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Accelerators 

No, not this .... 
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Accelerators 

 In HPC, an accelerator is hardware component whose role is 

to speed up some aspect of the computing workload. 

 In the olden days (1980s), supercomputers sometimes had 

array processors, which did vector operations on arrays, 

and PCs sometimes had floating point accelerators: little 

chips that did the floating point calculations in hardware 

rather than software. 

 More recently, Field Programmable Gate Arrays (FPGAs) 

allow reprogramming deep into the hardware. 



Parallel Programming: GPGPU 

OK Supercomputing Symposium, Tue Oct 11 2011 6 

Why Accelerators are Good 

Accelerators are good because: 

 they make your code run faster. 
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Why Accelerators are Bad 

Accelerators are bad because: 

 they’re expensive; 

 they’re hard to program; 

 your code on them may not be portable to other 

accelerators, so the labor you invest in programming them 

has a very short half-life. 
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The King of the Accelerators 

The undisputed champion of accelerators is: 

 the graphics processing unit. 
http://www.amd.com/us-en/assets/content_type/DigitalMedia/46928a_01_ATI-FirePro_V8700_angled_low_res.gif 

http://images.nvidia.com/products/quadro_fx_5800/Quadro_FX5800_low_3qtr.png 

http://www.gamecyte.com/wp-content/uploads/2009/01/ibm-sony-toshiba-cell.jpg 

http://www.overclockers.ua/news/cpu/106612-Knights-Ferry.jpg 
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Why GPU? 

 Graphics Processing Units (GPUs) were originally 

designed to accelerate graphics tasks like image rendering. 

 They became very very popular with videogamers, because 

they’ve produced better and better images, and lightning 

fast. 

 And, prices have been extremely good, ranging from three 

figures at the low end to four figures at the high end. 
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GPUs are Popular 

 Chips are expensive to design (hundreds of millions of $$$), 

expensive to build the factory for (billions of $$$), but 

cheap to produce. 

 For example, in 2006 – 2007, GPUs sold at a rate of about 

80 million cards per year, generating about $20 billion per 

year in revenue. 
http://www.xbitlabs.com/news/video/display/20080404234228_Shipments_of_Discrete_Graphi

cs_Cards_on_the_Rise_but_Prices_Down_Jon_Peddie_Research.html 

 This means that the GPU companies have been able to 

recoup the huge fixed costs. 

http://www.xbitlabs.com/news/video/display/20080404234228_Shipments_of_Discrete_Graphics_Cards_on_the_Rise_but_Prices_Down_Jon_Peddie_Research.html
http://www.xbitlabs.com/news/video/display/20080404234228_Shipments_of_Discrete_Graphics_Cards_on_the_Rise_but_Prices_Down_Jon_Peddie_Research.html
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GPU Do Arithmetic 

 GPUs mostly do stuff like rendering images. 

 This is done through mostly floating point arithmetic – the 

same stuff people use supercomputing for! 



GPU Programming 
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Hard to Program? 

 In the olden days – that is, until just the last few years – 

programming GPUs meant either: 

 using a graphics standard like OpenGL (which is mostly 

meant for rendering), or 

 getting fairly deep into the graphics rendering pipeline. 

 To use a GPU to do general purpose number crunching, you 

had to make your number crunching pretend to be graphics. 

 This was hard. So most people didn’t bother. 
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Easy to Program? 

More recently, GPU manufacturers have worked hard to make 

GPUs easier to use for general purpose computing. 

This is known as General Purpose Graphics Processing Units. 
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How to Program a GPU 

 Proprietary programming language or extensions 
 NVIDIA: CUDA (C/C++) 

 AMD/ATI: StreamSDK/Brook+ (C/C++) – seems to be defunct 

 OpenCL (Open Computing Language): an industry standard 

for doing number crunching on GPUs. 

 Portland Group Inc (PGI) Fortran and C compilers with 

accelerator directives; PGI CUDA Fortran (Fortran 90 

equivalent of NVIDIA’s CUDA C). 

 OpenMP version 4.0 may include directives for accelerators. 

 HMPP: directive-based like PGI and OpenMP4 but creates 

intermediate CUDA or OpenCL code (so portable). 

 Others are popping up or in development now …. 
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NVIDIA CUDA 

 NVIDIA proprietary 

 Formerly known as “Compute Unified Device Architecture” 

 Extensions to C to allow better control of GPU capabilities 

 Modest extensions but major rewriting of the code 

 Portland Group Inc (PGI) has released a Fortran 

implementation of CUDA available in their Fortran 

compiler. 
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CUDA Example Part 1 

// example1.cpp : Defines the entry point for the console applicati

on.   

//   

   

#include "stdafx.h"   

   

#include <stdio.h>   

#include <cuda.h>   

   

// Kernel that executes on the CUDA device   

__global__ void square_array(float *a, int N)   

{   

  int idx = blockIdx.x * blockDim.x + threadIdx.x;   

  if (idx<N) a[idx] = a[idx] * a[idx];   

}  

 

http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/ 

http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/
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http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/
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CUDA Example Part 2 
// main routine that executes on the host   

int main(void) 

{   
  float *a_h, *a_d;  // Pointer to host & device arrays   

  const int N = 10;  // Number of elements in arrays   

  size_t size = N * sizeof(float);   

  a_h = (float *)malloc(size);        // Allocate array on host   

  cudaMalloc((void **) &a_d, size);   // Allocate array on device   

  // Initialize host array and copy it to CUDA device   

  for (int i=0; i<N; i++) a_h[i] = (float)i;   

  cudaMemcpy(a_d, a_h, size, cudaMemcpyHostToDevice);   

  // Do calculation on device:   

  int block_size = 4;   

  int n_blocks = N/block_size + (N%block_size == 0 ? 0:1);   

  square_array <<< n_blocks, block_size >>> (a_d, N);   

  // Retrieve result from device and store it in host array   

  cudaMemcpy(a_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);   

  // Print results   

  for (int i=0; i<N; i++) printf("%d %f\n", i, a_h[i]);   

  // Cleanup   

  free(a_h); cudaFree(a_d);   

} 
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AMD/ATI Brook+ 

 AMD/ATI proprietary 

 Formerly known as “Close to Metal” (CTM) 

 Extensions to C to allow better control of GPU capabilities 

 No Fortran version available 
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Brook+ Example Part 1 

float4 matmult_kernel (int y, int x, int k, 

                       float4 M0[], float4 M1[]) 

{ 

    float4 total = 0; 

    for (int c = 0; c < k / 4; c++) 

    { 

        total += M0[y][c] * M1[x][c]; 

    } 

    return total; 

} 

http://developer.amd.com/gpu_assets/Stream_Computing_Overview.pdf 

http://developer.amd.com/gpu_assets/Stream_Computing_Overview.pdf
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Brook+ Example Part 2 

void matmult (float4 A[], float4 B’[], float4 C[]) 

{ 

    for (int i = 0; i < n; i++) 

    { 

        for (j = 0; j < m / 4; j+) 

        { 

            launch_thread{ 

                C[i][j] = 

                    matmult_kernel(j, i, k, A, B’);} 

        } 

    } 

    sync_threads{} 

} 
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OpenCL 

 Open Computing Language 

 Open standard developed by the Khronos Group, which is a 

consortium of many companies (including NVIDIA, AMD 

and Intel, but also lots of others) 

 Initial version of OpenCL standard released in Dec 2008. 

 Many companies are creating their own implementations. 

 Apple was first to market, with an OpenCL implementation 

included in Mac OS X v10.6 (“Snow Leopard”) in 2009. 
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OpenCL Example Part 1 

// create a compute context with GPU device 

context = 

  clCreateContextFromType(NULL, CL_DEVICE_TYPE_GPU, NULL, NULL, NULL); 

// create a command queue 

queue = clCreateCommandQueue(context, NULL, 0, NULL); 

// allocate the buffer memory objects 

memobjs[0] = clCreateBuffer(context, 

                 CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 

                 sizeof(float)*2*num_entries, srcA, NULL); 

memobjs[1] = clCreateBuffer(context, 

                 CL_MEM_READ_WRITE, 

                 sizeof(float)*2*num_entries, NULL, NULL); 

// create the compute program 

program = clCreateProgramWithSource(context, 1, &fft1D_1024_kernel_src, 

                                    NULL, NULL); 

 

 

 

http://en.wikipedia.org/wiki/OpenCL 

http://en.wikipedia.org/wiki/OpenCL
http://en.wikipedia.org/wiki/OpenCL
http://en.wikipedia.org/wiki/OpenCL
http://en.wikipedia.org/wiki/OpenCL
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OpenCL Example Part 2 

// build the compute program executable 

clBuildProgram(program, 0, NULL, NULL, NULL, NULL); 

// create the compute kernel 

kernel = clCreateKernel(program, "fft1D_1024", NULL); 

// set the args values 

clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&memobjs[0]); 

clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&memobjs[1]); 

clSetKernelArg(kernel, 2, sizeof(float)*(local_work_size[0]+1)*16, NULL); 

clSetKernelArg(kernel, 3, sizeof(float)*(local_work_size[0]+1)*16, NULL); 

// create N-D range object with work-item dimensions and execute kernel 

global_work_size[0] = num_entries; local_work_size[0] = 64; 

clEnqueueNDRangeKernel(queue, kernel, 1, NULL, 

                       global_work_size, local_work_size, 0, NULL, NULL); 
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OpenCL Example Part 3 

// This kernel computes FFT of length 1024. The 1024 length FFT is 

// decomposed into calls to a radix 16 function, another radix 16 

// function and then a radix 4 function 

__kernel void fft1D_1024 (__global float2 *in, __global float2 *out, 

                          __local float *sMemx, __local float *sMemy) { 

    int tid = get_local_id(0); 

    int blockIdx = get_group_id(0) * 1024 + tid; 

    float2 data[16]; 

 

// starting index of data to/from global memory 

    in = in + blockIdx; 

    out = out + blockIdx; 

    globalLoads(data, in, 64); // coalesced global reads 

    fftRadix16Pass(data); // in-place radix-16 pass 

    twiddleFactorMul(data, tid, 1024, 0); 
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OpenCL Example Part 4 

    // local shuffle using local memory 

    localShuffle(data, sMemx, sMemy, tid, (((tid & 15) * 65) + (tid >> 

4))); 

    fftRadix16Pass(data); // in-place radix-16 pass 

    twiddleFactorMul(data, tid, 64, 4); // twiddle factor multiplication 

    localShuffle(data, sMemx, sMemy, tid, (((tid >> 4) * 64) + (tid & 

15))); 

    // four radix-4 function calls 

    fftRadix4Pass(data);      // radix-4 function number 1 

    fftRadix4Pass(data +  4); // radix-4 function number 2 

    fftRadix4Pass(data +  8); // radix-4 function number 3 

    fftRadix4Pass(data + 12); // radix-4 function number 4 

    // coalesced global writes 

    globalStores(data, out, 64); 

} 
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Portland Group Accelerator Directives 

 Proprietary directives in Fortran and C 

 Similar to OpenMP in structure 

 If the compiler doesn’t understand these directives, it 
ignores them, so the same code can work with an accelerator 
or without, and with the PGI compilers or other compilers. 

 In principle, this will be able to work on a variety of 
accelerators, but the first instance is NVIDIA; PGI recently 
announced a deal with AMD/ATI. 

 The directives tell the compiler what parts of the code 
happen in the accelerator; the rest happens in the regular 
hardware. 
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PGI Accelerator Example 

!$acc region 

    do k = 1,n1 

        do i = 1,n3 

            c(i,k) = 0.0 

            do j = 1,n2 

                c(i,k) = c(i,k) +  

&                        a(i,j) * b(j,k) 

            enddo 

        enddo 

    enddo 

!$acc end region  

http://www.pgroup.com/resources/accel.htm 

http://www.pgroup.com/resources/accel.htm


OpenMP 4.0 Accelerator Directives 

 OpenMP’s 4.0 standard is very much in discussion (and flux). 

 It may end up with accelerator directives. 

 It’s too soon to say what the details will be, if it happens at all. 

 But, if it happens, then codes amenable to accelerator 

directives will be able to get substantial speedups with very 

modest coding effort. 
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OpenMP 4.0 Accelerator Example 

!$omp acc_region 

    do k = 1,n1 

        do i = 1,n3 

            c(i,k) = 0.0 

            do j = 1,n2 

                c(i,k) = c(i,k) +  

&                        a(i,j) * b(j,k) 

            enddo 

        enddo 

    enddo 

!$omp end acc_region  

http://www.pgroup.com/resources/accel.htm http://www.cse.scitech.ac.uk/events/GPU_2010/12_Hart.pdf 

http://www.pgroup.com/resources/accel.htm
http://www.cse.scitech.ac.uk/events/GPU_2010/12_Hart.pdf


Digging Deeper: 
CUDA on NVIDIA 
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NVIDIA Tesla 

 NVIDIA now offers a GPU platform named Tesla. 

 It consists essentially of their highest end graphics card, 

minus the video out connector. 

http://images.nvidia.com/products/tesla_C2050_

C2070/Tesla_C2050_C2070_3qtr_low_new.png 

http://images.nvidia.com/products/geforce_gtx_

480/geforce_gtx_480_3qtr_low.png 

http://images.nvidia.com/products/tesla_C2050_C2070/Tesla_C2050_C2070_3qtr_low_new.png
http://images.nvidia.com/products/tesla_C2050_C2070/Tesla_C2050_C2070_3qtr_low_new.png
http://images.nvidia.com/products/geforce_gtx_480/geforce_gtx_480_3qtr_low.png
http://images.nvidia.com/products/geforce_gtx_480/geforce_gtx_480_3qtr_low.png
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NVIDIA Tesla C2050 Card Specs 

 448 GPU cores 

 1.15 GHz 

 Single precision floating point performance:                

1030.4 GFLOPs (2 single precision flops per clock per core) 

 Double precision floating point performance:                   

515.2   GFLOPs (1 double precision flop per clock per core) 

 Internal RAM: 3 GB DDR5 

 Internal RAM speed: 144 GB/sec (compared 21-25 GB/sec 

for regular RAM) 

 Has to be plugged into a PCIe slot (at most 8 GB/sec per 

GPU card) 
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NVIDIA Tesla S2050 Server Specs 

 4 C2050 cards inside a 1U server (looks like a Sooner node) 

 1.15 GHz 

 Single Precision (SP) floating point performance:                   

4121.6 GFLOPs 

 Double Precision (DP) floating point performance:                     

2060.8 GFLOPs 

 Internal RAM: 12 GB total (3 GB per GPU card) 

 Internal RAM speed: 576 GB/sec aggregate 

 Has to be plugged into two PCIe slots                                 

(at most 16 GB/sec for 4 GPU cards) 
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Compare x86 vs S2050 

Let’s compare the best dual socket x86 server today vs S2050. 

Dual socket, AMD 

2.3 GHz 12-core 

NVIDIA Tesla S2050 

Peak DP FLOPs 220.8 GFLOPs DP 2060.8 GFLOPs DP (9.3x) 

Peak SP FLOPS 441.6 GFLOPs SP 4121.6 GFLOPs SP (9.3x) 

Peak RAM BW 25 GB/sec 576 GB/sec (23x) 

Peak PCIe BW N/A 16 GB/sec 

Needs x86 server to 

attach to? 

No Yes 

Power/Heat ~450 W ~900 W + ~400 W (~2.9x) 

Code portable? Yes No (CUDA) 

Yes (PGI, OpenCL) 
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Compare x86 vs S2050 

Here are some interesting measures: 

Dual socket, AMD 

2.3 GHz 12-core 

NVIDIA Tesla S2050 

DP GFLOPs/Watt ~0.5 GFLOPs/Watt ~1.6 GFLOPs/Watt (~3x) 

SP GFLOPS/Watt ~1 GFLOPs/Watt ~3.2 GFLOPs/Watt (~3x) 

DP GFLOPs/sq ft ~590 GFLOPs/sq ft ~2750 GFLOPs/sq ft (4.7x) 

SP GFLOPs/sq ft ~1180 GFLOPs/sq ft ~5500 GFLOPs/sq ft (4.7x) 

Racks per PFLOP DP 142 racks/PFLOP DP 32 racks/PFLOP DP (23%) 

Racks per PFLOP SP 71 racks/PFLOP SP 16 racks/PFLOP SP (23%) 



Kepler and Maxwell 

 NVIDIA’s 20-series is also known by the codename 

“Fermi.” It runs at about 0.5 TFLOPs per GPU card (peak). 

 The next generation, to be released in 2011, is codenamed 

“Kepler” and will be capable of something like 1.4 TFLOPs 

double precision per GPU card. 

 After “Kepler” will come “Maxwell” in 2013, capable of 

something like 4 TFLOPs double precision per GPU card. 

 So, the increase in performance is likely to be roughly    

2.5x – 3x per generation, roughly every two years. 

 
http://www.vizworld.com/2010/09/thoughts-nvidias-kepler-maxwell-gpus/ 

Parallel Programming: GPGPU 

OK Supercomputing Symposium, Tue Oct 11 2011 37 

http://www.vizworld.com/2010/09/thoughts-nvidias-kepler-maxwell-gpus/
http://www.vizworld.com/2010/09/thoughts-nvidias-kepler-maxwell-gpus/
http://www.vizworld.com/2010/09/thoughts-nvidias-kepler-maxwell-gpus/
http://www.vizworld.com/2010/09/thoughts-nvidias-kepler-maxwell-gpus/
http://www.vizworld.com/2010/09/thoughts-nvidias-kepler-maxwell-gpus/
http://www.vizworld.com/2010/09/thoughts-nvidias-kepler-maxwell-gpus/
http://www.vizworld.com/2010/09/thoughts-nvidias-kepler-maxwell-gpus/
http://www.vizworld.com/2010/09/thoughts-nvidias-kepler-maxwell-gpus/
http://www.vizworld.com/2010/09/thoughts-nvidias-kepler-maxwell-gpus/
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What Are the Downsides? 

 You have to rewrite your code into CUDA or OpenCL or 

PGI accelerator directives (or someday maybe OpenMP). 

 CUDA: Proprietary, but maybe portable soon 

 OpenCL: portable but cumbersome 

 PGI accelerator directives: not clear whether you can 

have most of the code live inside the GPUs. 

 BUT: Many groups are coming out with GPGPU code 

development tools that may help a lot, such as: 

 Fortran-to-CUDA-C converter (NCAR) 

 CUDA C automatic optimizer (memory, threading etc) 

 OpenMP-to-CUDA converter 

 CUDA-to-x86 converter (CUDA code on non-CUDA system) 
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Programming for Performance 

The biggest single performance bottleneck on GPU cards today 

is the PCIe slot: 

 PCIe 2.0 x16: 8 GB/sec 

 1600 MHz Front Side Bus: 25 GB/sec 

 GDDR5 GPU card RAM: 144 GB/sec per card 

Your goal: 

 At startup, move the data from x86 server RAM into GPU 

RAM. 

 Do almost all the work inside the GPU. 

 Use the x86 server only for I/O and message passing, to 

minimize the amount of data moved through the PCIe slot. 
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Does CUDA Help? 

Example Applications URL Speedup
Seismic Database 66x – 100x

Mobile Phone Antenna Simulation 45x

Molecular Dynamics 21x – 100x

Neuron Simulation 100x

MRI Processing 245x – 415x

Atmospheric Cloud Simulation 50x

http://www.headwave.com

http://www.accelware.com

http://www.ks.uiuc.edu/Research/vmd

http://www.evolvedmachines.com

http://bic-test.beckman.uiuc.edu

http://www.cs.clemson.edu/~jesteel/clouds.html

http://www.nvidia.com/object/IO_43499.html 

http://www.nvidia.com/object/IO_43499.html


CUDA 
Thread Hierarchy and 

Memory Hierarchy 

Some of these slides provided by Paul Gray, University of Northern Iowa 
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Source: NVIDIA CUDA Programming Guide 

CPU vs GPU Layout 
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Buzzword: Kernel 

In CUDA, a kernel is code (typically a function) that can be 

run inside the GPU. 

Typically, the kernel code operates in lock-step on the stream 

processors inside the GPU. 
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Buzzword: Thread 

In CUDA, a thread is an execution of a kernel with a given 

index. 

Each thread uses its index to access a specific subset of the 

elements of a target array, such that the collection of all 

threads cooperatively processes the entire data set. 

So these are very much like threads in the OpenMP or pthreads 

sense – they even have shared variables and private 

variables. 
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Buzzword: Block 

In CUDA, a block is a group of threads. 

 Just like OpenMP threads, these could execute concurrently 

or independently, and in no particular order. 

 Threads can be coordinated somewhat, using the 

_syncthreads() function as a barrier, making all 

threads stop at a certain point in the kernel before moving 

on en mass. (This is like what happens at the end of an 

OpenMP loop.) 
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Buzzword: Grid 

In CUDA, a grid is a group of (thread) blocks, with no 

synchronization at all among the blocks. 
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 Grids map to GPUs 

 Blocks map to the 

MultiProcessors (MP)  

 Blocks are never split across 

MPs, but an MP can have 

multiple blocks 

 Threads map to Stream 

Processors (SP)  

 Warps are groups of (32) 

threads that execute 

simultaneously 
Image Source: 

NVIDIA CUDA Programming Guide 

NVIDIA GPU Hierarchy 
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 blockIdx.x, blockIdx.y, blockIdx.z are built-in 

variables that returns the block ID in the x-axis, y-axis and z-

axis of the block that is executing the given block of code. 

  threadIdx.x, threadIdx.y, threadidx.z are   

built-in variables that return the thread ID in the x-axis, y-axis 

and z-axis of the thread that is being executed by this stream 

processor in this particular block. 

So, you can express your collection of blocks, and your 

collection of threads within a block, as a 1D array, a 2D array 

or a 3D array. 

These can be helpful when thinking of your data as 2D or 3D. 

CUDA Built-in Variables 
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__global__ Keyword 

In CUDA, if a function is declared with the __global__ 

keyword, that means that it’s intended to be executed inside 

a GPU. 

In CUDA, the term for the GPU is device, and the term for the 

x86 server is host. 

So, a kernel runs on a device, while the main function,         

and so on, run on the host. 

Note that a host can play host to multiple devices; for example, 

an S2050 server contains 4 C2050 GPU cards, and if a 

single host has two PCIe slots, then both of the PCIe plugs 

of the S2050 can be plugged into that same host. 
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Copying Data from Host to Device 

If data need to move from the host (where presumably the data 

are initially input or generated), then a copy has to exist in 

both places. 

Typically, what’s copied are arrays, though of course you can 

also copy a scalar (the address of which is treated as an 

array of length 1). 
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CUDA Memory Hierarchy #1 

CUDA has a hierarchy of 
several kinds of memory: 

 Host memory (x86 server) 

 Device memory (GPU) 

 Global: visible to all threads 
in all blocks –              
largest, slowest 

 Shared: visible to all threads 
in a particular block – 
medium size, medium speed 

 Local: visible only to a 
particular thread –    
smallest, fastest 
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CUDA Memory Hierarchy #2 

CUDA has a hierarchy of 

several kinds of memory: 

 Host memory (x86 server) 

 Device memory (GPU) 

 Constant: visible to all 

threads in all blocks;       

read only 

 Texture: visible to all 

threads in all blocks;       

read only 



CUDA Example: 
Matrix-Matrix 

Multiply 

http://developer.download.nvidia.com/compute/cuda/sdk/

website/Linear_Algebra.html#matrixMul 

http://developer.download.nvidia.com/compute/cuda/sdk/website/Linear_Algebra.html
http://developer.download.nvidia.com/compute/cuda/sdk/website/Linear_Algebra.html
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Matrix-Matrix Multiply Main Part 1 

    float* host_A; 

    float* host_B; 

    float* host_B; 

    float* device_A; 

    float* device_B; 

    float* device_C; 
 

    host_A = (float*) malloc(mem_size_A); 

    host_B = (float*) malloc(mem_size_B); 

    host_C = (float*) malloc(mem_size_C); 
 

    cudaMalloc((void**) &device_A, mem_size_A); 

    cudaMalloc((void**) &device_B, mem_size_B); 

    cudamalloc((void**) &device_C, mem_size_C); 
 

    // Set up the initial values of A and B here. 
 

    // Henry says: I’ve oversimplified this a bit from 

    // the original example code. 
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Matrix-Matrix Multiply Main Part 2 

    // copy host memory to device 

    cudaMemcpy(device_A, host_A, mem_size_A, 

               cudaMemcpyHostToDevice); 

    cudaMemcpy(device_B, host_B, mem_size_B, 

               cudaMemcpyHostToDevice); 

    // setup execution parameters 

    dim3 threads(BLOCK_SIZE, BLOCK_SIZE); 

    dim3 grid(WC / threads.x, HC / threads.y); 

 

    // execute the kernel 

    matrixMul<<< grid, threads >>>(device_C, 

                                   device_A, device_B, WA, WB); 

 

    // copy result from device to host 

    cudaMemcpy(host_C, device_C, mem_size_C, 

               cudaMemcpyDeviceToHost); 
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Matrix Matrix Multiply Kernel Part 1 
__global__ void matrixMul( float* C, float* A, float* B, int wA, int wB) 

{ 
    // Block index 
    int bx = blockIdx.x; 

    int by = blockIdx.y; 

 
    // Thread index 
    int tx = threadIdx.x; 

    int ty = threadIdx.y; 

 
    // Index of the first sub-matrix of A processed by the block 
    int aBegin = wA * BLOCK_SIZE * by; 

 
    // Index of the last sub-matrix of A processed by the block 
    int aEnd   = aBegin + wA - 1; 

 
    // Step size used to iterate through the sub-matrices of A 
    int aStep  = BLOCK_SIZE; 

 
    // Index of the first sub-matrix of B processed by the block 
    int bBegin = BLOCK_SIZE * bx; 

 
    // Step size used to iterate through the sub-matrices of B 
    int bStep  = BLOCK_SIZE * wB; 

 
    // Csub is used to store the element of the block sub-matrix 
    // that is computed by the thread 

    float Csub = 0; 
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Matrix Matrix Multiply Kernel Part 2 
    // Loop over all the sub-matrices of A and B 

    // required to compute the block sub-matrix 

    for (int a = aBegin, b = bBegin; 

             a <= aEnd; 

             a += aStep, b += bStep) { 
 
        // Declaration of the shared memory array As used to 

        // store the sub-matrix of A 

        __shared__ float As[BLOCK_SIZE][BLOCK_SIZE]; 

 
        // Declaration of the shared memory array Bs used to 
        // store the sub-matrix of B 

        __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE]; 

 
        // Load the matrices from device memory 
        // to shared memory; each thread loads 

        // one element of each matrix 

        AS(ty, tx) = A[a + wA * ty + tx]; 

        BS(ty, tx) = B[b + wB * ty + tx]; 

 
        // Synchronize to make sure the matrices are loaded 
        __syncthreads(); 
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Matrix Matrix Multiply Kernel Part 3 
        // Multiply the two matrices together; 

        // each thread computes one element 

        // of the block sub-matrix 

        for (int k = 0; k < BLOCK_SIZE; ++k) 

            Csub += AS(ty, k) * BS(k, tx); 

 

        // Synchronize to make sure that the preceding 

        // computation is done before loading two new 

        // sub-matrices of A and B in the next iteration 

        __syncthreads(); 

    } 

 

    // Write the block sub-matrix to device memory; 

    // each thread writes one element 

    int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx; 

    C[c + wB * ty + tx] = Csub; 

} 



Parallel Programming: GPGPU 

OK Supercomputing Symposium, Tue Oct 11 2011 59 

Would We Really Do It This Way? 

We wouldn’t really do matrix-matrix multiply this way. 

NVIDIA has developed a CUDA implementation of the BLAS 

libraries, which include a highly tuned   matrix-matrix 

multiply routine. 

(We’ll learn about BLAS next time.) 

There’s also a CUDA FFT library, if your code needs Fast 

Fourier Transforms. 



Thanks for your 
attention! 

 
 

Questions? 


