
Parallel Programming

& Cluster Computing

Multicore Madness
Henry Neeman, University of Oklahoma

Charlie Peck, Earlham College
Tuesday October 11 2011

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 2

Outline

 The March of Progress

 Multicore/Many-core Basics

 Software Strategies for Multicore/Many-core

 A Concrete Example: Weather Forecasting

The March of Progress

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 4

10 racks @ 1000 lbs per rack

270 Pentium4 Xeon CPUs,

2.0 GHz, 512 KB L2 cache

270 GB RAM, 400 MHz FSB

8 TB disk

Myrinet2000 Interconnect

100 Mbps Ethernet Interconnect

OS: Red Hat Linux
Peak speed: 1.08 TFLOPs
 (1.08 trillion calculations per second)
One of the first Pentium4 clusters!

OU’s TeraFLOP Cluster, 2002

boomer.oscer.ou.edu

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 5

TeraFLOP, Prototype 2006

http://news.com.com/2300-1006_3-6119652.html

4 years from room to chip!

http://news.com.com/2300-1006_3-6119652.html
http://news.com.com/2300-1006_3-6119652.html
http://news.com.com/2300-1006_3-6119652.html
http://news.com.com/2300-1006_3-6119652.html
http://news.com.com/2300-1006_3-6119652.html

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 6

Moore’s Law

In 1965, Gordon Moore was an engineer at Fairchild

Semiconductor.

He noticed that the number of transistors that could be

squeezed onto a chip was doubling about every 18 months.

It turns out that computer speed is roughly proportional to the

number of transistors per unit area.

Moore wrote a paper about this concept, which became known

as “Moore’s Law.”

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 7

Moore’s Law in Practice

Year

lo
g
(S

p
ee

d
)

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 8

Moore’s Law in Practice

Year

lo
g
(S

p
ee

d
)

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 9

Moore’s Law in Practice

Year

lo
g
(S

p
ee

d
)

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 10

Moore’s Law in Practice

Year

lo
g
(S

p
ee

d
)

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 11

Moore’s Law in Practice

Year

lo
g
(S

p
ee

d
)

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 12

Fastest Supercomputer vs. Moore

1

10

100

1000

10000

100000

1000000

10000000

1992 1997 2002 2007

S
p

ee
d

 i
n

 G
F

L
O

P
s

Year

Fastest Supercomputer in the World

Fastest

Moore

GFLOPs:

billions of
calculations per

second

The Tyranny of

the Storage Hierarchy

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 14

The Storage Hierarchy

 Registers
 Cache memory
 Main memory (RAM)
 Hard disk
 Removable media (CD, DVD etc)
 Internet

Fast, expensive, few

Slow, cheap, a lot

[5]

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 15

RAM is Slow

CPU 307 GB/sec[6]

4.4 GB/sec[7] (1.4%)

Bottleneck

The speed of data transfer

between Main Memory and the

CPU is much slower than the

speed of calculating, so the CPU

spends most of its time waiting

for data to come in or go out.

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 16

Why Have Cache?

CPU
Cache is much closer to the speed

of the CPU, so the CPU doesn’t

have to wait nearly as long for

stuff that’s already in cache:

it can do more

operations per second! 4.4 GB/sec[7] (1%)

27 GB/sec (9%)[7]

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 17

A Laptop

 Intel Core2 Duo SU9600

1.6 GHz w/3 MB L2 Cache

 4 GB 1066 MHz DDR3 SDRAM

 256 GB SSD Hard Drive

 DVD+RW/CD-RW Drive (8x)

 1 Gbps Ethernet Adapter

Dell Latitude Z600[4]

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 18

Storage Speed, Size, Cost

Laptop

Registers

(Intel

Core2 Duo

1.6 GHz)

Cache

Memory

(L2)

Main

Memory

(1066MHz

DDR3

SDRAM)

Hard

Drive

(SSD)

Ethernet

(1000

Mbps)

DVD+R

(16x)

Phone

Modem

(56 Kbps)

Speed

(MB/sec)

[peak]

314,573[6]

(12,800

MFLOP/s*)

27,276 [7] 4500 [7] 250
[9]

125

22
[10]

0.007

Size

(MB)

464 bytes**
[11]

3 4096 256,000 unlimited unlimited

unlimited

Cost

($/MB)

–

$285 [13] $0.03
[12]

$0.002
[12]

charged

per month

(typically)

$0.00005
[12]

charged

per month

(typically)

* MFLOP/s: millions of floating point operations per second

** 16 64-bit general purpose registers, 8 80-bit floating point registers,

 16 128-bit floating point vector registers

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 19

Storage Use Strategies

 Register reuse: Do a lot of work on the same data before
working on new data.

 Cache reuse: The program is much more efficient if all of
the data and instructions fit in cache; if not, try to use
what’s in cache a lot before using anything that isn’t in
cache.

 Data locality: Try to access data that are near each other
in memory before data that are far.

 I/O efficiency: Do a bunch of I/O all at once rather than a
little bit at a time; don’t mix calculations and I/O.

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 20

A Concrete Example

 Consider a cluster with Harpertown CPUs:
quad core, 2.0 GHz, 1333 MHz Front Side Bus.

 The theoretical peak CPU speed is 32 GFLOPs (double

precision) per CPU chip, and in practice the benchmark per

core as 87% of that (93% for a single core). For a dual chip

node, the peak is 64 GFLOPs.
 Each double precision calculation is 2 8-byte operands and one

8-byte result, so 24 bytes get moved between RAM and CPU.
 So, in theory each node could transfer up to 1536 GB/sec.
 The theoretical peak RAM bandwidth is 21 GB/sec (but in

practice benchmarks have shown 3.4 GB/sec).

 So, even at theoretical peak, any code that does less than 73
calculations per byte transferred between RAM and cache has
speed limited by RAM bandwidth.

Good Cache Reuse

Example

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 22

A Sample Application

Matrix-Matrix Multiply

Let A, B and C be matrices of sizes
nr  nc, nr  nk and nk  nc, respectively:

























ncnrnrnrnr

nc

nc

nc

aaaa

aaaa

aaaa

aaaa

,3,2,1,

,33,32,31,3

,23,22,21,2

,13,12,11,1











A

























nknrnrnrnr

nk

nk

nk

bbbb

bbbb

bbbb

bbbb

,3,2,1,

,33,32,31,3

,23,22,21,2

,13,12,11,1











B

























ncnknknknk

nc

nc

nc

cccc

cccc

cccc

cccc

,3,2,1,

,33,32,31,3

,23,22,21,2

,13,12,11,1











C





nk

k

cnknkrcrcrcrckkrcr cbcbcbcbcba
1

,,,33,,22,,11,,,, 

The definition of A = B • C is

for r  {1, nr}, c  {1, nc}.

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 23

Matrix Multiply: Naïve Version

SUBROUTINE matrix_matrix_mult_naive (dst, src1, src2, &

 & nr, nc, nq)

 IMPLICIT NONE

 INTEGER,INTENT(IN) :: nr, nc, nq

 REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst

 REAL,DIMENSION(nr,nq),INTENT(IN) :: src1

 REAL,DIMENSION(nq,nc),INTENT(IN) :: src2

 INTEGER :: r, c, q

 DO c = 1, nc

 DO r = 1, nr

 dst(r,c) = 0.0

 DO q = 1, nq

 dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)

 END DO

 END DO

 END DO

END SUBROUTINE matrix_matrix_mult_naive

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 24

Performance of Matrix Multiply

Matrix-Matrix Multiply

0

100

200

300

400

500

600

700

800

0 10000000 20000000 30000000 40000000 50000000 60000000

Total Problem Size in bytes (nr*nc+nr*nq+nq*nc)

C
P

U
 s

ec

Init

Better

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 25

Tiling

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 26

Tiling

 Tile: A small rectangular subdomain of a problem domain.

Sometimes called a block or a chunk.

 Tiling: Breaking the domain into tiles.

 Tiling strategy: Operate on each tile to completion, then

move to the next tile.

 Tile size can be set at runtime, according to what’s best for

the machine that you’re running on.

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 27

Tiling Code

SUBROUTINE matrix_matrix_mult_by_tiling (dst, src1, src2, nr, nc, nq, &

 & rtilesize, ctilesize, qtilesize)

 IMPLICIT NONE

 INTEGER,INTENT(IN) :: nr, nc, nq

 REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst

 REAL,DIMENSION(nr,nq),INTENT(IN) :: src1

 REAL,DIMENSION(nq,nc),INTENT(IN) :: src2

 INTEGER,INTENT(IN) :: rtilesize, ctilesize, qtilesize

 INTEGER :: rstart, rend, cstart, cend, qstart, qend

 DO cstart = 1, nc, ctilesize

 cend = cstart + ctilesize - 1

 IF (cend > nc) cend = nc

 DO rstart = 1, nr, rtilesize

 rend = rstart + rtilesize - 1

 IF (rend > nr) rend = nr

 DO qstart = 1, nq, qtilesize

 qend = qstart + qtilesize - 1

 IF (qend > nq) qend = nq

 CALL matrix_matrix_mult_tile(dst, src1, src2, nr, nc, nq, &

 & rstart, rend, cstart, cend, qstart, qend)

 END DO

 END DO

 END DO

END SUBROUTINE matrix_matrix_mult_by_tiling

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 28

Multiplying Within a Tile

SUBROUTINE matrix_matrix_mult_tile (dst, src1, src2, nr, nc, nq, &

 & rstart, rend, cstart, cend, qstart, qend)

 IMPLICIT NONE

 INTEGER,INTENT(IN) :: nr, nc, nq

 REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst

 REAL,DIMENSION(nr,nq),INTENT(IN) :: src1

 REAL,DIMENSION(nq,nc),INTENT(IN) :: src2

 INTEGER,INTENT(IN) :: rstart, rend, cstart, cend, qstart, qend

 INTEGER :: r, c, q

 DO c = cstart, cend

 DO r = rstart, rend

 IF (qstart == 1) dst(r,c) = 0.0

 DO q = qstart, qend

 dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)

 END DO

 END DO

 END DO

END SUBROUTINE matrix_matrix_mult_tile

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 29

Reminder: Naïve Version, Again

SUBROUTINE matrix_matrix_mult_naive (dst, src1, src2, &

 & nr, nc, nq)

 IMPLICIT NONE

 INTEGER,INTENT(IN) :: nr, nc, nq

 REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst

 REAL,DIMENSION(nr,nq),INTENT(IN) :: src1

 REAL,DIMENSION(nq,nc),INTENT(IN) :: src2

 INTEGER :: r, c, q

 DO c = 1, nc

 DO r = 1, nr

 dst(r,c) = 0.0

 DO q = 1, nq

 dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)

 END DO

 END DO

 END DO

END SUBROUTINE matrix_matrix_mult_naive

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 30

Performance with Tiling

Matrix-Matrix Mutiply Via Tiling (log-log)

0.1

1

10

100

1000

101001000100001000001000000100000001E+08

Tile Size (bytes)

C
P

U
 s

ec

512x256

512x512

1024x512

1024x1024

2048x1024

Matrix-Matrix Mutiply Via Tiling

0

50

100

150

200

250

10100100010000100000100000010000000100000000

Tile Size (bytes)

Better

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 31

The Advantages of Tiling

 It allows your code to exploit data locality better, to get

much more cache reuse: your code runs faster!

 It’s a relatively modest amount of extra coding (typically a

few wrapper functions and some changes to loop bounds).

 If you don’t need tiling – because of the hardware, the

compiler or the problem size – then you can turn it off by

simply setting the tile size equal to the problem size.

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 32

Why Does Tiling Work Here?

Cache optimization works best when the number of

calculations per byte is large.

For example, with matrix-matrix multiply on an n × n matrix,

there are O(n3) calculations (on the order of n3), but only

O(n2) bytes of data.

So, for large n, there are a huge number of calculations per

byte transferred between RAM and cache.

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 33

Will Tiling Always Work?

Tiling WON’T always work. Why?

Well, tiling works well when:

 the order in which calculations occur doesn’t matter much,

AND

 there are lots and lots of calculations to do for each memory

movement.

If either condition is absent, then tiling won’t help.

Multicore/Many-core

Basics

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 35

What is Multicore?

 In the olden days (that is, the first half of 2005), each CPU

chip had one “brain” in it.

 Starting the second half of 2005, each CPU chip can have

up to 2 cores (brains); starting in late 2006, 4 cores; starting

in late 2008, 6 cores; in early 2010, 8 cores; in mid 2010, 12

cores.

 Jargon: Each CPU chip plugs into a socket, so these days,

to avoid confusion, people refer to sockets and cores, rather

than CPUs or processors.

 Each core is just like a full blown CPU, except that it shares

its socket (and maybe some of its cache) with one or more

other cores – and therefore shares its bandwidth to RAM

with them.

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 36

Dual Core

Core Core

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 37

Quad Core
Core Core

Core Core

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 38

Oct Core
Core Core Core Core

Core Core Core Core

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 39

The Challenge of Multicore: RAM

 Each socket has access to a certain amount of RAM, at a

fixed RAM bandwidth per SOCKET – or even per node.

 As the number of cores per socket increases, the

contention for RAM bandwidth increases too.

 At 2 or even 4 cores in a socket, this problem isn’t too bad. But

at 16 or 32 or 80 cores, it’s a huge problem.

 So, applications that are cache optimized will get big speedups.

 But, applications whose performance is limited by RAM

bandwidth are going to speed up only as fast as RAM

bandwidth speeds up.

 RAM bandwidth speeds up much slower than CPU speeds up.

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 40

The Challenge of Multicore: Network

 Each node has access to a certain number of network ports,

at a fixed number of network ports per NODE.

 As the number of cores per node increases, the contention

for network ports increases too.

 At 2 or 4 cores in a socket, this problem isn’t too bad. But at

16 or 32 or 80 cores, it’s a huge problem.

 So, applications that do minimal communication will get

big speedups.

 But, applications whose performance is limited by the

number of MPI messages are going to speed up very very

little – and may even crash the node.

A Concrete Example:

Weather Forecasting

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 42

Weather Forecasting

http://www.caps.ou.edu/wx/p/r/conus/fcst/

http://www.caps.ou.edu/wx/p/r/conus/fcst/

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 43

Weather Forecasting

 Weather forecasting is a transport problem.

 The goal is to predict future weather conditions by

simulating the movement of fluids in Earth’s atmosphere.

 The physics is the Navier-Stokes Equations.

 The numerical method is Finite Difference.

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 44

Cartesian Mesh

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 45

Finite Difference

unew(i,j,k) = F(uold, i, j, k, Δt) =

 F(uold(i,j,k),

 uold(i-1,j,k), uold(i+1,j,k),

 uold(i,j-1,k), uold(i,j+1,k),

 uold(i,j,k-1), uold(i,j,k+1), Δt)

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 46

Ghost Boundary Zones

Virtual Memory

48

Virtual Memory

 Typically, the amount of main memory (RAM) that a CPU

can address is larger than the amount of data physically

present in the computer.

 For example, consider a laptop that can address 16 GB of

main memory (roughly 16 billion bytes), but only contains

2 GB (roughly 2 billion bytes).

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011

49

Virtual Memory (cont’d)

 Locality: Most programs don’t jump all over the memory

that they use; instead, they work in a particular area of

memory for a while, then move to another area.

 So, you can offload onto hard disk much of the memory

image of a program that’s running.

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011

50

Virtual Memory (cont’d)

 Memory is chopped up into many pages of modest size (e.g.,

1 KB – 32 KB; typically 4 KB).

 Only pages that have been recently used actually reside in

memory; the rest are stored on hard disk.

 Hard disk is typically 0.1% as fast as main memory, so you

get better performance if you rarely get a page fault, which

forces a read from (and maybe a write to) hard disk:

exploit data locality!

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011

51

Cache vs. Virtual Memory

 Lines (cache) vs. pages (VM)

 Cache faster than RAM (cache) vs. RAM faster than disk

(VM)

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 52

Virtual Memory

 Every CPU family today uses virtual memory, in which disk
pretends to be a bigger RAM.

 Virtual memory capability can’t be turned off.
 RAM is split up into pages, typically 4 KB each.

 Each page is either in RAM or out on disk.

 To keep track of the pages, a page table notes whether each
table is in RAM, where it is in RAM (that is, physical address
and virtual address are different), and some other
information.

 So, a 4 GB physical RAM would need over a million page
table entries.

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 53

Why Virtual Memory is Slow

 When you want to access a byte of memory, you have to
find out whether it’s in physical memory (RAM) or virtual
disk (disk) – and the page table is in RAM!

 A page table of a million entries can’t fit in a 2 MB cache.

 So, each memory access (load or store) is actually 2
memory accesses: the first for the page table entry, and the
second for the data itself.

 This is slow!

 And notice, this is assuming that you don’t need more
memory than your physical RAM.

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 54

The Notorious T.L.B.

 To speed up memory accesses, CPUs today have a special

cache just for page table entries, known as the Translation

Lookaside Buffer (TLB).

 The size of TLBs varies from 64 entries to 1024 entries,

depending on chip families.

 At 4 KB pages, this means that the size of cache covered by

the TLB varies from 256 KB to 4 MB.

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 55

The T.L.B. on a Recent Chip

On Intel Core Duo (“Yonah”):
 Cache size is 2 MB per core.
 Page size is 4 KB.
 A core’s data TLB size is 128 page table entries.

 Therefore, D-TLB only covers 512 KB of cache.

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 56

The T.L.B. on a Recent Chip

On Intel Core Duo (“Yonah”):
 Cache size is 2 MB per core.
 Page size is 4 KB.
 A core’s data TLB size is 128 page table entries.

 Therefore, D-TLB only covers 512 KB of cache.

 Mesh: At 100 vertical levels of 150 single precision
variables, 512 KB is a 3 x 3 vertical domain – nothing but
ghost zones!

 The cost of a TLB miss is 49 cycles, equivalent to as many
as 196 calculations! (4 FLOPs per cycle)

http://www.digit-life.com/articles2/cpu/rmma-via-c7.html

http://www.digit-life.com/articles2/cpu/rmma-via-c7.html
http://www.digit-life.com/articles2/cpu/rmma-via-c7.html
http://www.digit-life.com/articles2/cpu/rmma-via-c7.html
http://www.digit-life.com/articles2/cpu/rmma-via-c7.html
http://www.digit-life.com/articles2/cpu/rmma-via-c7.html
http://www.digit-life.com/articles2/cpu/rmma-via-c7.html
http://www.digit-life.com/articles2/cpu/rmma-via-c7.html

Software Strategies

for Weather Forecasting

on Multicore/Many-core

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 58

Tiling NOT Good for Weather Codes

 Weather codes typically have on the order of 150 3D arrays
used in each timestep (some transferred multiple times in the
same timestep, but let’s ignore that for simplicity).

 These arrays typically are single precision (4 bytes per
floating point value).

 So, a typical weather code uses about 600 bytes per mesh
zone per timestep.

 Weather codes typically do 5,000 to 10,000 calculations per
mesh zone per timestep.

 So, the ratio of calculations to data is less than 20 to 1 –
much less than the 73 to 1 needed (on mid-2008 hardware).

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 59

Weather Forecasting and Cache

 On current weather codes, data decomposition is per
process. That is, each process gets one subdomain.

 As CPUs speed up and RAM sizes grow, the size of each
processor’s subdomain grows too.

 However, given RAM bandwidth limitations, this means
that performance can only grow with RAM speed – which
increases slower than CPU speed.

 If the codes were optimized for cache, would they speed up
more?

 First: How to optimize for cache?

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 60

How to Get Good Cache Reuse?

 Multiple independent subdomains per processor.

 Each subdomain fits entirely in L2 cache.

 Each subdomain’s page table entries fit entirely in the

TLB.

 Expanded ghost zone stencil allows multiple timesteps

before communicating with neighboring subdomains.

 Parallelize along the Z-axis as well as X and Y.

 Use higher order numerical schemes.

 Reduce the memory footprint as much as possible.

Coincidentally, this also reduces communication cost.

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 61

Cache Optimization Strategy: Tiling?

Would tiling work as a cache optimization strategy for weather

forecasting codes?

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 62

Multiple Subdomains Per Core

Core 0

Core 1

Core 2

Core 3

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 63

Why Multiple Subdomains?

 If each subdomain fits in cache, then the CPU can bring all

the data of a subdomain into cache, chew on it for a while,

then move on to the next subdomain: lots of cache reuse!

 Oh, wait, what about the TLB? Better make the subdomains

smaller! (So more of them.)

 But, doesn’t tiling have the same effect?

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 64

Why Independent Subdomains?

 Originally, the point of this strategy was to hide the cost of
communication.

 When you finish chewing up a subdomain, send its data to
its neighbors non-blocking (MPI_Isend).

 While the subdomain’s data is flying through the
interconnect, work on other subdomains, which hides the
communication cost.

 When it’s time to work on this subdomain again, collect its
data (MPI_Waitall).

 If you’ve done enough work, then the communication cost
is zero.

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 65

Expand the Array Stencil

 If you expand the array stencil of each subdomain beyond
the numerical stencil, then you don’t have to communicate
as often.

 When you communicate, instead of sending a slice along
each face, send a slab, with extra stencil levels.

 In the first timestep after communicating, do extra
calculations out to just inside the numerical stencil.

 In subsequent timesteps, calculate fewer and fewer stencil
levels, until it’s time to communicate again – less total
communication, and more calculations to hide the
communication cost underneath!

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 66

An Extra Win!

 If you do all this, there’s an amazing side effect: you get

better cache reuse, because you stick with the same

subdomain for a longer period of time.

 So, instead of doing, say, 5000 calculations per zone per

timestep, you can do 15000 or 20000.

 So, you can better amortize the cost of transferring the data

between RAM and cache.

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 67

New Algorithm (F90)

DO timestep = 1, number_of_timesteps, extra_stencil_levels

 DO subdomain = 1, number_of_local_subdomains

 CALL receive_messages_nonblocking(subdomain,

 timestep)

 DO extra_stencil_level=0, extra_stencil_levels - 1

 CALL calculate_entire_timestep(subdomain,

 timestep + extra_stencil_level)

 END DO

 CALL send_messages_nonblocking(subdomain,

 timestep + extra_stencil_levels)

 END DO

END DO

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 68

New Algorithm (C)

for (timestep = 0;

 timestep < number_of_timesteps;

 timestep += extra_stencil_levels) {

 for (subdomain = 0;

 subdomain < number_of_local_subdomains;

 subdomain++) {

 receive_messages_nonblocking(subdomain, timestep);

 for (extra_stencil_level = 0;

 extra_stencil_level < extra_stencil_levels;

 extra_stencil_level++) {

 calculate_entire_timestep(subdomain,

 timestep + extra_stencil_level);

 } /* for extra_stencil_level */

 send_messages_nonblocking(subdomain,

 timestep + extra_stencil_levels);

 } /* for subdomain */

} /* for timestep */

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 69

Higher Order Numerical Schemes

 Higher order numerical schemes are great, because they

require more calculations per mesh zone per timestep, which

you need to amortize the cost of transferring data between

RAM and cache. Might as well!

 Plus, they allow you to use a larger time interval per

timestep (dt), so you can do fewer total timesteps for the

same accuracy – or you can get higher accuracy for the

same number of timesteps.

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 70

Parallelize in Z

 Most weather forecast codes parallelize in X and Y, but not

in Z, because gravity makes the calculations along Z more

complicated than X and Y.

 But, that means that each subdomain has a high number of

zones in Z, compared to X and Y.

 For example, a 1 km CONUS run will probably have 100

zones in Z (25 km at 0.25 km resolution).

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 71

Multicore/Many-core Problem

 Most multicore chip families have relatively small cache per

core (for example, 1 - 4 MB per core at the highest/slowest

cache level) – and this problem seems likely to remain.

 Small TLBs make the problem worse: 512 KB per core

rather than 1 - 4 MB.

 So, to get good cache reuse, you need subdomains of no

more than 512 KB.

 If you have 150 3D variables at single precision, and 100

zones in Z, then your horizontal size will be 3 x 3 zones –

just enough for your stencil!

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 72

What Do We Need?

 We need much bigger caches!

 16 MB cache  16 x 16 horizontal including stencil

 32 MB cache  23 x 23 horizontal including stencil

 TLB must be big enough to cover the entire cache.

 It’d be nice to have RAM speed increase as fast as core

counts increase, but let’s not kid ourselves.

Keep this in mind when we get to GPGPU!

Thanks for your
attention!

Questions?
www.oscer.ou.edu

http://www.oscer.ou.edu/

Parallel Programming: Multicore Madness

OK Supercomputing Symposium, Tue Oct 11 2011 74

References
[1] Image by Greg Bryan, Columbia U.

[2] “Update on the Collaborative Radar Acquisition Field Test (CRAFT): Planning for the Next Steps.”

 Presented to NWS Headquarters August 30 2001.

[3] See http://hneeman.oscer.ou.edu/hamr.html for details.

[4] http://www.dell.com/

[5] http://www.vw.com/newbeetle/

[6] Richard Gerber, The Software Optimization Cookbook: High-performance Recipes for the Intel

Architecture. Intel Press, 2002, pp. 161-168.
[7] RightMark Memory Analyzer. http://cpu.rightmark.org/

[8] ftp://download.intel.com/design/Pentium4/papers/24943801.pdf

[9] http://www.seagate.com/cda/products/discsales/personal/family/0,1085,621,00.html

[10] http://www.samsung.com/Products/OpticalDiscDrive/SlimDrive/OpticalDiscDrive_SlimDrive_SN_S082D.asp?page=Specifications
[11] ftp://download.intel.com/design/Pentium4/manuals/24896606.pdf

[12] http://www.pricewatch.com/

http://www.caps.ou.edu/present/Jack Hayes FINAL.ppt
http://hneeman.oscer.ou.edu/hamr.html
http://www.dell.com/
http://www.vw.com/newbeetle/
http://cpu.rightmark.org/
ftp://download.intel.com/design/Pentium4/papers/24943801.pdf
http://www.seagate.com/cda/products/discsales/personal/family/0,1085,621,00.html
http://www.samsung.com/Products/OpticalDiscDrive/SlimDrive/OpticalDiscDrive_SlimDrive_SN_S082D.asp?page=Specifications
ftp://download.intel.com/design/Pentium4/manuals/24896606.pdf
http://www.pricewatch.com/

