

Representation of the Sustained Petaflop Blue Waters System

Thom Dunning, Bill Kramer, Marc Snir, Bill Gropp and Wen-mei Hwu National Center for Supercomputing Applications University of Illinois at Urbana-Champaign

National Center for Supercomputing Applications

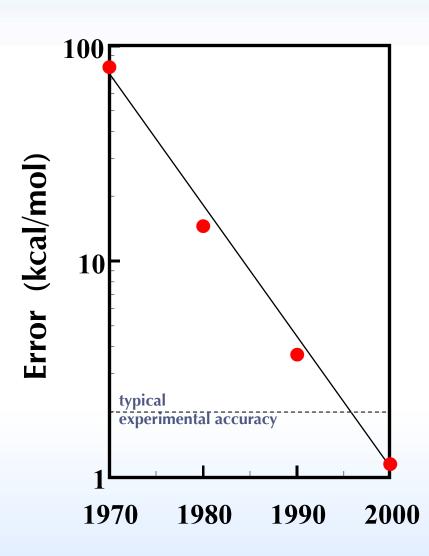
Established in 1986 as a partnership between the National Science Foundation, the University of Illinois at Urbana-Champaign, and the State of Illinois

- NCSA
 - R&D unit of the University of Illinois at Urbana-Champaign
 - One of original five NSF-funded supercomputing centers
 - **Mission**: Provide state-of-the-art computing capabilities (both hardware and software) to nation's scientists and engineers

• The Numbers

- Approximately 250 staff (200 technical/professional staff)
- Two major facilities (NCSA Building, NPCF)
- Deploying NSF's most powerful computing system: Blue Waters
- Managing NSF's national cyberinfrastructure: XSEDE

Need for Increased Computing Power

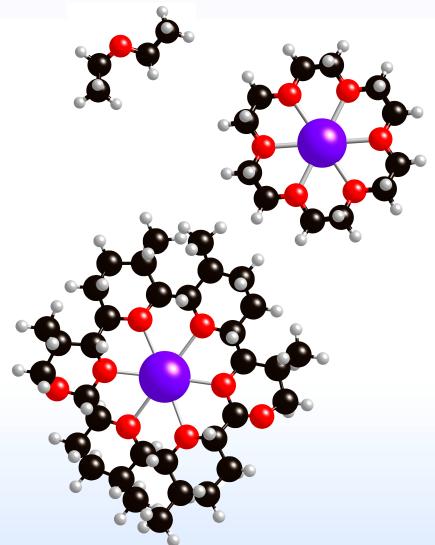

Increased computing power enables scientists and engineers to extend the accuracy and scope of their computational simulations (with examples from molecular science)

Increasing Accuracy of Simulations

- Bond energies critical for describing many chemical phenomena, e.g., combustion
- Difficult to measure in the laboratory
- Accuracy of calculated bond energies increased dramatically from 1970-2000
- Due to advances in
 - Theoretical methodology
 - Computational techniques
 - Computing technology

Increasing the Scope of Simulations

- In 1990
 - Model separations agents,
 e.g., ethyl ether


– In 2000

 Prototype separation agents, *e.g.*, 18-crown-6

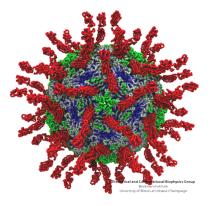
• In 2005

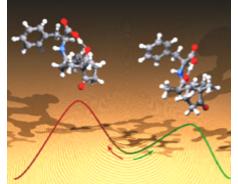
 Real-world separations agents, *e.g.*, Still's crown ether

Figures courtesy of B. Hay, Oak Ridge National Laboratory

Petascale Applications

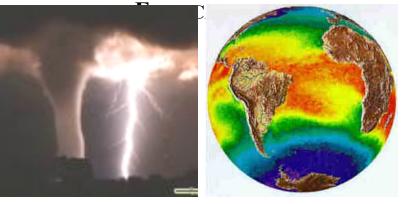
There are a broad range of applications that need petascale computing capabilities—from astrophysics and biophysics to climate and earthquake modeling; materials, molecular and nanoscale science; and weather prediction

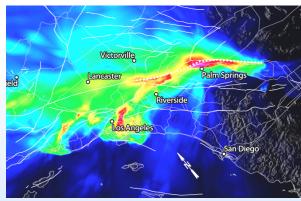




Advancing Science and Engineering

Blue Waters will enable breakthroughs in a broad range of science and engineering disciplines:


MOLECULAR SCIENCE


EARTH

WEATHER & CLIMATE



ASTRONOMY

HEALTH

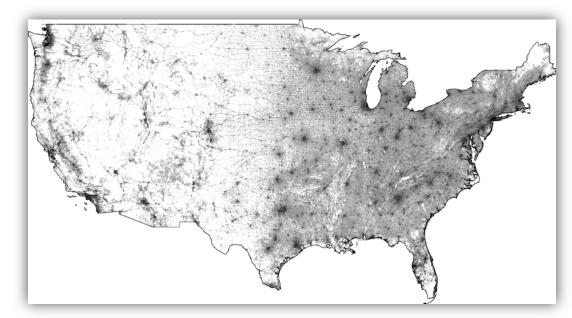
2-3 October 2012 • OK Supercomputing Symposium 2012 • Norman, OK

Modeling Earthquakes on San Andreas Fault

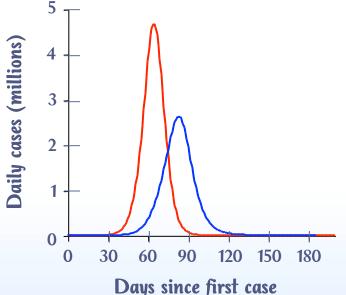
Video courtesy of T. Jordan, Southern California Earthquake Center

Simulating the Birth of Tornados

Visualization of an F3 Tornado within a Supercell Thunderstorm Simulation


Computation and Visualizations

National Center for Supercomputing Applications University of Illinois at Urbana–Champaign



Modeling Spread of Infectious Diseases

No Intervention

Intervention: next-day treatment of 90% of cases with anti-virals, school closures, 50% household quarantine.

Blue Waters

Blue Waters is designed to handle the most compute-, memory- and data-intensive simulations and analyses in science and engineering

Input from the Research Community

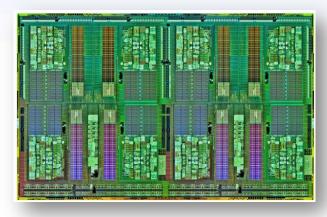
- Maximum Core Performance
 - ... to minimize number of cores needed for a given performance level, lessen impact of sections of code with limited scalability

• Low Latency, High Bandwidth Interconnect

... to enable science and engineering applications to scale to tens to hundreds of thousands of cores

• Large, Fast Memories

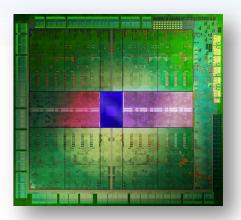
... to solve the most memory-intensive problems


• Large, Fast I/O System and Data Archive

... to solve the most data-intensive problems

• Innovative Computing Technologies

... to explore the use of innovative computing dechnologies in science and engineering applications


Heart of Blue Waters: Two New Chips

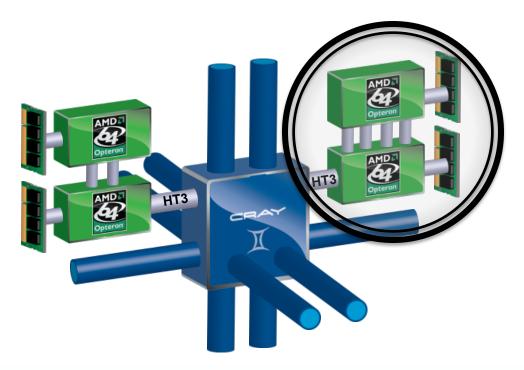
AMD Interlagos 156.8 GF peak performance

Features:

2.3-2.6 GHz 8 core modules, 16 threads On-chip Caches L1 (I:8x64KB; D:16x16KB) L2 (8x2MB) Memory Subsystem Four memory channels 51.2 GB/s bandwidth

NVIDIA Kepler >1,000 GF peak performance

Features:


15 Streaming multiprocessors (SMX) SMX: 192 sp CUDA cores, 64 dp units, 32 special function units L1 caches/shared mem (64KB, 48KB) L2 cache (1536KB)
Memory subsystem Six memory channels 180 GB/s bandwidth

Cray XE6 Nodes

Blue Waters contains 22,640 Cray XE6 compute nodes.

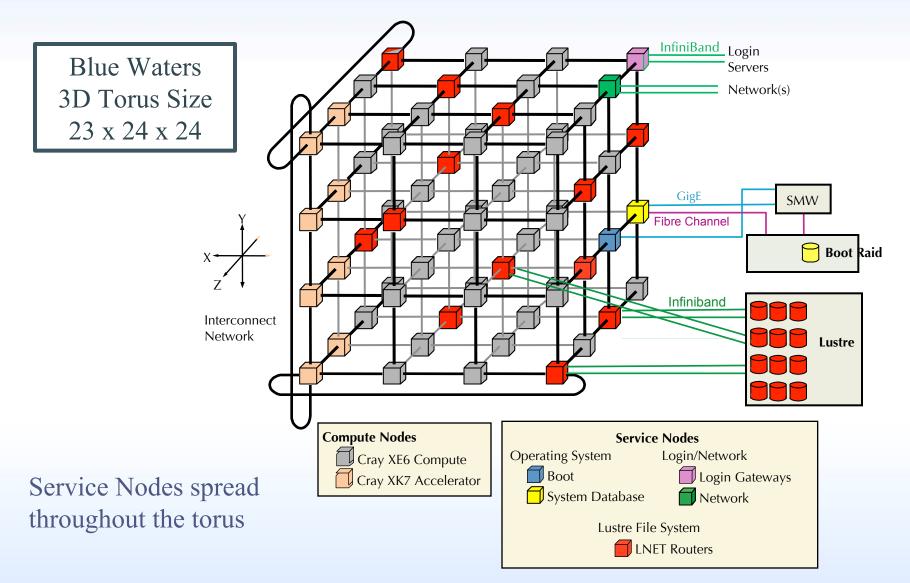
Dual-socket Node

- Two AMD Interlagos chips
 - 16 core modules, 64 threads
 - 313.6 GFs peak performance
 - 64 GBs memory
 - 102 GB/sec memory bandwidth
- Gemini Interconnect
 - Router chip & network interface
 - Injection Bandwidth (peak)
 - 9.6 GB/sec per direction

Cray XK7 Nodes

Dual-socket Node

- One AMD Interlagos chip
 - Same as XE6 nodes
- One NVIDIA Kepler chip
 - >1 TF peak performance
 - 6 GBs GDDR5 memory
 - 180 GB/sec bandwidth
- Gemini Interconnect
 - Same as XE6 nodes


Blue Waters contains 3,072 Cray XK7 compute nodes.

Gemini Interconnect Network

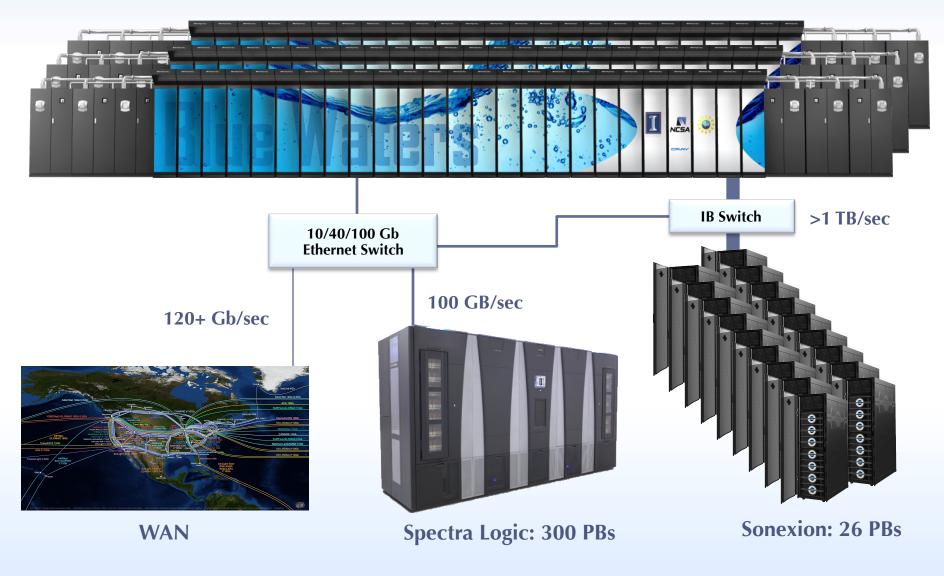
Blue Waters Disk Subsystem

- Cray Sonexion 1600
 - Lustre file system
 - Reliable, Modular, Scalable
 - Fully integrated
 - Servers
 - Disk drives (Scalable Storage Units)
 - QDR Infiniband switches
 - Hierarchical monitoring
- Blue Waters Disk Subsystem
 - Capacity: 34.6 PBs (*raw*), 25.9 PBs (*usable*)
 - Bandwidth: >1 TB/s (*sustained*)

Blue Waters Archive System

- Spectra Logic T-Finity
 - Dual-arm robotic tape libraries
 - High availability and reliability, with built-in redundancy

Blue Waters Archive


- Capacity: 380 PBs (*raw*), 300 PBs (*usable*)
- Bandwidth: 100 GB/sec (*sustained*)

• RAIT for increased reliability

Blue Waters Computing System

Blue Waters Software Environment

Blue Waters & Scomputing Systems

		NCSA	RIKEN
System Attribute	Blue	Waters	(#2)
Vendor(s)	•	D/NVIDIA	Fujitsu
Processors		agos/Kepler	SPARC64 VIIIfx
Total Peak Performance (PF)	J/GPU)	11.6	11.3
Total Peak Performance (CPU		7.6/4.0	11.3/0.0
Number of CPU Chips (8 cores/	chip)	48,352	88,128
Number of GPU Chips		3,072	0
Amount of CPU Memory (TB)		1,518	1,410
Interconnect		3-D Torus	6-D Torus
Amount of On-line Disk Storage		26	11/30
Sustained Disk Transfer (TB/sec		>1	?
Amount of Archival Storage	c)	300	?
Sustained Tape Transfer (GB/sec		100	?

Blue Waters & Titan Computing Systems

		NCSA	ORNL
System Attribute	Blue	e Waters	Titan
Vendor(s)	•	/ID/NVIDIA	Cray/AMD/NVIDIA
Processors		lagos/Kepler	Interlagos/Kepler
Total Peak Performance (PF)	J/GPU)	11.6	~20
Total Peak Performance (CPU		7.6/4.0	3/17
Number of CPU Chips (8 cores/	chip)	48,352	18,688
Number of GPU Chips		3,072	14,592
Amount of CPU Memory (TB)		1,518	688
Interconnect		3-D Torus	3-D Torus
Amount of On-line Disk Storage		26	20 (?)
Sustained Disk Transfer (TB/sec		>1	0.4–0.7
Amount of Archival Storage	c)	300	15-30
Sustained Tape Transfer (GB/see		100	7

2-3 October 2012 • OK Supercomputing Symposium 2012 • Norman, OK

Petascale Computing Facility

Partners

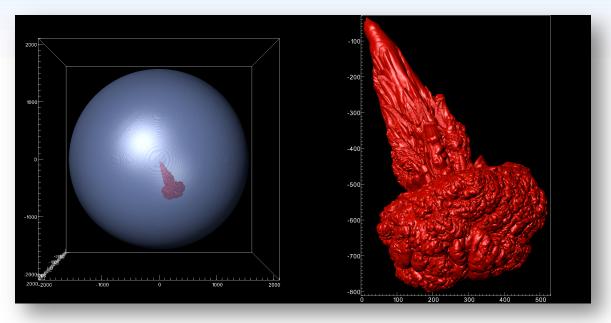
EYP MCF/ Gensler IBM Yahoo!

• Modern Data Center

- 90,000+ ft² total
- 30,000 ft² raised floor
 20,000 ft² machine room gallery
- Energy Efficiency
 - LEED certified Gold
 - Power Utilization Efficiency = 1.1–1.2

Blue Waters Early Science System

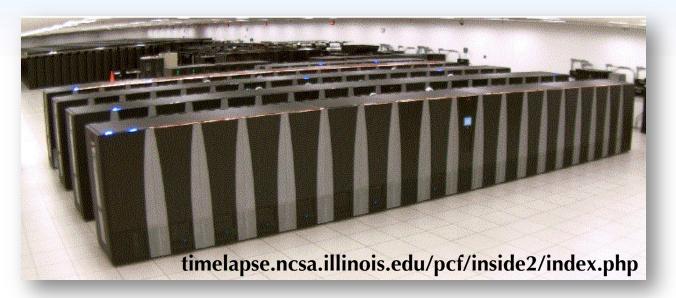
BW-ESS Configuration


- 1.4+ PFs (peak)
 - 48 cabinets (4,512 XE6 compute nodes)
 - 96 service nodes
- 2 PBs Sonexion Lustre storage appliance

- BW-ESS Projects
 - **Biomolecular Physics**—K. Schulten, University of Illinois at Urbana-Champaign
 - **Cosmology**—B. O'Shea, Michigan State University
 - Climate Change—D. Wuebbles, University of Illinois at Urbana-Champaign
 - Lattice QCD—R. Sugar, University of California, Santa Barbara
 - **Plasma Physics**—H. Karimabadi, University of California, San Diego
 - **Supernovae**—S. Woosley, University of California Observatories
 - Severe Weather—R. Wilhelmson, University of Illinois
 - **High Resolution/Fidelity Climate**—C. Stan, Center for Ocean-Land-Atmospheric Studies (COLA)
 - **Complex Turbulence**—P. K. Yeung, Georgia Tech
 - **Turbulent Stellar Hydrodynamics**—P. Woodward, University of Minnesota

Modeling Type 1a Supernovae

• PI: S. Woosley, University of California Observatories


• Details

- Off-center ignition of Type 1a Supernovae, 1 second duration
- Codes: MAESTRO and CASTRO
- Used 68 million core hours
- Produced 45 TBs of data

Current Build Status of Blue Waters

- All compute cabinets, XE6/XK7, installed and being tested
- All disks (36 racks) delivered and upgraded to 1600 controllers and being tested
- Near-line storage: one Spectra Logic library (with 4000 slots for 4TB media) installed and being used for HPSS and Cray software testing

Sustained Petascale Performance

- Linpack & Top500
 - Limited means of determining true performance of computers
- Sustained Petascale Performance (SPP) Metric
 - Similar to NERSC Sustained System Performance metric
 - Time-to-solution metric for end-to-end problem (pre/post processing, processing, I/O)
 - Coverage of representative science areas, algorithmic methods and core counts

• Details

- Original NSF Benchmarks
 - Full Size: QCD (MILC), Turbulence (PNSDNS), Molecular Dynamics (NAMD)
 - Modest Size: MILC, Paratec, WRF
- Science Teams Applications
 - NAMD: molecular dynamics; MILC, Chroma: Lattice Quantum Chromodynamics; VPIC, SPECFEM3D: Geophysical Science; WRF: Atmospheric Science; PPM: Astrophysics; NWCHEM, GAMESS: Computational Chemistry; QMCPACK: Materials Science
 - At least three Science Team benchmarks must be run at full scale

Illinois' Blue Waters Team

Dunning

Kramer

Hwu

Beldica Proj. Mgmt.

Bode Software

Butler Storage

Glotzer Virtual School

Cappello

Reliability

Kale **Apps Simulations**

Lathrop Education

Durbin Facilities

Giles Industry

Olson Proj. Mgmt.

Panoff **UG** Education

Semeraro Visualization

Enos **Ops** Transition

