
Parallel Programming

& Cluster Computing

GPGPU: Number Crunching
in Your Graphics Card

Henry Neeman, University of Oklahoma
Charlie Peck, Earlham College

Tuesday October 11 2011

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 2

Outline

 What is GPGPU?

 GPU Programming

 Digging Deeper: CUDA on NVIDIA

 CUDA Thread Hierarchy and Memory Hierarchy

 CUDA Example: Matrix-Matrix Multiply

What is GPGPU?

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 4

Accelerators

No, not this

http://gizmodo.com/5032891/nissans-eco-gas-pedal-fights-back-to-help-you-save-gas

http://gizmodo.com/5032891/nissans-eco-gas-pedal-fights-back-to-help-you-save-gas
http://gizmodo.com/5032891/nissans-eco-gas-pedal-fights-back-to-help-you-save-gas
http://gizmodo.com/5032891/nissans-eco-gas-pedal-fights-back-to-help-you-save-gas
http://gizmodo.com/5032891/nissans-eco-gas-pedal-fights-back-to-help-you-save-gas
http://gizmodo.com/5032891/nissans-eco-gas-pedal-fights-back-to-help-you-save-gas
http://gizmodo.com/5032891/nissans-eco-gas-pedal-fights-back-to-help-you-save-gas
http://gizmodo.com/5032891/nissans-eco-gas-pedal-fights-back-to-help-you-save-gas
http://gizmodo.com/5032891/nissans-eco-gas-pedal-fights-back-to-help-you-save-gas
http://gizmodo.com/5032891/nissans-eco-gas-pedal-fights-back-to-help-you-save-gas
http://gizmodo.com/5032891/nissans-eco-gas-pedal-fights-back-to-help-you-save-gas
http://gizmodo.com/5032891/nissans-eco-gas-pedal-fights-back-to-help-you-save-gas
http://gizmodo.com/5032891/nissans-eco-gas-pedal-fights-back-to-help-you-save-gas
http://gizmodo.com/5032891/nissans-eco-gas-pedal-fights-back-to-help-you-save-gas
http://gizmodo.com/5032891/nissans-eco-gas-pedal-fights-back-to-help-you-save-gas
http://gizmodo.com/5032891/nissans-eco-gas-pedal-fights-back-to-help-you-save-gas
http://gizmodo.com/5032891/nissans-eco-gas-pedal-fights-back-to-help-you-save-gas
http://gizmodo.com/5032891/nissans-eco-gas-pedal-fights-back-to-help-you-save-gas
http://gizmodo.com/5032891/nissans-eco-gas-pedal-fights-back-to-help-you-save-gas
http://gizmodo.com/5032891/nissans-eco-gas-pedal-fights-back-to-help-you-save-gas
http://gizmodo.com/5032891/nissans-eco-gas-pedal-fights-back-to-help-you-save-gas
http://gizmodo.com/5032891/nissans-eco-gas-pedal-fights-back-to-help-you-save-gas

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 5

Accelerators

 In HPC, an accelerator is hardware component whose role is

to speed up some aspect of the computing workload.

 In the olden days (1980s), supercomputers sometimes had

array processors, which did vector operations on arrays,

and PCs sometimes had floating point accelerators: little

chips that did the floating point calculations in hardware

rather than software.

 More recently, Field Programmable Gate Arrays (FPGAs)

allow reprogramming deep into the hardware.

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 6

Why Accelerators are Good

Accelerators are good because:

 they make your code run faster.

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 7

Why Accelerators are Bad

Accelerators are bad because:

 they’re expensive;

 they’re hard to program;

 your code on them may not be portable to other

accelerators, so the labor you invest in programming them

has a very short half-life.

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 8

The King of the Accelerators

The undisputed champion of accelerators is:

 the graphics processing unit.
http://www.amd.com/us-en/assets/content_type/DigitalMedia/46928a_01_ATI-FirePro_V8700_angled_low_res.gif

http://images.nvidia.com/products/quadro_fx_5800/Quadro_FX5800_low_3qtr.png

http://www.gamecyte.com/wp-content/uploads/2009/01/ibm-sony-toshiba-cell.jpg

http://www.overclockers.ua/news/cpu/106612-Knights-Ferry.jpg

http://www.amd.com/us-en/assets/content_type/DigitalMedia/46928a_01_ATI-FirePro_V8700_angled_low_res.gif
http://www.amd.com/us-en/assets/content_type/DigitalMedia/46928a_01_ATI-FirePro_V8700_angled_low_res.gif
http://www.amd.com/us-en/assets/content_type/DigitalMedia/46928a_01_ATI-FirePro_V8700_angled_low_res.gif
http://www.amd.com/us-en/assets/content_type/DigitalMedia/46928a_01_ATI-FirePro_V8700_angled_low_res.gif
http://www.amd.com/us-en/assets/content_type/DigitalMedia/46928a_01_ATI-FirePro_V8700_angled_low_res.gif
http://images.nvidia.com/products/quadro_fx_5800/Quadro_FX5800_low_3qtr.png
http://www.gamecyte.com/wp-content/uploads/2009/01/ibm-sony-toshiba-cell.jpg
http://www.gamecyte.com/wp-content/uploads/2009/01/ibm-sony-toshiba-cell.jpg
http://www.gamecyte.com/wp-content/uploads/2009/01/ibm-sony-toshiba-cell.jpg
http://www.gamecyte.com/wp-content/uploads/2009/01/ibm-sony-toshiba-cell.jpg
http://www.gamecyte.com/wp-content/uploads/2009/01/ibm-sony-toshiba-cell.jpg
http://www.gamecyte.com/wp-content/uploads/2009/01/ibm-sony-toshiba-cell.jpg
http://www.gamecyte.com/wp-content/uploads/2009/01/ibm-sony-toshiba-cell.jpg
http://www.gamecyte.com/wp-content/uploads/2009/01/ibm-sony-toshiba-cell.jpg
http://www.gamecyte.com/wp-content/uploads/2009/01/ibm-sony-toshiba-cell.jpg
http://www.overclockers.ua/news/cpu/106612-Knights-Ferry.jpg
http://www.overclockers.ua/news/cpu/106612-Knights-Ferry.jpg
http://www.overclockers.ua/news/cpu/106612-Knights-Ferry.jpg
http://www.overclockers.ua/news/cpu/106612-Knights-Ferry.jpg
http://www.overclockers.ua/news/cpu/106612-Knights-Ferry.jpg

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 9

Why GPU?

 Graphics Processing Units (GPUs) were originally

designed to accelerate graphics tasks like image rendering.

 They became very very popular with videogamers, because

they’ve produced better and better images, and lightning

fast.

 And, prices have been extremely good, ranging from three

figures at the low end to four figures at the high end.

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 10

GPUs are Popular

 Chips are expensive to design (hundreds of millions of $$$),

expensive to build the factory for (billions of $$$), but

cheap to produce.

 For example, in 2006 – 2007, GPUs sold at a rate of about

80 million cards per year, generating about $20 billion per

year in revenue.
http://www.xbitlabs.com/news/video/display/20080404234228_Shipments_of_Discrete_Graphi

cs_Cards_on_the_Rise_but_Prices_Down_Jon_Peddie_Research.html

 This means that the GPU companies have been able to

recoup the huge fixed costs.

http://www.xbitlabs.com/news/video/display/20080404234228_Shipments_of_Discrete_Graphics_Cards_on_the_Rise_but_Prices_Down_Jon_Peddie_Research.html
http://www.xbitlabs.com/news/video/display/20080404234228_Shipments_of_Discrete_Graphics_Cards_on_the_Rise_but_Prices_Down_Jon_Peddie_Research.html

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 11

GPU Do Arithmetic

 GPUs mostly do stuff like rendering images.

 This is done through mostly floating point arithmetic – the

same stuff people use supercomputing for!

GPU Programming

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 13

Hard to Program?

 In the olden days – that is, until just the last few years –

programming GPUs meant either:

 using a graphics standard like OpenGL (which is mostly

meant for rendering), or

 getting fairly deep into the graphics rendering pipeline.

 To use a GPU to do general purpose number crunching, you

had to make your number crunching pretend to be graphics.

 This was hard. So most people didn’t bother.

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 14

Easy to Program?

More recently, GPU manufacturers have worked hard to make

GPUs easier to use for general purpose computing.

This is known as General Purpose Graphics Processing Units.

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 15

How to Program a GPU

 Proprietary programming language or extensions
 NVIDIA: CUDA (C/C++)

 AMD/ATI: StreamSDK/Brook+ (C/C++) – seems to be defunct

 OpenCL (Open Computing Language): an industry standard

for doing number crunching on GPUs.

 Portland Group Inc (PGI) Fortran and C compilers with

accelerator directives; PGI CUDA Fortran (Fortran 90

equivalent of NVIDIA’s CUDA C).

 OpenMP version 4.0 may include directives for accelerators.

 HMPP: directive-based like PGI and OpenMP4 but creates

intermediate CUDA or OpenCL code (so portable).

 Others are popping up or in development now ….

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 16

NVIDIA CUDA

 NVIDIA proprietary

 Formerly known as “Compute Unified Device Architecture”

 Extensions to C to allow better control of GPU capabilities

 Modest extensions but major rewriting of the code

 Portland Group Inc (PGI) has released a Fortran

implementation of CUDA available in their Fortran

compiler.

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 17

CUDA Example Part 1

// example1.cpp : Defines the entry point for the console applicati

on.

//

#include "stdafx.h"

#include <stdio.h>

#include <cuda.h>

// Kernel that executes on the CUDA device

__global__ void square_array(float *a, int N)

{

 int idx = blockIdx.x * blockDim.x + threadIdx.x;

 if (idx<N) a[idx] = a[idx] * a[idx];

}

http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/

http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/
http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/
http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/
http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/
http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/
http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/
http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 18

CUDA Example Part 2
// main routine that executes on the host

int main(void)

{
 float *a_h, *a_d; // Pointer to host & device arrays

 const int N = 10; // Number of elements in arrays

 size_t size = N * sizeof(float);

 a_h = (float *)malloc(size); // Allocate array on host

 cudaMalloc((void **) &a_d, size); // Allocate array on device

 // Initialize host array and copy it to CUDA device

 for (int i=0; i<N; i++) a_h[i] = (float)i;

 cudaMemcpy(a_d, a_h, size, cudaMemcpyHostToDevice);

 // Do calculation on device:

 int block_size = 4;

 int n_blocks = N/block_size + (N%block_size == 0 ? 0:1);

 square_array <<< n_blocks, block_size >>> (a_d, N);

 // Retrieve result from device and store it in host array

 cudaMemcpy(a_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);

 // Print results

 for (int i=0; i<N; i++) printf("%d %f\n", i, a_h[i]);

 // Cleanup

 free(a_h); cudaFree(a_d);

}

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 19

AMD/ATI Brook+

 AMD/ATI proprietary

 Formerly known as “Close to Metal” (CTM)

 Extensions to C to allow better control of GPU capabilities

 No Fortran version available

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 20

Brook+ Example Part 1

float4 matmult_kernel (int y, int x, int k,

 float4 M0[], float4 M1[])

{

 float4 total = 0;

 for (int c = 0; c < k / 4; c++)

 {

 total += M0[y][c] * M1[x][c];

 }

 return total;

}

http://developer.amd.com/gpu_assets/Stream_Computing_Overview.pdf

http://developer.amd.com/gpu_assets/Stream_Computing_Overview.pdf

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 21

Brook+ Example Part 2

void matmult (float4 A[], float4 B’[], float4 C[])

{

 for (int i = 0; i < n; i++)

 {

 for (j = 0; j < m / 4; j+)

 {

 launch_thread{

 C[i][j] =

 matmult_kernel(j, i, k, A, B’);}

 }

 }

 sync_threads{}

}

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 22

OpenCL

 Open Computing Language

 Open standard developed by the Khronos Group, which is a

consortium of many companies (including NVIDIA, AMD

and Intel, but also lots of others)

 Initial version of OpenCL standard released in Dec 2008.

 Many companies are creating their own implementations.

 Apple was first to market, with an OpenCL implementation

included in Mac OS X v10.6 (“Snow Leopard”) in 2009.

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 23

OpenCL Example Part 1

// create a compute context with GPU device

context =

 clCreateContextFromType(NULL, CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// create a command queue

queue = clCreateCommandQueue(context, NULL, 0, NULL);

// allocate the buffer memory objects

memobjs[0] = clCreateBuffer(context,

 CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,

 sizeof(float)*2*num_entries, srcA, NULL);

memobjs[1] = clCreateBuffer(context,

 CL_MEM_READ_WRITE,

 sizeof(float)*2*num_entries, NULL, NULL);

// create the compute program

program = clCreateProgramWithSource(context, 1, &fft1D_1024_kernel_src,

 NULL, NULL);

http://en.wikipedia.org/wiki/OpenCL

http://en.wikipedia.org/wiki/OpenCL
http://en.wikipedia.org/wiki/OpenCL
http://en.wikipedia.org/wiki/OpenCL
http://en.wikipedia.org/wiki/OpenCL

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 24

OpenCL Example Part 2

// build the compute program executable

clBuildProgram(program, 0, NULL, NULL, NULL, NULL);

// create the compute kernel

kernel = clCreateKernel(program, "fft1D_1024", NULL);

// set the args values

clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&memobjs[0]);

clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&memobjs[1]);

clSetKernelArg(kernel, 2, sizeof(float)*(local_work_size[0]+1)*16, NULL);

clSetKernelArg(kernel, 3, sizeof(float)*(local_work_size[0]+1)*16, NULL);

// create N-D range object with work-item dimensions and execute kernel

global_work_size[0] = num_entries; local_work_size[0] = 64;

clEnqueueNDRangeKernel(queue, kernel, 1, NULL,

 global_work_size, local_work_size, 0, NULL, NULL);

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 25

OpenCL Example Part 3

// This kernel computes FFT of length 1024. The 1024 length FFT is

// decomposed into calls to a radix 16 function, another radix 16

// function and then a radix 4 function

__kernel void fft1D_1024 (__global float2 *in, __global float2 *out,

 __local float *sMemx, __local float *sMemy) {

 int tid = get_local_id(0);

 int blockIdx = get_group_id(0) * 1024 + tid;

 float2 data[16];

// starting index of data to/from global memory

 in = in + blockIdx;

 out = out + blockIdx;

 globalLoads(data, in, 64); // coalesced global reads

 fftRadix16Pass(data); // in-place radix-16 pass

 twiddleFactorMul(data, tid, 1024, 0);

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 26

OpenCL Example Part 4

 // local shuffle using local memory

 localShuffle(data, sMemx, sMemy, tid, (((tid & 15) * 65) + (tid >>

4)));

 fftRadix16Pass(data); // in-place radix-16 pass

 twiddleFactorMul(data, tid, 64, 4); // twiddle factor multiplication

 localShuffle(data, sMemx, sMemy, tid, (((tid >> 4) * 64) + (tid &

15)));

 // four radix-4 function calls

 fftRadix4Pass(data); // radix-4 function number 1

 fftRadix4Pass(data + 4); // radix-4 function number 2

 fftRadix4Pass(data + 8); // radix-4 function number 3

 fftRadix4Pass(data + 12); // radix-4 function number 4

 // coalesced global writes

 globalStores(data, out, 64);

}

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 27

Portland Group Accelerator Directives

 Proprietary directives in Fortran and C

 Similar to OpenMP in structure

 If the compiler doesn’t understand these directives, it
ignores them, so the same code can work with an accelerator
or without, and with the PGI compilers or other compilers.

 In principle, this will be able to work on a variety of
accelerators, but the first instance is NVIDIA; PGI recently
announced a deal with AMD/ATI.

 The directives tell the compiler what parts of the code
happen in the accelerator; the rest happens in the regular
hardware.

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 28

PGI Accelerator Example

!$acc region

 do k = 1,n1

 do i = 1,n3

 c(i,k) = 0.0

 do j = 1,n2

 c(i,k) = c(i,k) +

& a(i,j) * b(j,k)

 enddo

 enddo

 enddo

!$acc end region

http://www.pgroup.com/resources/accel.htm

http://www.pgroup.com/resources/accel.htm

OpenMP 4.0 Accelerator Directives

 OpenMP’s 4.0 standard is very much in discussion (and flux).

 It may end up with accelerator directives.

 It’s too soon to say what the details will be, if it happens at all.

 But, if it happens, then codes amenable to accelerator

directives will be able to get substantial speedups with very

modest coding effort.

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 29

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 30

OpenMP 4.0 Accelerator Example

!$omp acc_region

 do k = 1,n1

 do i = 1,n3

 c(i,k) = 0.0

 do j = 1,n2

 c(i,k) = c(i,k) +

& a(i,j) * b(j,k)

 enddo

 enddo

 enddo

!$omp end acc_region

http://www.pgroup.com/resources/accel.htm http://www.cse.scitech.ac.uk/events/GPU_2010/12_Hart.pdf

http://www.pgroup.com/resources/accel.htm
http://www.cse.scitech.ac.uk/events/GPU_2010/12_Hart.pdf

Digging Deeper:
CUDA on NVIDIA

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 32

NVIDIA Tesla

 NVIDIA now offers a GPU platform named Tesla.

 It consists essentially of their highest end graphics card,

minus the video out connector.

http://images.nvidia.com/products/tesla_C2050_

C2070/Tesla_C2050_C2070_3qtr_low_new.png

http://images.nvidia.com/products/geforce_gtx_

480/geforce_gtx_480_3qtr_low.png

http://images.nvidia.com/products/tesla_C2050_C2070/Tesla_C2050_C2070_3qtr_low_new.png
http://images.nvidia.com/products/tesla_C2050_C2070/Tesla_C2050_C2070_3qtr_low_new.png
http://images.nvidia.com/products/geforce_gtx_480/geforce_gtx_480_3qtr_low.png
http://images.nvidia.com/products/geforce_gtx_480/geforce_gtx_480_3qtr_low.png

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 33

NVIDIA Tesla C2050 Card Specs

 448 GPU cores

 1.15 GHz

 Single precision floating point performance:

1030.4 GFLOPs (2 single precision flops per clock per core)

 Double precision floating point performance:

515.2 GFLOPs (1 double precision flop per clock per core)

 Internal RAM: 3 GB DDR5

 Internal RAM speed: 144 GB/sec (compared 21-25 GB/sec

for regular RAM)

 Has to be plugged into a PCIe slot (at most 8 GB/sec per

GPU card)

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 34

NVIDIA Tesla S2050 Server Specs

 4 C2050 cards inside a 1U server (looks like a Sooner node)

 1.15 GHz

 Single Precision (SP) floating point performance:

4121.6 GFLOPs

 Double Precision (DP) floating point performance:

2060.8 GFLOPs

 Internal RAM: 12 GB total (3 GB per GPU card)

 Internal RAM speed: 576 GB/sec aggregate

 Has to be plugged into two PCIe slots

(at most 16 GB/sec for 4 GPU cards)

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 35

Compare x86 vs S2050

Let’s compare the best dual socket x86 server today vs S2050.

Dual socket, AMD

2.3 GHz 12-core

NVIDIA Tesla S2050

Peak DP FLOPs 220.8 GFLOPs DP 2060.8 GFLOPs DP (9.3x)

Peak SP FLOPS 441.6 GFLOPs SP 4121.6 GFLOPs SP (9.3x)

Peak RAM BW 25 GB/sec 576 GB/sec (23x)

Peak PCIe BW N/A 16 GB/sec

Needs x86 server to

attach to?

No Yes

Power/Heat ~450 W ~900 W + ~400 W (~2.9x)

Code portable? Yes No (CUDA)

Yes (PGI, OpenCL)

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 36

Compare x86 vs S2050

Here are some interesting measures:

Dual socket, AMD

2.3 GHz 12-core

NVIDIA Tesla S2050

DP GFLOPs/Watt ~0.5 GFLOPs/Watt ~1.6 GFLOPs/Watt (~3x)

SP GFLOPS/Watt ~1 GFLOPs/Watt ~3.2 GFLOPs/Watt (~3x)

DP GFLOPs/sq ft ~590 GFLOPs/sq ft ~2750 GFLOPs/sq ft (4.7x)

SP GFLOPs/sq ft ~1180 GFLOPs/sq ft ~5500 GFLOPs/sq ft (4.7x)

Racks per PFLOP DP 142 racks/PFLOP DP 32 racks/PFLOP DP (23%)

Racks per PFLOP SP 71 racks/PFLOP SP 16 racks/PFLOP SP (23%)

Kepler and Maxwell

 NVIDIA’s 20-series is also known by the codename

“Fermi.” It runs at about 0.5 TFLOPs per GPU card (peak).

 The next generation, to be released in 2011, is codenamed

“Kepler” and will be capable of something like 1.4 TFLOPs

double precision per GPU card.

 After “Kepler” will come “Maxwell” in 2013, capable of

something like 4 TFLOPs double precision per GPU card.

 So, the increase in performance is likely to be roughly

2.5x – 3x per generation, roughly every two years.

http://www.vizworld.com/2010/09/thoughts-nvidias-kepler-maxwell-gpus/

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 37

http://www.vizworld.com/2010/09/thoughts-nvidias-kepler-maxwell-gpus/
http://www.vizworld.com/2010/09/thoughts-nvidias-kepler-maxwell-gpus/
http://www.vizworld.com/2010/09/thoughts-nvidias-kepler-maxwell-gpus/
http://www.vizworld.com/2010/09/thoughts-nvidias-kepler-maxwell-gpus/
http://www.vizworld.com/2010/09/thoughts-nvidias-kepler-maxwell-gpus/
http://www.vizworld.com/2010/09/thoughts-nvidias-kepler-maxwell-gpus/
http://www.vizworld.com/2010/09/thoughts-nvidias-kepler-maxwell-gpus/
http://www.vizworld.com/2010/09/thoughts-nvidias-kepler-maxwell-gpus/
http://www.vizworld.com/2010/09/thoughts-nvidias-kepler-maxwell-gpus/

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 38

What Are the Downsides?

 You have to rewrite your code into CUDA or OpenCL or

PGI accelerator directives (or someday maybe OpenMP).

 CUDA: Proprietary, but maybe portable soon

 OpenCL: portable but cumbersome

 PGI accelerator directives: not clear whether you can

have most of the code live inside the GPUs.

 BUT: Many groups are coming out with GPGPU code

development tools that may help a lot, such as:

 Fortran-to-CUDA-C converter (NCAR)

 CUDA C automatic optimizer (memory, threading etc)

 OpenMP-to-CUDA converter

 CUDA-to-x86 converter (CUDA code on non-CUDA system)

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 39

Programming for Performance

The biggest single performance bottleneck on GPU cards today

is the PCIe slot:

 PCIe 2.0 x16: 8 GB/sec

 1600 MHz Front Side Bus: 25 GB/sec

 GDDR5 GPU card RAM: 144 GB/sec per card

Your goal:

 At startup, move the data from x86 server RAM into GPU

RAM.

 Do almost all the work inside the GPU.

 Use the x86 server only for I/O and message passing, to

minimize the amount of data moved through the PCIe slot.

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 40

Does CUDA Help?

Example Applications URL Speedup
Seismic Database 66x – 100x

Mobile Phone Antenna Simulation 45x

Molecular Dynamics 21x – 100x

Neuron Simulation 100x

MRI Processing 245x – 415x

Atmospheric Cloud Simulation 50x

http://www.headwave.com

http://www.accelware.com

http://www.ks.uiuc.edu/Research/vmd

http://www.evolvedmachines.com

http://bic-test.beckman.uiuc.edu

http://www.cs.clemson.edu/~jesteel/clouds.html

http://www.nvidia.com/object/IO_43499.html

http://www.nvidia.com/object/IO_43499.html

CUDA
Thread Hierarchy and

Memory Hierarchy

Some of these slides provided by Paul Gray, University of Northern Iowa

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011

Source: NVIDIA CUDA Programming Guide

CPU vs GPU Layout

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 43

Buzzword: Kernel

In CUDA, a kernel is code (typically a function) that can be

run inside the GPU.

Typically, the kernel code operates in lock-step on the stream

processors inside the GPU.

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 44

Buzzword: Thread

In CUDA, a thread is an execution of a kernel with a given

index.

Each thread uses its index to access a specific subset of the

elements of a target array, such that the collection of all

threads cooperatively processes the entire data set.

So these are very much like threads in the OpenMP or pthreads

sense – they even have shared variables and private

variables.

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 45

Buzzword: Block

In CUDA, a block is a group of threads.

 Just like OpenMP threads, these could execute concurrently

or independently, and in no particular order.

 Threads can be coordinated somewhat, using the

_syncthreads() function as a barrier, making all

threads stop at a certain point in the kernel before moving

on en mass. (This is like what happens at the end of an

OpenMP loop.)

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 46

Buzzword: Grid

In CUDA, a grid is a group of (thread) blocks, with no

synchronization at all among the blocks.

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011

 Grids map to GPUs

 Blocks map to the

MultiProcessors (MP)

 Blocks are never split across

MPs, but an MP can have

multiple blocks

 Threads map to Stream

Processors (SP)

 Warps are groups of (32)

threads that execute

simultaneously
Image Source:

NVIDIA CUDA Programming Guide

NVIDIA GPU Hierarchy

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011

 blockIdx.x, blockIdx.y, blockIdx.z are built-in

variables that returns the block ID in the x-axis, y-axis and z-

axis of the block that is executing the given block of code.

 threadIdx.x, threadIdx.y, threadidx.z are

built-in variables that return the thread ID in the x-axis, y-axis

and z-axis of the thread that is being executed by this stream

processor in this particular block.

So, you can express your collection of blocks, and your

collection of threads within a block, as a 1D array, a 2D array

or a 3D array.

These can be helpful when thinking of your data as 2D or 3D.

CUDA Built-in Variables

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 49

__global__ Keyword

In CUDA, if a function is declared with the __global__

keyword, that means that it’s intended to be executed inside

a GPU.

In CUDA, the term for the GPU is device, and the term for the

x86 server is host.

So, a kernel runs on a device, while the main function,

and so on, run on the host.

Note that a host can play host to multiple devices; for example,

an S2050 server contains 4 C2050 GPU cards, and if a

single host has two PCIe slots, then both of the PCIe plugs

of the S2050 can be plugged into that same host.

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 50

Copying Data from Host to Device

If data need to move from the host (where presumably the data

are initially input or generated), then a copy has to exist in

both places.

Typically, what’s copied are arrays, though of course you can

also copy a scalar (the address of which is treated as an

array of length 1).

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 51

CUDA Memory Hierarchy #1

CUDA has a hierarchy of
several kinds of memory:

 Host memory (x86 server)

 Device memory (GPU)

 Global: visible to all threads
in all blocks –
largest, slowest

 Shared: visible to all threads
in a particular block –
medium size, medium speed

 Local: visible only to a
particular thread –
smallest, fastest

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 52

CUDA Memory Hierarchy #2

CUDA has a hierarchy of

several kinds of memory:

 Host memory (x86 server)

 Device memory (GPU)

 Constant: visible to all

threads in all blocks;

read only

 Texture: visible to all

threads in all blocks;

read only

CUDA Example:
Matrix-Matrix

Multiply

http://developer.download.nvidia.com/compute/cuda/sdk/

website/Linear_Algebra.html#matrixMul

http://developer.download.nvidia.com/compute/cuda/sdk/website/Linear_Algebra.html
http://developer.download.nvidia.com/compute/cuda/sdk/website/Linear_Algebra.html

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 54

Matrix-Matrix Multiply Main Part 1

 float* host_A;

 float* host_B;

 float* host_B;

 float* device_A;

 float* device_B;

 float* device_C;

 host_A = (float*) malloc(mem_size_A);

 host_B = (float*) malloc(mem_size_B);

 host_C = (float*) malloc(mem_size_C);

 cudaMalloc((void**) &device_A, mem_size_A);

 cudaMalloc((void**) &device_B, mem_size_B);

 cudamalloc((void**) &device_C, mem_size_C);

 // Set up the initial values of A and B here.

 // Henry says: I’ve oversimplified this a bit from

 // the original example code.

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 55

Matrix-Matrix Multiply Main Part 2

 // copy host memory to device

 cudaMemcpy(device_A, host_A, mem_size_A,

 cudaMemcpyHostToDevice);

 cudaMemcpy(device_B, host_B, mem_size_B,

 cudaMemcpyHostToDevice);

 // setup execution parameters

 dim3 threads(BLOCK_SIZE, BLOCK_SIZE);

 dim3 grid(WC / threads.x, HC / threads.y);

 // execute the kernel

 matrixMul<<< grid, threads >>>(device_C,

 device_A, device_B, WA, WB);

 // copy result from device to host

 cudaMemcpy(host_C, device_C, mem_size_C,

 cudaMemcpyDeviceToHost);

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 56

Matrix Matrix Multiply Kernel Part 1
__global__ void matrixMul(float* C, float* A, float* B, int wA, int wB)

{
 // Block index
 int bx = blockIdx.x;

 int by = blockIdx.y;

 // Thread index
 int tx = threadIdx.x;

 int ty = threadIdx.y;

 // Index of the first sub-matrix of A processed by the block
 int aBegin = wA * BLOCK_SIZE * by;

 // Index of the last sub-matrix of A processed by the block
 int aEnd = aBegin + wA - 1;

 // Step size used to iterate through the sub-matrices of A
 int aStep = BLOCK_SIZE;

 // Index of the first sub-matrix of B processed by the block
 int bBegin = BLOCK_SIZE * bx;

 // Step size used to iterate through the sub-matrices of B
 int bStep = BLOCK_SIZE * wB;

 // Csub is used to store the element of the block sub-matrix
 // that is computed by the thread

 float Csub = 0;

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 57

Matrix Matrix Multiply Kernel Part 2
 // Loop over all the sub-matrices of A and B

 // required to compute the block sub-matrix

 for (int a = aBegin, b = bBegin;

 a <= aEnd;

 a += aStep, b += bStep) {

 // Declaration of the shared memory array As used to

 // store the sub-matrix of A

 __shared__ float As[BLOCK_SIZE][BLOCK_SIZE];

 // Declaration of the shared memory array Bs used to
 // store the sub-matrix of B

 __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

 // Load the matrices from device memory
 // to shared memory; each thread loads

 // one element of each matrix

 AS(ty, tx) = A[a + wA * ty + tx];

 BS(ty, tx) = B[b + wB * ty + tx];

 // Synchronize to make sure the matrices are loaded
 __syncthreads();

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 58

Matrix Matrix Multiply Kernel Part 3
 // Multiply the two matrices together;

 // each thread computes one element

 // of the block sub-matrix

 for (int k = 0; k < BLOCK_SIZE; ++k)

 Csub += AS(ty, k) * BS(k, tx);

 // Synchronize to make sure that the preceding

 // computation is done before loading two new

 // sub-matrices of A and B in the next iteration

 __syncthreads();

 }

 // Write the block sub-matrix to device memory;

 // each thread writes one element

 int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;

 C[c + wB * ty + tx] = Csub;

}

Parallel Programming: GPGPU

OK Supercomputing Symposium, Tue Oct 11 2011 59

Would We Really Do It This Way?

We wouldn’t really do matrix-matrix multiply this way.

NVIDIA has developed a CUDA implementation of the BLAS

libraries, which include a highly tuned matrix-matrix

multiply routine.

(We’ll learn about BLAS next time.)

There’s also a CUDA FFT library, if your code needs Fast

Fourier Transforms.

Thanks for your
attention!

Questions?

