## The Stampede is Coming: A New Petascale Resource for the Open Science Community

Dan Stanzione Deputy Director Texas Advanced Computing Center dan@tacc.utexas.edu



THE UNIVERSITY OF TEXAS AT AUSTIN TEXAS ADVANCED COMPUTING CENTER The Texas Advanced Computing Center: A Leader in High Performance Computing 1,000,000x performance increase in computing capability in 10 years.



Ranger: 62,976 Processor Cores, 123TB RAM, 579 TeraFlops, Fastest Open Science Machine in the World, 2008

Lonestar: 23,000 processors, 44TB RAM, Shared Mem and GPU subsystems, #25 in the world 2011





Stampede: Coming soon...

#### Stampede

- A new NSF-funded XSEDE resource at TACC
- Funded two components of a new system:
  - Two+ petaflop, 100,000+ core Xeon E5 based Dell cluster to be the new workhorse of the NSF open science community (>3x Ranger)
  - Up to eight additional petaflops of Intel Many-Integrated-Core (MIC) Xeon Phi processors to provide a revolutionary innovative capability: a new generation of supercomputing.
  - Change the power/performance curves of supercomputing without changing the programming model (terribly much).



## **Stampede - Headlines**

- Up to 10PF Peak performance in initial system (Early 2013)
  - 100,000+ conventional Intel processor cores
  - Almost 500,000 total cores with Intel Xeon Phi
- Upgrade with "Future Knight's" in 2015
- 14PB+ disk
- 272TB+ RAM
- 56Gb FDR InfiniBand interconnect
- Nearly 200 racks of compute hardware (10,000 sq ft)
- >SIX MEGAWATTS total power



## The Stampede Project

- A Complete Advanced Computing Ecosystem:
  - HPC Compute, storage, interconnect
  - Visualization subsystem (144 high end GPUs)
  - Large memory support (16 1TB nodes)
  - Integration with archive, and (coming soon) TACC global work filesystem and other data systems
  - People, training, and documentation to support computational science
- Hosted at an expanded building in TACC; massive power upgrades
  - 12MW new total datacenter power
  - Thermal energy storage to reduce operating costs



#### **Contrast with Blue Waters**

- Stampede is tasked with the "broad" instead of "deep" mission.
  - We estimate more than 1,000 projects will be supported on Stampede.
  - Blue Waters will handle a few of the very largest problems.
  - Stampede will run big problems too, but also lots and lots of small and midsize jobs.
- Smaller budget, shorter timescale.
- Stampede will be part of XSEDE



#### **HPC Needs Decades of Moore's Law**

Weather Prediction





## An Inflection point (or two) in High Performance Computing

- Relatively "boring", but rapidly improving architectures for the last 15 years.
- Performance rising much faster than Moore's
   Law...
  - But power rising faster
  - And concurrency rising faster than that, with serial performance decreasing.
- Something had to give



#### Consider this Example Homogeneous v. Heterogeneous

Acquisition costs and power consumption

- Homogeneous system: K computer in Japan
  - 10 PF unaccelerated
  - <u>Rumored ~\$1 billion</u> acquisition costs
  - Large power bill (13MW) and foot print (800 racks)
- Heterogeneous system: Stampede at TACC
  - Near 10PF (2 SNB + up to 8 MIC)
  - Modest footprint: 8,000 ft<sup>2</sup>, 5MW, 180 racks.
  - <u>\$27.5 million</u>



#### Accelerated Computing for Exascale

- Exascale systems, predicted for 2018, would have required 500MW on the "old" curves.
- Something new was clearly needed.
- The "accelerated computing" movement was reborn (this happens periodically, starting with 387 math coprocessors).



#### Key aspects of acceleration

- We have lots of transistors... Moore's law is holding; this isn't necessarily the problem.
- We don't really need lower power per transistor, we need lower power per \*operation\*.
- How to do this?



### The GPU Approach

- Don't repeat the past mistakes of failed accelerators (i.e. have another market to drive volume and development).
- Streaming model
- Simpler processors, lots of concurrency (work by compilers or programmers doesn't cost power at runtime).
- Very large die (tolerate failures to get yield).



#### More accelerators

- nVidia leads this charge in GPU, but there are many similar competing ideas:
  - ARM (Marvell/Calxeda) (simple cores, lots per die, low power per operation).
  - AMD Fusion (AMD cores plus GPU cores on same die).
  - FPGA (large arrays, lower power by special purpose circuit per application



#### Intel's MIC approach

- Since the days of RISC vs. CISC, Intel has mastered the art of figuring out what is important about a new processing technology, and saying "why can't we do this in x86?"
- The Intel Many Integrated Core (MIC) architecture is about large die, simpler circuit, much more parallelism, in the x86 line.



## What is MIC?

- Basic Design Ideas
  - Leverage x86 architecture (CPU with many cores)
    - x86 cores that are simpler, but allow for more compute throughput
  - Leverage (Intel's) existing x86 programming models
  - Dedicate much of the silicon to floating point ops., keep some cache(s)
  - Keep cache-coherency protocol
  - Increase floating-point throughput per core
  - Implement as a separate device
  - Strip expensive features (out-of-order execution, branch prediction, etc.)
  - Widen SIMD registers for more throughput
  - Fast (GDDR5) memory on card





## **MIC** Architecture

- Many cores on the die
- L1 and L2 cache
- Bidirectional ring network
- Memory and PCIe connection



#### Knights Ferry –SW Dev Platform

- Up to 32 cores
- 1-2 GB of GDDR5 RAM
- 512-bit wide SIMD registers
- L1/L2 caches
- Multiple threads (up to 4) per core
- Slow operation in double precision

#### Xeon PHI (was Knights Corner)

- First product
- Used in Stampede
- 50+ cores
- Increased amount of RAM
- Details are under NDA
- 22 nm technology



#### Stampede: Programming Models

- A ~2PF Xeon-only system (MPI, OpenMP)
- A ~8PF MIC-only system (MPI, OpenMP)
- A ~10PF heterogeneous system (MPI, OpenMP)
  - Run separate MPI tasks on Xeon vs. MIC, or use OpenMP extensions for offload for hybrid programs.



#### Stampede

- Base Cluster:
  - Intel Sandy Bridge processors
  - Dell dual-socket nodes w/32GB RAM
  - More than 6,000 nodes
  - More than 100,000 cores
- Co-Processors:
  - Intel "MIC" Many Integrated Core processors
  - Special release of "Knight's Corner" (>50 cores)
  - "Knight's Ferry" development platforms at TACC now
- Total Concurrency approaching 500,000 cores



## **Power/Physical**

- Stampede will physically use 182 48U cabinets.
- Power density (after upgrade in 2015) will exceed 40kW per rack.
- Estimated 2015 peak power is 6.2MW.



#### Key Datacenter Features

- Thermal energy storage to reduce peak power charges
- Hot aisle containment to boost efficiency (and simply provide enough cooling).
- Total IT power to 9.5MW, total power ~12MW.
- Expand experiments in mineral oil cooling.



#### **Datacenter Expansion**





#### HIGH PERFORMANCE COMPUTING FACILITY EXPANSION

#### TEXAS ADVANCED COMPUTING FACILITY THE UNIVERSITY OF TEXAS



#### 95% DESIGN DEVELOPMENT / GMP PRICING SET



# Stampede Datacenter – February 20th





#### Stampede Datacenter – March 22nd





#### Stampede Datacenter – May 16<sup>th</sup>





#### Stampede Datacenter – June 20th





#### Stampede Datacenter, ~September 10th





#### Stampede Datacenter, ~September 10th





#### Some utilities are involved





# Actually, way more utility space than machine space



Turns out the utilities for the datacenter costs more, takes more time and more space than the computing systems



## New Technologies/Milestones in the Stampede Project

- Density: surpasses 40KW/Cabinet
  - New Dell node designs to support multiple 300W expansion cards in single node ~1U
- Total system power past 5 \*megawatts\*
   Thermal storage technology incorporated.
- Breakthrough price/performance and power/performance.
  - Inclusion of Intel MIC; but we must program it.
- Application concurrency past 1 \*million\* threads per application



## What we at TACC like about MIC

- Intel's MIC is based on x86 technology
  - x86 cores w/ caches and cache coherency
  - SIMD instruction set
- Programming for MIC is similar to programming for CPUs
  - Familiar languages: C/C++ and Fortran
  - Familiar parallel programming models: OpenMP & MPI
  - MPI on host and on the coprocessor
  - Any code can run on MIC, not just kernels
- Optimizing for MIC is similar to optimizing for CPUs
  - "Optimize once, run anywhere"
  - Our early MIC porting efforts for codes "in the field" are frequently doubling performance on Sandy Bridge.



## Will My Code Run on MIC?

- Yes
- That's the wrong question, it's:
  - Will your code run \*best\* on MIC?, or
  - Will you get great MIC performance without additional work?



## Early MIC Programming Experiences at TACC

- Codes port easily
  - Minutes to days depending mostly on library dependencies
- Performance can require real work
  - While the sw environment continues to evolve
  - Getting codes to run \*at all\* is almost too easy; really need to put in the effort to get what you expect
- Scalability is pretty good
  - Multiple threads per core \*really important\*
  - Getting your code to vectorize \*really important\*



## Adapting and Optimizing Code for MIC

- Hybrid Programming

   MPI + Threads (OpenMP, etc.)
- Optimize for higher thread performance
   Minimize serial sections and synchronization
- Test different execution models
  - Symmetric vs. Offloaded
- Optimize for L1/L2 caches
- Test performance on MIC
- Optimize for specific architecture
- Start production



Today "Any" resource

Stampede MIC 2013+



#### Stampede Programming Five Possible Models

- Host-only
- Offload
- Symmetric
- Reverse Offload
- MIC Native



#### Programming Intel<sup>®</sup> MIC-based Systems MPI+Offload

- MPI ranks on Intel<sup>®</sup> Xeon<sup>®</sup> processors (only)
- All messages into/out of processors
- Offload models used to accelerate MPI ranks
- Intel® Cilk<sup>™</sup> Plus, OpenMP\*, Intel® Threading Building Blocks, Pthreads\* within Intel® MIC
- Homogenous network of hybrid nodes:







#### **Offload Code Examples**

#### <u>C/C++ Offload Pragma</u>

#pragma offload target (mic)

```
#pragma omp parallel for reduction(+:pi)
for (i=0; i<count; i++) {
    float t = (float)((i+0.5)/count);
    pi += 4.0/(1.0+t*t);
}
pi /= count;</pre>
```

#### Function Offload Example

#### Fortran Offload Directive

!dir\$ omp offload target(mic)

!\$omp parallel do

do i=1,10

A(i) = B(i) \* C(i)

enddo

#### • C/C++ Language Extension

class \_Cilk\_Shared common {
 int data1;
 char \*data2;
 class common \*next;
 void process();
};
\_Cilk\_Shared class common obj1, obj2;
\_Cilk\_spawn \_Offload obj1.process();

\_Cilk\_spawn

d obj1.process(); obj2.process();



#### Programming Intel® MIC-based Systems Many-core Hosted

- MPI ranks on Intel® MIC (only)
- All messages into/out of Intel® MIC
- Intel® Cilk<sup>™</sup> Plus, OpenMP\*, Intel® Threading Building Blocks, Pthreads used directly within MPI processes
- Programmed as homogenous network of many-core CPUs:







#### Programming Intel® MIC-based Systems Symmetric

- MPI ranks on Intel® MIC and Intel® Xeon® processors
- Messages to/from any core
- Intel® Cilk<sup>™</sup> Plus, OpenMP\*, Intel® Threading Building Blocks, Pthreads\* used directly within MPI processes
- Programmed as heterogeneous network of homogeneous nodes:







## Programming Models Ready to use on day one

- TBB's will be available to C++ programmers
- MKL will be available
  - Automatic offloading by compiler for some MKL features
  - (probably most transparent mode)
- Cilk Plus
  - Useful for task-parallel programing (add-on to OpenMP)
  - May become available for Fortran users as well
- OpenMP
  - TACC expects that OpenMP will be the most interesting programming model for our HPC users



## MIC Programming with OpenMP

- MIC specific pragma precedes OpenMP pragma
  - Fortran: !dir\$ omp offload target(mic) <...>
  - C: #pragma offload target(mic) <...>
- All data transfer is handled by the compiler (optional keywords provide user control)
- Options for:
  - Automatic data management
  - Manual data management
  - I/O from within offloaded region
    - Data can "stream" through the MIC; no need to leave MIC to fetch new data
    - Also very helpful when debugging (print statements)
  - Offloading a subroutine and using MKL



#### The Stampede is Coming

- Stampede has a \*lot\* of new technologies, and as such has a certain element of risk.
- However, as of now, we expect the early user/science period to begin in December.
- Full production by January 7<sup>th</sup> (Base system at least).
- You might hear some more about this machine at SC12 in November ☺.
- Thank to NSF, Intel, Dell



#### Roadmap What comes next? How to get prepared?

- Many HPC applications are pure-MPI codes
- Start thinking about upgrading to a hybrid scheme
- Adding OpenMP is a larger effort than adding MIC directives
- Special MIC/OpenMP considerations
  - Many more threads will be needed: cores (Production KNC) → 50+/100+/200+ threads
  - Good OpenMP scaling will be (much) more important
  - Vectorize, vectorize, vectorize
  - There is no unified last-level cache (LLC): Cache shared among cores, several MB on CPUs



50 +



## Can I use Stampede?

- Yes!
- We expect to have 5,000-10,000 academic users next year.
- See Jeff's talk about XSEDE later today.
- Every academic researcher can apply for a startup account, and eventually larger.



# At this point, there is a very slight chance I've left time for questions.

(Certainly, I've created enough confusion for them)

Thanks for listening! dan@tacc.utexas.edu



THE UNIVERSITY OF TEXAS AT AUSTIN TEXAS ADVANCED COMPUTING CENTER