On Bringing HPC Home For Growth

Three Talks in One:

Message from the Sponsor
Who are the Missing Middle
Making the Missing Middle not Missing

Stephen R. Wheat, Ph.D.
Sr. Director, HPC Worldwide Business Operations
Datacenter & Connected Systems Group (DCSG)
Intel Corporation
Legal Disclaimer

- Intel may make changes to specifications and product descriptions at any time, without notice.
- Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the performance of Intel products, visit Intel Performance Benchmark Limitsations
- Intel does not control or audit the design or implementation of third party benchmarks or Web sites referenced in this document. Intel encourages all of its customers to visit the referenced Web sites or others where similar performance benchmarks are reported and confirm whether the referenced benchmarks are accurate and reflect performance of systems available for purchase.
- Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. See www.intel.com/products/processor_number for details.
- Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request.
- Intel Virtualization Technology requires a computer system with a processor, chipset, BIOS, virtual machine monitor (VMM) and applications enabled for virtualization technology. Functionality, performance or other virtualization technology benefits will vary depending on hardware and software configurations. Virtualization technology-enabled BIOS and VMM applications are currently in development.
- 64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and applications enabled for Intel® 64 architecture. Performance will vary depending on your hardware and software configurations. Consult with your system vendor for more information.
- Intel, Intel Xeon, Intel Core microarchitecture, and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
- Copyright© 2011 Intel Corporation
Process Technology Leadership

2003
90 nm
Invented SiGe Strained Silicon

2005
65 nm
2nd Gen. SiGe Strained Silicon

2007
45 nm
Invented Gate-Last High-k Metal Gate

2009
32 nm
2nd Gen. Gate-Last High-k Metal Gate

2011
22 nm
First to Implement Tri-Gate

22nm
A Revolutionary Leap in Process Technology

- 37% Performance Gain at Low Voltage*
- >50% Active Power Reduction at Constant Performance*

STRAINED SILICON

HIGH-k METAL GATE

TRI-GATE

The foundation for all computing

Source: Intel
*Compared to Intel 32nm Technology
New Intel technology generation every 2 years
Intel R&D technologies drive this pace well into the next decade
We’ve Helped Transform Industries

Annual Server Processor Shipments

HPC in 2010

>500 TFLOPS

~$55K/GFLOP

<$100/GFlop

Performance

$/GFLOP
The goals of Intel® architecture are to deliver:

- Industry leading **performance/watt** for serial & highly parallel workloads.
- **Optimized Efficiency*** for a Heterogeneous Solution in combination with Intel® Xeon® processors
- Complete set of **software tools** to deploy scalable solutions efficiently
Highly Parallel Performance
Intel® Many Integrated Core (Intel® MIC) Architecture

Delivered Performance
Launching on 22nm with >50 cores to provide outstanding performance for HPC users

Performance Density
The compute density associated with specialty accelerators for parallel workloads

Programmability
The many benefits of broad Intel CPU programming models, techniques, and familiar x86 developer tools

A Step Forward In Dealing With Efficient Performance & Programmability
Optimization
One Development Environment - Multi-Core to Many Core

Assist
Performance
Code
Confidence
Scaling Programmability

Standard Programming Models Democratizes Usage
...Avoid Costly Detours
End-users Are Excited Too!

Programming models are the key to harness the computational power of massively parallel devices. Obviously, Intel has realized this trend and substantially supports open standards and invests in innovative programming models. LRZ and TUM are using Intel hard- and software for many years and know the tool chain by heart. MIC Execution: Straightforward. First version within a few hours, optimized version took 2 days.

“The CERN openlab team was able to migrate a complex C++ parallel benchmark to the Intel MIC software development platform in just a few days.”

“Moving a code to MIC might involve sitting down and adding a couple lines of directives that takes a few minutes. Moving a code to a GPU is a project“ (4/21/11)

Dan Stanzione, Deputy Director at TACC

“By just utilizing standard programming on both Intel® Xeon processor and Intel® MIC architecture based platforms, the performance met multi-threading scalability expectations and we observed near-theoretical linear performance scaling with the number of threads.”
The Missing Middle

Opportunity: the “Missing Middle”

From ncms.org
Implied Perspectives

High End
> $500K
Volume
< $500K
ELMR
< $250K

Large Institutions

Small Medium Businesses
Reality?

- About two-thirds of ELMR-sized (<$250K) systems are upgrades or add-ons to larger systems\(^1\)
- InterSect360 measures that:
 - Of true ELMR systems, 20-25% go to users who also have larger (high-end) systems.
 - so, only 10-15% of said systems go to ELMR users\(^2\)
- IDC sees something similar, with 70\(^3\) of the <$500K going to the Workgroup, Department, Divisional segments.
 - Needs further visibility/corroboration

2 – Source: InterSect360 Research, custom user study, 2009.
3 – Source: IDC, personal comms, 2010
Key Barriers

• The COC/IDC Reveal\(^1\) report concluded that there are three major system barriers stalling HPC adoption:
 – Lack of Application Software
 – Lack of Sufficient Talent
 – Cost constraints

\(^1\) – Source: CoC/IDC Reveal report, 2008.
Missing Middle Scope

If Mfg is not for you, then ...

<table>
<thead>
<tr>
<th>Vertical</th>
<th>Relative Size to Overall Market Segment %</th>
<th>CAGR (IDC)</th>
<th>MM Affinity Judgment</th>
<th>Judged Latent Demand</th>
<th>Reachability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing</td>
<td>12.4</td>
<td>High</td>
<td>High</td>
<td>4x</td>
<td>High</td>
</tr>
<tr>
<td>Energy</td>
<td>6.2 (just O&G)</td>
<td>Mid*</td>
<td>High</td>
<td>4x***</td>
<td>High</td>
</tr>
<tr>
<td>Life Sciences</td>
<td>13.6</td>
<td>Mid</td>
<td>High</td>
<td>4x***</td>
<td>Mid- disaggregated ecosystem</td>
</tr>
<tr>
<td>Weather</td>
<td>4.4</td>
<td>Low**</td>
<td>High**</td>
<td>4x***</td>
<td>Mid- disaggregated ecosystem</td>
</tr>
<tr>
<td>Gov/Defense</td>
<td>26.2</td>
<td>Mid</td>
<td>Mid</td>
<td>2x***</td>
<td>Mid- conservative entrenched players</td>
</tr>
<tr>
<td>Rest</td>
<td>37.2</td>
<td>Mixed</td>
<td>Mixed</td>
<td>2x***</td>
<td>Mixed</td>
</tr>
</tbody>
</table>

*Just fossil; high for emerging/green
** Emerging micro-weather: high
*** Unmeasured SWAG
Who Are the Missing Middle

http://www.youtube.com/watch?v=JqqSH4mgEYc
Manufacturing Jobs (1000’s of workers)

It’s likely that there is a Missing Middle Community near you.

Established to pursue solutions to the barriers facing the Missing Middle in US Manufacturing
 - “Transforming American Manufacturing for Economic Growth”

Comprised of more than 45 entities, from:
 - Computer OEMs, ISVs, Academia, Manufacturing, National Labs

Early results:
 - America COMPETES Renewal language for IAwG
 - Further analysis: results released via NCMS on 9/30/2010
 - Industry Recognition Initiative launched at IDC HPC User Forum on 9/14/2010

Intersect360
Intel
Ansys
Dell
Nimbis
R-Systems
Tabor Comms
Battelle
PSC
Polymer Ohio
Super Micro
Arista Networks
Microsoft
Univ Chicago
OSC
RMSC
HP
RPI
TACC
Bright Computing
IDC
Cray
ERDC
Appro
NCMS
Caterpillar
Accelrys
CD-Adapco
Platform
Brocade
3DS
NCSA
CUNY
ATK
SGI
Adaptive Computing
MSU
nVidia
RENCI
L&L
ORNL
GWU
PSU
GE
ACE Clearwater
LMCO
MAG
AHPDM Focus Areas

• **Industry analytics**: Nature of the MM and the key barriers

• **Public Policy**: Setting the national agenda for Transforming American Manufacturing

• **Communications**: Engaging with and about the MM
 - www.digitalmanufacturing.org
 - Major industry and government engagement: monthly cadence

• **Solutions**: How to resolve the “missing” element
 - Digital Supply Chain
 - PICs
Current Events

• America COMPETES Renewal Act of 2011
 – IAWG to pursue solutions space for the MM, led by DOC

• Launch of the **Advanced Manufacturing Initiative**
 – http://www.whitehouse.gov/sites/default/files/microsites/ostp/Advanced-manu.pdf
 – Noted among other things:
 – “A strong advanced manufacturing sector is essential to national security.”
 – Proposed a budget of $500M spread across DOC, DOE, and DoD, growing to $1B in four years.

• NSF Launches the Innovation Corps – Oct, 2011
HPC-ISP PILOTS: Case studies to evaluate whether manufacturing SMBs would see real benefits if they could obtain HPC access

Success Stories:
- Successful examples of accelerated innovation, new discoveries, new product development, shortened time to market, cost savings.
- The Pratt & Whitney supply chain pilot will be measured in terms of value achieved/saved through a product value stream analysis.

Technical Approach:
- Demonstrate the business and competitive value of product simulation and analysis with HPC for U.S. manufacturing.
- Motivate usage of this innovation-accelerating technology throughout the DoD supply chain supplier base.
- Identify technologies and partners that can help support an HPC infrastructure for the DoD supply chain base.

Deliverables
- Conduct four 12-month HPC pilot demonstrations with DoD supply chain “desktop-only” companies.
- The Council will deliver 10 HPC user case studies.

Phase 1 Case Studies Found:
- HPC is often perceived as an ultra high-end technology appropriate only for government or academia.
- There is a lack of understanding of the business value (ROI) of simulation and analysis with HPC.
- Access to talent, lack of software, and initial capital cost are all barriers.

New Insights

Limited HPC Adoption in DoD Supply Chain

- The limited industrial user adoption of HPC is eroding the competitiveness of critical DoD suppliers and the country’s industrial and military capability.

End-of-Phase Goal

Quantitative Impact

Drive HPC Usage Throughout the DoD Supply Chain

Strengthen the DoD’s Supply Chain
- Provide real world industry examples of the value of simulation and analysis with HPC that will stimulate usage through DoD’s supply chain for greater supply chain reliability, product innovation, and cost savings.

ISP=Innovation Service Portal
Pilots intersecting different entry points

- Ace Clearwater Enterprises – Virtual Metalform Prototyping
 - CAD
 - Desktop Single Physics
 - HPC Single Physics

- Alpha STAR – Chassis Weight Reduction for HMMWV
 - Single Parts
 - Multiple Parts
 - Complete Chassis Modeling

- IAP Research – Electromagnetic Interference Signature Analysis
 - Simple Circuits
 - Complex Circuit Analysis
 - Complete Power Subsystem

- Woodward – Fuel Nozzle Flight Envelope Analysis
 - Single Physics Modeling
 - Single-Physics Flight Envelope
 - Multi-Physics Subsystem Modeling

Modeling and Simulation Complexity (Computation, Communication, Memory)
ISI worked with an SMB engineering firm to leverage HPC

Fuel injection component supplier

- 200 employees
- 3 computational engineers

Jet engine supplier

HPC resource and expertise provider

Military aircraft
Baseline goal: Simulate nozzle behavior at many more points within the flight envelope.

STATUS QUO

- Aircraft Mach Number (Mn)
- Pressure Altitude (Palt = ft)

GOAL

Eliminate the “desktop-only” bottleneck.
Simulation problem: transient thermal + static structural analysis

#1. Do thermal analysis to compute temperature using time-varying heat convection loads as inputs

#2. Do structural analysis at different time points, using thermal loads calculated from thermal analysis

Model size increase: 4MDOF -> 6MDOF

of points increase: 4 -> 81

~480 MDOF total: 120X increase
Stretch goal: Harmonic analysis, would never attempt on desktop with large model
Harmonic analysis ran only on HPC

(Ran for >4 weeks without completing)
Background

• Power switching device for next generation US Navy ships
• New technology provides miniaturization
 – Increased power density
 – Increased conductive EMI
• Traditional EMI solution is ~30% over target cost and weight
• Current solution uses experience and iterative testing/evaluation
Future Business Impact

- NGIPS roadmap indicates 60MW required for future “all electric” ship
- Power processed by solid state power switching devices
- For 60MW power output:
 - Development saving: ~$105M per platform
 - Development time saving: Decades
 - Procurement saving: ~$34M-3M per ship
 - Associated structure saving: ~$3.5M-600K per ship

Total cost saving: >$100M per platform
Total cost saving: >$30M per ship
HPC-ISP-PILOTS: Summary of results

First-Ever Studies of Desktop Technical Computing Users:
• HPC is often perceived as an ultra high-end technology appropriate only for government or academia; limits supply-chain adoption of virtual prototyping.
• There is a lack of understanding of the business value (ROI) of simulation and analysis with HPC; few public successes among small/medium suppliers.
• Access to talent, lack of software, and capital costs are all barriers; suggests market for on-demand HPC and software for entry-level & periodic users.

DoD Supply Chain Pilots

Result: 50% reduction in development time for drop-hammer and hydro forming tooling (using FEA virtual prototyping).

Result: HPC parametric search found 70% weight reduction with 230% increase in load for hybrid composite control arm design.

Result: HPC analysis with Xyce ~30X reduction in probability of defect at qualification, with direct cost savings estimate $490K and ~12 weeks design time per PNCC power subsystem.

Result: Value stream mapping of design cycle show savings of 43% per design iteration and 76% across all iterations. The 120X increase in processing on HPC (4MDOF vs. 480MDOF) provided up to a 5:1 reduction in design failure escapes.

Each of the pilots had a significant ROI impact unto themselves
But what about scaling to $O(100,000)$ SMMs
Blue Collar Computing Clients

Two classes of industrial clients:

• Experienced HPC users who need access to larger systems for specific tasks (“peaking” facility)
 – E.g., Goodyear, P&G, Ohio auto maker

• Novice - and some experienced – HPC users where we develop industry-specific portals in collaboration with industry-focused organizations
 – EWI, PolymerOhio
Partnership with Edison Welding Institute
EWI-OSC WeldPredictor

• Secure website
• Easy access to advanced weld modeling tools
• Arc welding procedures
• Single and multi-pass welding simulation
• Output
 • Temperature
 • Hardness
 • Residual stress
 • Distortion

https://eweldpredictor.ewi.org/
WeldPredictor Portal Impact

• WeldPredictor allows industrial companies to access **advanced weld modeling technology in the cloud.**

• WeldPredictor is free to EWI members

• WeldPredictor changes industrial engineers’ thinking from physical prototypes to virtual prototypes and to apply modeling in problem solving.

• About 550 engineers worldwide have used EWI WeldPredictor

EWI WeldPredictor Portal Impact

<table>
<thead>
<tr>
<th></th>
<th>Previously</th>
<th>WeldPredictor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expertise Needed</td>
<td>Ph.D.</td>
<td>B.S.</td>
</tr>
<tr>
<td>Analysis Setup</td>
<td>12 hours</td>
<td>1 hour</td>
</tr>
<tr>
<td>Project duration</td>
<td>6 months</td>
<td>1 month</td>
</tr>
</tbody>
</table>
Weld Geometry Selection

E-Weld Predictor: Enhanced Bead Model

E-Weld Predictor

Start Dimensions Geometry Weld Material Procedure Submit Save

J-groove

a = 0.100 inch
b = 0.200 inch
r = 0.125 inch
\(\gamma \) = 30 degree

Back Bar
h = 0.500 inch
y = 2.000 inch
Root Gap
g = 0.040 inch
The status bars monitor the simulation progress. There may be an initial delay while the HPC systems complete their current tasks. If a progress bar stops with a red background, an error was detected: please report errors to EWI.

The time remaining was estimated from a typical job, actual time required may vary significantly depending on the input parameters.

Please wait for the job to complete, then a link will be provided to allow the output report to be downloaded.
E-Weld Predictor Example Output

Section 4 - Microstructure Analysis

Distribution of peak temperatures (°C)

Distribution of ferrite

Distribution of reheating temperatures (°C)

Distribution of von mises stresses (MPa)
Polymer Portal being developed in collaboration with PolymerOhio

- The Polymer Portal will offer:
 - Computational resources and software for modeling/simulation
 - Expertise in polymer science and engineering
 - Training
 - Databases with relevant material properties
 - Advanced instrumentation
 - Business intelligence and strategy

- Offering Moldex3D and Ximex for industry and education training

Web front end
- Pylons
- JSON
- Tomcat
- mySQL
- JUnit
- Apache
- Ant
- Python and Java

Software components supporting the OSC Portals
MEP Advanced Modeling and Simulation

- Funded by NIST MEP for PolymerOhio and OSC
- Goals:
 - Raise awareness of MS&A in Polymer industry and MEP system
 - Make cost-effective computational methods available to SMEs
- ~$700K for 1st year

Case studies provide MEP model to:
- Illustrate MS&A value to production and profitability
- Assist companies in application selection
- Develop training for high value-added MS&A apps
- Engage companies in employee training for MS&A
- Provide broad access to low-cost, productivity-enhancing apps
Project Chicago – A Proximity Scaling Model to reach 10,000s of companies

Proximity attributes
- High concentration of manufacturers in small geographic radius
- Local HS, CC, and Univ infrastructure
- Alignment with local EDA/SLED environment

Execution Model
- Highly visible community engagement
- Develop trainers and evangelist network, apply them to
- High-touch interaction with sample companies, using
- Social media enabled following (“reality show”) for the community, and
- Delivering broad, low-touch content training and hands-on opportunities for the large proximity target

Delivery team
- ISVs
- Infrastructure providers (local and MNC)
- Intel
- Local manufacturers (as EBOA)
- Local academic stakeholders

Metrics
- 300-500 companies in the immediate proximity
- Class-room environment supporting 200 students/week
- Replicable

Summing up the US MFG MM

• Nearly 280K SMMs in the US
 – NAM

• Nearly half would use MS&A, if they could
 – IDC REVEAL

• Represents nearly the equivalence of the WW HPC Market Segment as we now know it
Definition of Success:
When the “middle” isn’t “missing”
National Digital Manufacturing Strategy Vision

Existing R&D Expertise
- Universities
- National Labs
- DoE Labs
- HPC Centers (i.e. OSC, NCSA, etc.)

Proposed National Manufacturing Innovation Network
- Digital Manufacturing R&D Centers (academic focus)
- Industry Predictive Innovation Collaboration Centers (non-profit e.g. NCMS)

Trade Adjustment Assistance Centers (TAAC)
- Approx. 14 National Centers
- Expand mission beyond trade impacted companies

MEP’s (NIST)
- 60+ National Centers
- New focus on Digital Manufacturing

Focused Digital Manufacturing Training
- Community colleges, NAM, Manufacturing web portals