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Q) Parallelism

FN

Parallelism means
doing multiple things at
the same time: You can
get more work done In

the same time.

Less fis]

1 ...




o) What Is ILP?

Instruction-Level Parallelism (ILP) is a set of techniques for
executing multiple instructions at the same time within

the same CPU core.
(Note that ILP has nothing to do with multicore.)

The problem: A CPU core has lots of circuitry, and at any
given time, most of it is idle, which is wasteful.

The solution: Have different parts of the CPU core work on
different operations at the same time: If the CPU core has the
ability to work on 10 operations at a time, then the program
can, in principle, run as much as 10 times as fast (although in

practice, not quite so much).
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DON’T
PANIC!
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") Why You Shouldn’t Panic

In general, the compiler and the CPU will do most of the heavy
lifting for instruction-level parallelism.

BUT:

You need to be aware of ILP, because
how your code Is structured affects
how much ILP the compiler and the

CPU can give you.
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Kinds of ILP

Superscalar: Perform multiple operations at the same time
(for example, simultaneously perform an add, a multiply and
a load).

Pipeline: Start performing an operation on one piece of data
while finishing the same operation on another piece of data —
perform different stages of the same operation on different
sets of operands at the same time (like an assembly line).

Superpipeline: A combination of superscalar and pipelining
— perform multiple pipelined operations at the same time.

Vector: Load multiple pieces of data into special registers and
perform the same operation on all of them at the same time.
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What’s an Instruction?
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Memory: For example, load a value from a specific address

In main memory into a specific register, or store a value
from a specific register into a specific address in main
memory.

Arithmetic: For example, add two specific registers together
and put their sum in a specific register — or subtract,
multiply, divide, square root, etc.

Logical: For example, determine whether two registers both
contain nonzero values (“AND”).

Branch: Jump from one sequence of instructions to another
(for example, function call).

...andsoon....
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") What’s a Cycle?

You’ve heard people talk about having a 2 GHz processor or a 3
GHz processor or whatever. (For example, consider a laptop
with a 1.6 GHz Core 2 Duo.)

Inside every CPU is a little clock that ticks with a fixed
frequency.

We call each tick of the CPU clock a clock cycle or a cycle.
So a 2 GHz processor has 2 billion clock cycles per second.

Typically, a primitive operation (for example, add, multiply,
divide) takes a fixed number of cycles to execute (assuming
no pipelining).

[
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What’s the Relevance of Cycles?

Typically, a primitive operation (for example, add, multiply,
divide) takes a fixed number of cycles to execute (assuming
no pipelining).

= |IBM POWER4 [1]

= Multiply or add: 6 cycles (64 bit floating point) E
= Load: 4 cycles from L1 cache
14 cycles from L2 cache

= Intel Pentium4 EM64T (Core) (2!
= Multiply: 7 cycles (64 bit floating point) p
= Add, subtract: 5 cycles (64 bit floating point) §is=
Divide: 38 cycles (64 bit floating point) &1L |

= Square root: 39 cycles (64 bit floating point)
= Tangent: 240-300 cycles (64 bit floating point) 3 :
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Q|| Scalar Operation



DON’T
PANIC!
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Q) Scalar Operation

z=a*b +c * d;
How would this statement be executed?
Load a into register RO
Load b Iinto R1
Multiply R2 = RO * R1
Load ¢ Into R3
Load d Into R4
Multiply R5 = R3 * R4
Add R6 = R2 + R5
Store R6 Int0 z

N R WNE
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) Does Order Matter?

Z = a *b +c * 4d;

1. Load a Into RO 1. Load d into RO
- 2. Load ¢ into R1
2. Load_ b Into R1 3. Multiply o
3. Multiply = RO * R1
R2 = RO * R1 4. Load b into R3
4. Load c into R3 > Load a Into R4
' : 6.  Multiply
5. Load 4 Into R4 R5 = R3 * R4
0. Multiply 7. Add R6 = R2 + R5
R5 = R3 * R4 8.  Store R6 into z
7. Add R6 = R2 + R5
8. Store R6 Into z

In the cases where order doesn’t matter, we say that
the operations are independent of one another.
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Superscalar Operation

B~ W

D.

Z =a *b +c * d,;
Load a into RO AND
load b Into R1
Multiply R2 = RO * R1 AND
load ¢ Into R3 AND
load d Iinto R4
Multiply R5 = R3 * R4
Add R6 = R2 + R5
Store R6 Into z
If order doesn’t matter,
then things can happen simultaneously.

So, we go from 8 operations down to 5.
(Note: there are lots of simplifying assumptions here.)

LLLLLLL
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®) _oops Are Good

Most compilers are very good at optimizing loops, and not
very good at optimizing other constructs.

Why?
DO index = 1, length

dst (index) = srcl (index) + src2 (index)
END DO

for (index = 0; index < length; index++) ({
dst[index] = srcl[index] + src2[index];

}
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®) Why Loops Are Good

= Loops are very common in many programs.

= Also, it’s easier to optimize loops than more arbitrary
sequences of instructions: when a program does the same
thing over and over, it’s easier to predict what’s likely to
happen next.

So, hardware vendors have designed their products to be able

to execute loops quickly.
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DON’T
PANIC!
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Q) Superscalar Loops (C)

0; i < length; i++) {
a[i] * b[i] + c[i] * d[i];

for (1
z[1]

}
Each of the iterations is completely independent of all

of the other iterations; for example,

z[0] a[0] * b[O0] + c[0] * A[O0]
has nothing to do with

z[1] a[l] * b[1l] + c[1] * d[1]

Operations that are independent of each other can be
performed in parallel.
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Q) Superscalar Loops (F90)

DO 1 = 1, length

z(1) = a(i) * b(1x) + c(1) * d(1)
END DO
Each of the iterations is completely independent of all

of the other iterations; for example,

z(l) = a(l) * b(l) + c(1) * d(1)
has nothing to do with

z(2) = a(2) * b(2) + c(2) * d(2)

Operations that are independent of each other can be
performed in parallel.
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Q) Superscalar Loops

for (i = 0; i < length; i++) {
z[1] = a[i] * b[i] + c[i] * d[i];

Load a[i] into RO AND load b[i] into R1

Multiply R2 = RO * R1 AND load c[i] into R3 AND load
d[i] into R4

3. Multiply R5 = R3 * R4 AND load a[i+1] into
RO AND load b[i+1l] into Rl

Add R6 = R2 + R5 AND load c[i+1] into R3 AND load
d[i+1] into R4

Store R6 into z[i] AND multiply R2 = RO * R1

etc etc etc

Once this loop 1s “in flight,” each iteration adds only
2 operations to the total, not 8.

Al
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") Example: IBM POWERA4

8-way Superscalar: can execute up to 8 operations at the same
timell]

= 2 integer arithmetic or logical operations, and

= 2 floating point arithmetic operations, and

= 2 memory access (load or store) operations, and
= 1 branch operation, and
= 1 conditional operation
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Q|| Pipelining



Q) Pipelining

Pipelining is like an assembly line or a bucket brigade.
= An operation consists of multiple stages.
= After a particular set of operands

z(i) = a(i) * b(i) + c(i) * d(i)
completes a particular stage, they move into the next stage.
= Then, another set of operands
z(i+l) = a(i+l) * b(i+l) + c(i+l) * d(i+1)

can move into the stage that was just abandoned by the previous
set.
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DON’T
PANIC!
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Q) Pipelining Example

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7

DON’T PANIC!

i=3

DON’T PANIC!

Computation time

If each stage takes, say, one CPU cycle, then once the
loop gets going, each iteration of the loop increases the
total time by only one c¥cle So a loop of length 1000
takes only 1004 cycles. B3
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) Pipelines: Example

= IBM POWERA4: pipeline length = 15 stages [
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Some Simple Loops (F90)
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DO index = 1, length

dst (index) = srcl (index) + src2 (index)
END DO
DO index = 1, length
dst (index) = srcl (index) - src2 (index)
END DO
DO index = 1, length
dst (index) = srcl (index) * src2 (index)
END DO
DO index = 1, length
dst(index) = srcl(index) / src2 (index)
END DO
DO index = 1, length Reduction: convert
sum = sum + src (index)
END DO array to scalar

COLLESGE
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Some Simple Loops (C)
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for (index = 0; index < length; index++) ({

dst[index] srcl[index] + src2[index];
}
for (index = 0; index < length; index++) ({
dst[index] = srcl[index] - src2[index];
}

for (index = 0; index < length; index++) {
dst[index] = srcl[index] * src2[index];

}

for (index = 0; index < length; index++) ({
dst[index] = srcl[index] / src2[index];

}

for (index = 0; index < length; index++) ({
sum = sum + src[index];

}

COLLESGE
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Slightly Less Simple Loops (F90)
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DO index = 1, length
dst (index) = srcl (index) ** src2(index) !! srcl * src2
END DO

DO index = 1, length
dst (index) = MOD (srcl (index), src2(index))
END DO

DO index = 1, length
dst (index) = SQRT (src (index))
END DO

DO index = 1, length
dst (index) = COS(src(index))
END DO

DO index = 1, length
dst (index) = EXP (src(index))
END DO

DO index = 1, length
dst (index) = LOG(src (index))
END DO
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@ Slightly Less Simple Loops (C)

for (index = 0; index < length; index++) ({
dst[index] = pow(srcl[index], src2[index]) ;
}

for (index = 0; index < length; index++) ({

dst[index] srcl[index] % src2[index];

}

for (index = 0; index < length; index++) {
dst[index] = sqrt(src[index]) ;

}

for (index = 0; index < length; index++) {
dst[index] = cos(src[index]);

}

for (index = 0; index < length; index++) {
dst[index] = exp(src[index]) ;

}

for (index = 0; index < length; index++) ({

COMPUTTN
&

dst[index] = log(src[index]) ;
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Q|| LLoop Performance



Performance Characteristics
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Different operations take different amounts of time.

Different processor types have different performance
characteristics, but there are some characteristics that many
platforms have in common.

Different compilers, even on the same hardware, perform
differently.

On some processors, floating point and integer speeds are
similar, while on others they differ.

COLLESGE
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@  Arithmetic Operation Speeds

Arithmetic Performance on Pentium4 EM64T

(Irwindale 3.2 GHz)
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Fast and Slow Operations

= Fast: sum, add, subtract, multiply

= Medium: divide, mod (that is, remainder)

= Slow: transcendental functions (sqrt, sin, exp)
= Incredibly slow: power x¥ for real x and y

On most platforms, divide, mod and transcendental functions
are not pipelined, so a code will run faster if most of it is
just adds, subtracts and multiplies.

For example, solving an N x N system of linear equations by
LU decomposition uses on the order of N3 additions and
multiplications, but only on the order of N divisions.

LLLLLLL
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What Can Prevent Pipelining?

Certain events make it very hard (maybe even impossible) for
compilers to pipeline a loop, such as:

= array elements accessed in random order
= |loop body too complicated
= if statements inside the loop (on some platforms)

= premature loop exits

= function/subroutine calls
= 1/O

LLLLLLL

OK Supercomputing Symposium, Tue Oct 11 2011 37

Parallel Programming: Instr Level Parallel ~ EARLHAM ‘




How Do They Kill Pipelining?

= Random access order: Ordered array access is common, so
pipelining hardware and compilers tend to be designed under
the assumption that most loops will be ordered. Also, the
pipeline will constantly stall because data will come from
main memory, not cache.

= Complicated loop body: The compiler gets too
overwhelmed and can’t figure out how to schedule the

Instructions.
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Q) How Do They Kill Pipelining?

= if statements in the loop: On some platforms (but not all),

the pipelines need to perform exactly the same operations
over and over; if statements make that impossible.

However, many CPUs can now perform speculative execution:
both branches of the i £ statement are executed while the

condition is being evaluated, but only one of the results is
retained (the one associated with the condition’s value).

Also, many CPUs can now perform branch prediction to head
down the most likely compute path.
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Q) How Do They Kill Pipelining?

= Function/subroutine calls interrupt the flow of the
program even more than i £ statements. They can take

execution to a completely different part of the program, and
pipelines aren’t set up to handle that.

= Loop exits are similar. Most compilers can’t pipeline loops
with premature or unpredictable exits.

= |/O: Typically, 1/0 is handled in subroutines (above).
Also, I/O instructions can take control of the program away
from the CPU (they can give control to 1/O devices).

LLLLLLL
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What If No Pipelining?

SLOW!

(on most platforms)
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Q) Randomly Permuted Loops

Arithmetic Performance: Ordered vs Random

(Irwindale 3.2 GHz)
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Superpipelining
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Q) Superpipelining

Superpipelining is a combination of superscalar and
pipelining.

So, a superpipeline is a collection of multiple pipelines that
can operate simultaneously.

In other words, several different operations can execute
simultaneously, and each of these operations can be broken
Into stages, each of which is filled all the time.

So you can get multiple operations per CPU cycle.

For example, a IBM Power4 can have over 200 different
operations “in flight” at the same time.[*]
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Q) More Operations At a Time

= |f you put more operations into the code for a loop, you can
get better performance:
= Mmore operations can execute at a time (use more
pipelines), and
= you get better register/cache reuse.
=  On most platforms, there’s a limit to how many operations

you can put in a loop to increase performance, but that limit
varies among platforms, and can be quite large.
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Q) Some Complicated Loops

DO index = 1, length madd (or FMA):
dst(index) = srcl(index) + 5.0 * src2(index)mylt then add
END DO (2 ops)
dot = 0
DO index = 1, length
dot = dot + srcl(index) * src2(index) dot product
END DO (2 ops)
DO index = 1, length
dst(index) = srcl(index) * src2(index) + & from our
& src3 (index) * src4 (index) example
END DO (3 ops)

DO index = 1, length : :
diffl2 = srcl(index) - src2 (index) Euclidean distance
diff34 = src3(index) - srcd(index) (60pS)
dst(index) = SQRT (diffl2 * diffl2 + diff34 * diff34)

END DO
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Q) A Very Complicated Loop

lot = 0.0
DO index = 1, length

lot = lot + &
& srcl (index) * src2(index) + &
& src3(index) * src4d (index) + &
& (srcl (index) + src2(index)) * &
& (src3(index) + srcd(index)) * &
& (srcl (index) - src2(index)) * &
& (src3(index) - src4d(index)) * &
& (srcl (index) - src3(index) + &
& src2 (index) - src4(index)) * &
& (srcl (index) + src3(index) - &
& src2 (index) + src4 (index)) + &
& (srcl(index) * src3(index)) + &
& (src2 (index) * src4d (index))

END DO

24 arithmetic ops per iteration

4 memory/cache loads per iteration
oo 7 Parallel Programming: Instr Level Parallel ~ EARLHAM
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Q) Multiple Ops Per Iteration

Arithmetic Performance: Multiple Operations

(Irwindale 3.2 GHz)
3000
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Vectors
Q||



What Is a Vector?

A vector Is a giant register that behaves like a collection of
regular registers, except these registers all simultaneously
perform the same operation on multiple sets of operands,
producing multiple results.

In a sense, vectors are like operation-specific cache.

A vector register is a register that’s actually made up of many
Individual registers.

A vector instruction is an instruction that performs the same
operation simultaneously on all of the individual registers of a
vector register.

COLLESGE
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Q) Vector Register

v2

+ + + 4+ + + 4+ +

vl <- vl + v2

R ﬁ Parallel Programming: Instr Level Parallel ~ EARLHAM
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Vectors Are Expensive

Vectors were very popular in the 1980s, because they’re very
fast, often faster than pipelines.

In the 1990s, though, they weren’t very popular. Why?

Well, vectors aren’t used by many commercial codes (for "
example, MS Word). So most chip makers didn’t bother with
vectors.

So, if you wanted vectors, you had to pay a lot of extra money
for them.

The Pentium 11 Intel reintroduced very small integer vectors (2
operations at a time),. The Pentium4 added floating point
vector operations, also of size 2. The Core family has

doubled the vector size to 4, and Sandy Bridge (2011) to 8.

Parallel Programming: Instr Level Parallel EARLHAM %
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Q|| A Real Example



A Real Examplel“!

DO k=2 ,nz-1
DO j=2,ny-1
DO i=2,nx-1
teml(i,j,k) = u(i,j, k,2)*(u(i+l1l,j,k,2)-u(i-1,3,k,2)) *dxinv2
tem2 (i,j,k) = v(i,j, k,2)*(u(i,j+1,k,2)-u(i,j-1,k,2))*dyinv2
tem3(i,3,k) = w(i,j,k,2)*(u(i,j,k+1,2)-u(i,j,k-1,2))*dzinv2
END DO
END DO
END DO
DO k=2 ,nz-1
DO j=2,ny-1
DO i=2,nx-1

u(i,j,k,3) = u(i,j,k,1) - &
& dtbig2* (teml (i, j,k)+tem2(i,j,k)+tem3(1i,3j,k))
END DO
END DO
END DO
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Q) Real Example Performance

Performance By Method

Better
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DON’T
PANIC!
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") Why You Shouldn’t Panic

In general, the compiler and the CPU will do most of the heavy
lifting for instruction-level parallelism.

BUT:

You need to be aware of ILP, because
how your code Is structured affects
how much ILP the compiler and the

CPU can give you.
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Thanks for your
attention!
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Questions?
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