

My journey to shift the mindset of
interactive users to the power of

batch computing

Chris Stackpole

This presentation in no way reflects my employers
stance on anything at all...

Background image:
Antarctic Penguin by Christopher Michel

CC BY-NC 2.0
www.flickr.com/photos/cmichel67/83253268

Err....who is this guy?

● Graduated Texas Tech in computer science

● One of the best parts for me was the High
Performance Computing Center

● It has been 10 years since I fell in love with HPC

● Next week I will have been at my current job for
2 years.

Problem 1

The user base is incredibly intelligent...

 but not very computer savvy...

Problem 2

The work flow.

Application on Desktop->Log in node->

Interactive Shell->Application

How do I fix this?

My architecture checklist

● Need a scheduler.

● Need to simplify the process.

● The user shouldn't know or care about what
host they are on.

● Any distance between cluster complexity and
the user is probably a good thing.

Round Robin DNS

Users go to one web page for everything.

If one log in node is down, they never notice.

The scheduler and
user interaction

* Tried several. Ended up with
Sun Grid Engine / Open Grid Scheduler
* Allows me to load balance users and their jobs
* Schedule users desktops, jobs, everything!
User → Cluster Interface → Whatever is
available

* Job wall time!

I have a cluster and scheduler,
now what?

Cluster <----------Big Gap----------> Users

 Me <----------Big Gap----------> Users
(Computer Science) (Experts in their Field)
(Loves computers) (Barely tolerates ipad)

Expecting the users to bridge this gap has been
the bane of every cluster admin I have known.

Expecting me to bridge this gap will require
lifetimes of study in fields I barely understand.

What do I know?

The cluster.

My goal:
The users should focus on their work,

not fighting my cluster.

The journey begins

● First product: EnginFrame from Nice Software.

– Tons of options | Lots of complexity

– Very talented Engineering Support

– Way more complex then we needed;
things I didn't care about caused me
grief

– Gave me an excellent idea of where I
wanted to go.

A challenger appears...

● eQUEUE from Advanced Clustering

– Wraps together several products we
were previously bundling individually.

– Simple to understand

– Simple to manage
(Key=value style programming)

– Simple way to interact with the cluster

– BUILT IN HELP!!!!!

How does this help me reach my
goal?

● We personally walk through the cluster with
every new user. An introduction. We expect
users to ask follow up questions, but a personal
introduction saves time and effort for both
admins and users.

● We can now craft interfaces to simplify their
interaction with the cluster. We do this by by
seeing their workflow and adapting the interface
to match and automate their needs.

“Amy” Then

● Lots of code.

● Code walks through thousands of start points to
see where algorithm converges.

● Converge points are seeds for next iteration.

● Some took minutes; others took hours.

● Whole process took weeks single threaded.

“Amy” Now

● Simple interface for her to use

● Simple interface for us to manage

● Uses full cluster resources through scheduler

● And most importantly, she can now run bigger
data sets over FAR more iterations because the
“easy” parallelization given through the “easy”
interface afford her the time to do so.

● What would have been /weeks/ is now a day.

Does Amy fit the goal?

● She spends more time making sense of the data
and writing papers on her findings then she
does waiting for her job to finish on the cluster
by a WIDE margin.

I think so.

“Bill” Then

● Small code. Short run time.

● MUST have dedicated 2GB of memory or app
crashes.

● Gets frustrated when his favorite node is being
used by someone else and his app crashes.

● All development done on his local laptop via
network mount share. No code control; bug
regressions and dev errors are frequent.

“Bill” Now

● Simple web interface.

● Pulls latest code from Git repo. Reads the
configuration and compiles appropriately.

● Doesn't care where his job runs as it is handled
via the scheduler.

Does Bill fit the goal?

● Jobs runs with proper allocation of resources

● Code is stored in a Git repo; not a $(date).zip file

● Code parameters are a part of the project
adding the portability his co-authors need.

I think so.

Whose next?

Questions?

