber
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Neil Thompson: Economics of Post-Moore Electronics
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COMPUTER SCIENCE

There’s plenty of room at the Top: What will drive
computer performance after Moore’s law?
Charles E. Leiserson, Neil C. Thompson*, Joel S. Emer, Bradley C. Kuszmaul, Butler W. Lampson,
Daniel Sanchez, Tao B. Schardl

BACKGROUND: Improvements in computing
power can claim a large share of the credit for
many of the things that we take for granted
in our modern lives: cellphones that are more
powerful than room-sized computers from
25 years ago, internet access for nearly half
the world, and drug discoveries enabled by
powerful supercomputers. Society has come
to rely on computers whose performance in-
creases exponentially over time.
Much of the improvement in computer per-

formance comes from decades of miniatur-
ization of computer components, a trend that
was foreseen by the Nobel Prize–winning phys-
icist Richard Feynman in his 1959 address,
“There’s Plenty of Room at the Bottom,” to
the American Physical Society. In 1975, Intel
founder Gordon Moore predicted the regu-
larity of this miniaturization trend, now called
Moore’s law, which, until recently, doubled the
number of transistors on computer chips every
2 years.
Unfortunately, semiconductorminiaturiza-

tion is running out of steam as a viable way
to grow computer performance—there isn’t
much more room at the “Bottom.” If growth

in computing power stalls, practically all in-
dustries will face challenges to their produc-
tivity. Nevertheless, opportunities for growth
in computing performance will still be avail-
able, especially at the “Top” of the computing-
technology stack: software, algorithms, and
hardware architecture.

ADVANCES: Software can be made more effi-
cient by performance engineering: restructur-
ing software to make it run faster. Performance
engineering can remove inefficiencies in pro-
grams, known as software bloat, arising from
traditional software-development strategies
that aim to minimize an application’s devel-
opment time rather than the time it takes to
run. Performance engineering can also tailor
software to the hardware on which it runs,
for example, to take advantage of parallel pro-
cessors and vector units.
Algorithms offer more-efficient ways to solve

problems. Indeed, since the late 1970s, the time
to solve the maximum-flow problem improved
nearly as much from algorithmic advances
as from hardware speedups. But progress on
a given algorithmic problem occurs unevenly

and sporadically and must ultimately face di-
minishing returns. As such, we see the big-
gest benefits coming from algorithms for new
problem domains (e.g., machine learning) and
from developing new theoretical machine
models that better reflect emerging hardware.

Hardwarearchitectures
can be streamlined—for
instance, through proces-
sor simplification, where
a complex processing core
is replaced with a simpler
core that requires fewer

transistors. The freed-up transistor budget can
then be redeployed in otherways—for example,
by increasing the number of processor cores
running in parallel, which can lead to large
efficiency gains for problems that can exploit
parallelism. Another form of streamlining is
domain specialization, where hardware is cus-
tomized for a particular application domain.
This type of specialization jettisons processor
functionality that is not needed for the domain.
It can also allow more customization to the
specific characteristics of the domain, for in-
stance, by decreasing floating-point precision
for machine-learning applications.
In the post-Moore era, performance im-

provements from software, algorithms, and
hardware architecture will increasingly re-
quire concurrent changes across other levels
of the stack. These changes will be easier to im-
plement, from engineering-management and
economic points of view, if they occur within
big system components: reusable softwarewith
typically more than a million lines of code or
hardware of comparable complexity. When a
single organization or company controls a big
component, modularity can be more easily re-
engineered to obtain performance gains. More-
over, costs and benefits can be pooled so that
important but costly changes in one part of
the big component can be justified by benefits
elsewhere in the same component.

OUTLOOK: Asminiaturizationwanes, the silicon-
fabrication improvements at the Bottom will
no longer provide the predictable, broad-based
gains in computer performance that society has
enjoyed for more than 50 years. Software per-
formance engineering, development of algo-
rithms, and hardware streamlining at the
Top can continue to make computer applica-
tions faster in the post-Moore era. Unlike the
historical gains at the Bottom, however, gains
at the Top will be opportunistic, uneven, and
sporadic. Moreover, they will be subject to
diminishing returns as specific computations
become better explored.▪
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Removing software bloat
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New problem domains
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Performance gains after Moore’s law ends. In the post-Moore era, improvements in computing power will
increasingly come from technologies at the “Top” of the computing stack, not from those at the “Bottom”,
reversing the historical trend.C
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Figure 20.  Integration with a Transistor Focus [11] 
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Figure 21.  Integration with a System Focus [11] 
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27 

Figure 7: Optimal processor choice depends on the performance speed-up that the specialized processor provides, as well as the rate 

of improvement of the universal technology. (a) Big performance jump from specialization, (b) Small performance jump from 

specialization, (c) Slower improvement in the universal processor  

IQ FLJXUH 7, a VSecLaOL]ed SURceVVRU LV PRUe aWWUacWLYe WKaQ a XQLYeUVaO SURceVVRU ZKeQ WKe gUe\ VKaded UegLRQ 

LV OaUgeU WKaQ WKe bOXe VKaded UegLRQ. TKXV, a VSecLaOL]ed SURceVVRU LV PRUe aWWUacWLYe Lf LW SURYLdeV a OaUgeU 

LQLWLaO gaLQ LQ SeUfRUPaQce, aV LQ SaQeO (a), RU Lf WKe gaLQV WKaW LW SURYLdeV WaNe ORQgeU WR eURde becaXVe WKe 

XQLYeUVaO SURceVVRU LV LPSURYLQg PRUe VORZO\, aV LQ SaQeO (c). IQ cRQWUaVW, XQLYeUVaO SURceVVRUV aUe PRUe 

aWWUacWLYe ZKeQ WKeLU UaWe Rf LPSURYePeQW TXLcNO\ ecOLSVeV aQ\ SeUfRUPaQce MXPS fURP VSecLaOL]aWLRQ, aV LQ 

SaQeO (b). 

4.1.2 MRGHOOLQJ PURcHVVRU CKRLcH ± FRUPaO MRGHO  

 Electronic copy available at: https://ssrn.com/abstract=3287769 

Neil Thompson
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Figure 5.  Six application spaces undergirded by AI, VR and AR.  Source: ASE 
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FKDUDFWHULVWLFV�� � In this definition, components should be taken to mean any unit, whether individual die, MEMS 
device, passive component and assembled package or sub-system, that are integrated into a single package.  The 
operating characteristics should also be taken in its broadest meaning including characteristics such as system-level 
performance and cost of ownership.  Source: ITRS Assembly & Packaging Chapter.��
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Figure 6.  Heterogeneous Integration and System in Package (SiP). Source: ASE  
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HPC and Megadatacenters is 2nd chapter



conclusion
• In the era of the ”universal computer” scale was the correct 

answer to deliver value to our scientific customers.
• In this post-moore/post-exascale era, that is not a viable 

approach to continuing to deliver value to our customers.  It 
isn’t scale, it must be differentiation and targeted 
specialization

• Scale demanded we focus on capital costs.  The new era 
must increase focus on development costs to meet the 
demands of science.

• The ”cloud” does not mitigate this outcome.
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Project 38 -- Background
DOD and DOE recognize the imperative to develop new mechanisms for 
engagement with the vendor community, particularly on architectural 
innovations with strategic value to USG HPC. 
Project 38 (P38) is a set of vendor-agnostic architectural explorations involving DOD, the 
DOE Office of Science, and NNSA (these latter two organizations are referred to in this 
document as “DOE”). These explorations should accomplish the following: 
• Near-term goal: Quantify the performance value and identify the potential costs of 

specific architectural concepts against a limited set of applications of interest to 
both the DOE and DOD. 

• Long-term goal: Develop an enduring capability for DOE and DOD to jointly explore 
architectural innovations and quantify their value. 

• Stretch goal:  Specification of a shared, purpose built architecture to drive future 
DOE-DOD collaborations and investments. (purpose-built HPC by 2025)
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