Can HPC Technologies Lead the way for AI?

Adnan Khaleel
Global Sales Strategy for HPC & AI
Adnan.Khaleel@dell.com
Sept 2018
AI customers demonstrate the value

MasterCard
Turn 160M transactions/hour with 1.9M rules to protect against fraud

Caterpillar
Autonomous mining for safety

Zenuity
4.4Pb of data/mo
~50 simulations/hr
Safe autonomous driving

MIT Lincoln Labs
1+ petaFLOP to enable robotic vehicles, cyber security, bioinformatics

Develop, test and run innovative algorithms

ZIFF.ai
AI startup accelerates training models with 10s of millions of images

Simon Fraser University
Analyze DNA of microbes and stop outbreaks

AeroFarms
390x more productive than traditional field farming

CSIRO
More than 1,800 patents in science and technology

CU
300% faster performance
Motivations for this discussion

• AI is still in its early days as computational technology; lots of dynamism
• Advise CIOs/CTOs and our PoV of how we see the technology evolving
 • Also from a future product planning perspective
 • What can we make an educated guess
• Maximize ROI on current investments
• What will be the right way to “scale” this problem size and or speed?
• It’s easier to come up with an innovative HW architecture than to “actually” program it
• What can we apply from HPC lessons learnt to this domain?
 • Interconnects, memory, scale-out within nodes vs across nodes
 • Are nodes with 8, 16, 32 GPUs useful and how far do we go?
Machine Learning & Deep Learning eco-system – solving real world problems

<table>
<thead>
<tr>
<th>Verticals / Use Cases</th>
<th>Consumption Models</th>
<th>Management/Orchestration Virtualization</th>
<th>Software & Frameworks</th>
<th>Math Libraries</th>
<th>Processor/Accelerator</th>
<th>Compute/Storage/Networking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web</td>
<td>Recommendation engines</td>
<td>Recommendation engines</td>
<td>Recommendation engines</td>
<td>Recommendation engines</td>
<td>Recommendation engines</td>
<td>Recommendation engines</td>
</tr>
<tr>
<td>hpc</td>
<td>Image classification</td>
<td>Image classification</td>
<td>Image classification</td>
<td>Image classification</td>
<td>Image classification</td>
<td>Image classification</td>
</tr>
<tr>
<td>🛒</td>
<td>Smart chatbots</td>
<td>Smart chatbots</td>
<td>Smart chatbots</td>
<td>Smart chatbots</td>
<td>Smart chatbots</td>
<td>Smart chatbots</td>
</tr>
<tr>
<td>🚗</td>
<td>Disease Identification</td>
<td>Disease Identification</td>
<td>Disease Identification</td>
<td>Disease Identification</td>
<td>Disease Identification</td>
<td>Disease Identification</td>
</tr>
<tr>
<td>🏥</td>
<td>Predictive marketing</td>
<td>Predictive marketing</td>
<td>Predictive marketing</td>
<td>Predictive marketing</td>
<td>Predictive marketing</td>
<td>Predictive marketing</td>
</tr>
<tr>
<td>🟢</td>
<td>Fraud Detection</td>
<td>Fraud Detection</td>
<td>Fraud Detection</td>
<td>Fraud Detection</td>
<td>Fraud Detection</td>
<td>Fraud Detection</td>
</tr>
<tr>
<td>🟡</td>
<td>Smart Traffic Core to Edge IoT</td>
</tr>
<tr>
<td>🔴</td>
<td>Threat Predictions</td>
<td>Threat Predictions</td>
<td>Threat Predictions</td>
<td>Threat Predictions</td>
<td>Threat Predictions</td>
<td>Threat Predictions</td>
</tr>
<tr>
<td>💼</td>
<td>Inventory Management</td>
<td>Inventory Management</td>
<td>Inventory Management</td>
<td>Inventory Management</td>
<td>Inventory Management</td>
<td>Inventory Management</td>
</tr>
</tbody>
</table>

Software & Frameworks
- BigDL
- DataRobot
- Spark
- H2O.ai
- Open Source Frameworks
 - TensorFlow
 - Caffe
 - Chainer
 - mxnet
 - theano
 - torch
 - CNTK

Math Libraries
- Python
- R
- MATLAB

Processor/Accelerator
- Xeon
- XeonPhi
- Accelerators
- FPGA Adapter
- C6420
- R740

Compute/Storage/Networking
- R840
- R940XA
- C4140
- T640
- C6320p
- Big Accelerator system

In-Memory Analytics
- Inference
- Training
- Solution
- Build
- Buy
- Service Providers
- Systems Integrators
- Hyperconverged appliance
Dell EMC Ready Solutions for Machine & Deep Learning – Clearly Scale-out

- Deep Learning with NVIDIA
- Deep Learning with Intel
- Machine Learning with Hadoop
What is AI, machine learning and deep learning?

AI refers to machine intelligence, while machine learning and deep learning are the technologies that underpin AI and make it possible.

Machine learning refers to the process of “training” the machine, feeding large amounts of data into algorithms that give it the ability to learn how to perform a task.

Deep learning is a machine learning technique that uses neural networks as the underlying architecture for training models.
Quick Primer

Machine Learning
How do you engineer the best features?

Deep Learning
How do you guide the model to find the best features?

$N \times N$

(f_1, f_2, \ldots, f_K)
- Roundness of face
- Dist between eyes
- Nose width
- Eye socket depth
- Cheek bone structure
- Jaw line length
- etc.

CLASSIFIER ALGORITHM
- SVM
- Random Forest
- Naïve Bayes
- Decision Trees
- Logistic Regression
- Ensemble methods

NEURAL NETWORK

Arjun

Arjun
Deep Learning evolution

Traditional models

Perceptron [Rosenblatt 1958]
Decision Tree (CLS) [Hunt 1966]
SVM [Vapnik 1979]
Boosting [Schapire 1990]

Deep models

RNN [Grossberg 1973]
Conv. Net [Fukushima 1979]
ΣΠ [Hornik 1989]
AE [Hinton 1989]
GMM [Reynolds 1992]

N RBM [Hinton 1999]
N DBN [Hinton et al 2006]
N D-AE [Vincent 2008]
N BayesNP [Teh & Jordan 2009]
N DBM [Salakhutdinov & Hinton 2009]

Neural Network
Probabilistic Model
Supervised learning
Unsupervised learning

Algorithms authors and dates often unclear. Oldest citations were assumed. Classifications based on Yann LeCun’s Deep Learning class at NYU – spring 2014
Biologically Inspired Artificial Neurons

Neurons and biological brains

- Each Human has a 100 Billion neurons. Each Neuron connects to 10k other neurons ~ 1 Trillion Synapses

- Neurons send and receive signals. A neuron “fires” if the summation of its input is above a threshold

Simple Artificial Neuron or “Switch” or (Single Layer) Perceptron

- Has a number of “weighted” inputs

- Considers sum of weighted inputs and “fires” an output based on it’s activation function
Multi Layer Perceptrons or Artificial Neural Networks (ANNs)

Group together multiple Artificial Neurons into a Network
 • Single Layer Perceptrons can be used to represent linearly separable functions
 • However many problems are not linearly separable, may be represented as 2D or 3D spaces (Lippmann in the 1987 paper “An introduction to computing with neural nets”)
 • Generally arrive at these parameters through experimentation
 • Architecture is based on the layout of various layers E.g. AlexNet, ImageNet
Deep Neural Network – How do they work?

<table>
<thead>
<tr>
<th>Basic Attributes</th>
<th>Compound Attributes</th>
<th>Complex Attributes</th>
</tr>
</thead>
</table>

![Diagram of a deep neural network showing basic, compound, and complex attributes.](image)
A Simple Example: Supervised Learning

\[z^{(1)} = w_1x_1^{(1)} + w_2x_2^{(1)} + w_3x_3^{(1)} \]
\[z^{(2)} = w_1x_1^{(2)} + w_2x_2^{(2)} + w_3x_3^{(2)} \]
\[z^{(3)} = w_1x_1^{(3)} + w_2x_2^{(3)} + w_3x_3^{(3)} \]

Error criteria: Minimize the square error over all of the training examples

\[E = \frac{1}{2} \sum_i (t^{(i)} - y^{(i)})^2 \]

Where \(t^{(i)} \) is the true answer for the \(i^{th} \) training example

To modify the weights:

\[\Delta w_k = \sum_i e_k x_k^{(i)} y^{(i)} (1 - y^{(i)}) (t^{(i)} - y^{(i)}) \]
Training and Backpropagation (Supervised learning)

The backpropagation algorithm was originally introduced in the 1970s, but its importance wasn’t fully appreciated until a famous 1986 paper by David Rumelhart, Geoffrey Hinton, and Ronald Williams

Fast Matrix Maths to the rescue

\[(W^{i+1})^T \delta^{i+1} = \begin{bmatrix}
 w_{11}^{i+1} & \cdots & w_{m1}^{i+1} \\
 \vdots & \ddots & \vdots \\
 w_{1K}^{i+1} & \cdots & w_{mK}^{i+1}
\end{bmatrix}
\begin{bmatrix}
 \delta_1^{i+1} \\
 \vdots \\
 \delta_M^{i+1}
\end{bmatrix}
\begin{bmatrix}
 \sum_{m=1}^{M} \delta_m^{i+1} w_{m1}^{i+1} \\
 \vdots \\
 \sum_{m=1}^{M} \delta_m^{i+1} w_{mK}^{i+1}
\end{bmatrix} \sim \delta^i\]

1. Do forward propagation (matrix operation)
2. Calculate Error of the final layer
3. Do backward propagation (matrix operation)
4. Update the weights
Deep Learning in practice

- **Step 1: Training**
 (In Data Center – Over Hours/Days/Weeks)
 - Lots of labeled input data
 - Create “Deep neural net” math model
 - Output Classification
 - 90% person
 - 8% traffic light

- **Step 2: Scoring**
 (End point or Data Center - Instantaneous)
 - New input from camera and sensors
 - Trained neural network model
 - Output Classification
 - 97% person
Scaling DL: Compute

Compute Efficiency
- Matrix operations are important (GEneral Matrix to Matrix)
 - GEMM Processor friendly but need a lot of memory
- Floating point precision not critical – Int8, Int16 are sufficient
- Data transport:
 - High Bandwidth DRAM and memory hierarchy
- Dataflow architectures, memristors, Op AMPS

Scale Up vs Scale Out
- On-node vs off-node
- Faster off-chip interconnects
- Parallel Programming frameworks e.g. MPI
- BitFusion.io for GPU/FPGA Virtualization
- Distributed Deep Learning by IBM – GPUs over IB

NVIDIA TESLA V100
- 640 NEW Tensor cores
- 300 GB/s NVLink2

Google TPU
Matrix Multiplier Unit (MXU): 65,536 8-bit multiply-and-add units for matrix operations
Accelerating DL: Productivity

Software infrastructure:

• Partitioning problem space efficiently across nodes
• More efficient algorithms for doing the forward and back propagation (optimized algorithms and matrix computations)
• Distributed compute infrastructure that allows you to efficiently scale-out
• A fast (distributed) filesystem for managing data
• Resilient programming model, easy to deploy and maintain
Summary

• Many of the techniques developed for HPC are already making their way into the latest DL processors

• Newer techniques unique to AI are also being developed, like optimized matrix calculators using memristors

• Scale-out and modularity will dominate provided we create the proper SW frameworks – higher speed interconnects will remain crucial

• Practicality of the technology will ultimately determine which technologies become mainstream
References

https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

