I;?lalle: Prcégramnt\mg
uster Computin
QJ| Stupid Compiler TElcks ¢

Henry Neeman, University of Oklahoma

‘Charlie Peck, Earlham College
Tuesday October 11 2011

C OLLEGE

l' INFORMATION
B TECHNOLOGY

4

Q) Outline

= Dependency Analysis
= What is Dependency Analysis?
= Control Dependencies
= Data Dependencies

= Stupid Compiler Tricks
= Tricks the Compiler Plays
= Tricks You Play With the Compiler
= Profiling

Parallel Programming: Compilers
OK Supercomputing Symposium, Tue Oct 11 2011

Q|| Dependency Analysis

@ What Is Dependency Analysis?

Dependency analysis describes of how different parts of a
program affect one another, and how various parts require
other parts in order to operate correctly.

A control dependency governs how different sequences of
Instructions affect each other.

A data dependency governs how different pieces of data affect
each other.

Much of this discussion is from references [1] and [6].

e omeny OK Supercomputing Symposium, Tue Oct 11 2011

TECHNOLOGY
RSITY OF OKLAHOMA

g oD ™ 4 Parallel Programming: Compilers EARLHAM -
. : c: Q’ ’ COLTLETGE :i
2 I ‘\‘f:\‘*\\\ l[t }ﬂ/‘ %

Control Dependencies

Every program has a well-defined flow of control that moves
from instruction to instruction to instruction.

This flow can be affected by several kinds of operations:
= Loops
= Branches (if, select case/switch)
= Function/subroutine calls
= 1/O (typically implemented as calls)
Dependencies affect parallelization!

nomeior OK Supercomputing Symposium, Tue Oct 11 2011

R o o) Parallel Programming: Compilers EARLHAM -
. - Ql ; COLLEGE =

) Branch Dependency (F90)

y = 7
IF (x /= 0) THEN
y=1.0 / x
END IF
Note that (x /= 0) means “x not equal to zero.”
The value of y depends on what the condition (x /= 0)
evaluates to:

= If the condition (x /= 0) evaluatesto . TRUE.,
thenyissetto1.0 / =x.(1divided by x).

= Otherwise, y remains 7.

Parallel Programming: Compilers EARLHAM
OK Supercomputing Symposium, Tue Oct 112011 =~~~ " °° 4/‘

) Branch Dependency (C)

y = 7;
if (x '= 0) {

}

Note that (x !'= 0) means “x not equal to zero.”

The value of y depends on what the condition (x '= 0)
evaluates to:

= If the condition (x '= 0) evaluates to true,
thenyissetto1.0 / x(1divided by x).

= Otherwise, y remains 7.

Parallel Programming: Compilers Efxﬁlilzlfxg\d
OK Supercomputing Symposium, Tue Oct 11 2011 4/‘

@ Loop Carried Dependency (F90)

DO i = 2, length
a(i) = a(i-1) + b(1i)
END DO

Here, each iteration of the loop depends on the previous:
Iteration 1=3 depends on iteration i=2,
Iteration 1=4 depends on iteration i=3,
Iteration 1=5 depends on iteration i=4, etc.

This is sometimes called a loop carried dependency.

There Is no way to execute iteration i until after iteration 1 -1 has
completed, so this loop can’t be parallelized.

LLLLLLL

OK Supercomputing Symposium, Tue Oct 11 2011

Parallel Programming: Compilers EARLHAM (,

) _oop Carried Dependency (C)

for (1 = 1; i < length; i++) {
ali] = a[i-1] + b[1i];
}

Here, each iteration of the loop depends on the previous:
Iteration 1=3 depends on iteration i=2,
Iteration 1=4 depends on iteration i=3,
Iteration 1=5 depends on iteration i=4, etc.

This is sometimes called a loop carried dependency.

There Is no way to execute iteration i until after iteration 1 -1 has
completed, so this loop can’t be parallelized.

LLLLLLL

Parallel Programming: Compilers EARLHAM °
OK Supercomputing Symposium, Tue Oct 11 2011 4/1

Q) Why Do We Care?

Loops are the favorite control structures of High Performance
Computing, because compilers know how to optimize their
performance using instruction-level parallelism:
superscalar, pipelining and vectorization can give excellent
speedup.

Loop carried dependencies affect whether a loop can be
parallelized, and how much.

OSCERE Ql; Parallel Programming: Compilers EARLHAM
—ua - ' i . . COLLEGE
S e llt AR OK Supercomputing Symposium, Tue Oct 11 2011

@ Loop or Branch Dependency? (F)

Is this a loop carried dependency or a
branch dependency?

DO i =1, length
IF (x(i) /= 0) THEN
y(i) = 1.0 / x(i)
END IF

END DO

LLLLLLL

OK Supercomputing Symposium, Tue Oct 11 2011

Parallel Programming: Compilers EARLHAM 1i
11
g

@ Loop or Branch Dependency? (C)

Is this a loop carried dependency or a
branch dependency?

for (i = 0; i < length; i++) {
if (x[i] '= 0) {
v[i] = 1.0 / x[i];

 neomaanon QK Supercomputing Symposium, Tue Oct 112011 “ """ ° "

TTTTTTTTTTTTTTTTTTTTTTT

Parallel Programming: Compilers EARLHAM 1i
12
g

Call Dependency Example (F90)

x =5
y = myfunction (7)
z = 22

The flow of the program is interrupted by the call to
my function, which takes the execution to somewhere

else in the program.

It’s similar to a branch dependency.

1 nmaney OK Supercomputing Symposium, Tue Oct 11 2011 corrEer

THE UNIVERSITY OF OKLAHOMA

13

@77 Parallel Programming: Compilers EARLHAM “

Call Dependency Example (C)

x = 5;
y = myfunction(7);
zZ = 22;

The flow of the program is interrupted by the call to
my function, which takes the execution to somewhere

else in the program.

It’s similar to a branch dependency.

1 nmaney OK Supercomputing Symposium, Tue Oct 11 2011 corrEer

THE UNIVERSITY OF OKLAHOMA

14

@77 Parallel Programming: Compilers EARLHAM “

1/O Dependency (F90)

Xx =a+b
PRINT *, x
y =c+d

Typically, 1/0 is implemented by hidden subroutine calls, so
we can think of this as equivalent to a call dependency.

1 nmaney OK Supercomputing Symposium, Tue Oct 11 2011 corrEer

THE UNIVERSITY OF OKLAHOMA

15

@77 Parallel Programming: Compilers EARLHAM “

/O Dependency (C)

X =a + b;
printf ("Sf", x);
y = c¢c + d;

Typically, 1/0 is implemented by hidden subroutine calls, so
we can think of this as equivalent to a call dependency.

1 nmaney OK Supercomputing Symposium, Tue Oct 11 2011 corrEer

THE UNIVERSITY OF OKLAHOMA

16

@77 Parallel Programming: Compilers EARLHAM “

Reductions Aren’t Dependencies

array sum = 0
DO i =1, length
array sum = array sum + array (i)

END DO
A reduction is an operation that converts an array to a scalar.

Other kinds of reductions: product, .AND., .OR., minimum,
maximum, index of minimum, index of maximum, number of
occurrences of a particular value, etc.

Reductions are so common that hardware and compilers are
optimized to handle them.

Also, they aren’t really dependencies, because the order in
which the individual operations are performed doesn’t matter.

OK Supercomputing Symposium, Tue Oct 112011 """~

8 R T4 Parallel Programming: Compilers EARLHAM
S K13 ' l[t INFORMATION

@| Reductions Aren’t Dependencies

array sum = 0;
for (I = 0; i < length; i++) {
array sum = array sum + arrayl[i];

}
A reduction is an operation that converts an array to a scalar.

Other kinds of reductions: product, &&, | |, minimum,
maximum, index of minimum, index of maximum, number of
occurrences of a particular value, etc.

Reductions are so common that hardware and compilers are
optimized to handle them.

Also, they aren’t really dependencies, because the order in
which the individual operations are performed doesn’t matter.

R o Ql; Parallel Programming: Compilers EARLHAM -
- i X ’ . . COLLEGE =
et llt mromeanay - OK Supercomputing Symposium, Tue Oct 11 2011 4/‘

TECHNOLOGY
RSITY OF OKLAHOMA

") Data Dependencies (F90)

“A data dependence occurs when an instruction 1s dependent
on data from a previous instruction and therefore cannot be
moved before the earlier instruction [or executed In
parallel].” []

a=x+y + cos(z)

b=a*c

The value of b depends on the value of a, so these two
statements must be executed in order.

5§OS(ER§ @ Parallel Programming: Compilers Efxﬁlilzlfxg\d
llt}iz‘a.mtggv OK Supercomputing Symposium, Tue Oct 11 2011

") Data Dependencies (C)

“A data dependence occurs when an instruction 1s dependent
on data from a previous instruction and therefore cannot be
moved before the earlier instruction [or executed In
parallel].” []

a=x+y + cos(z);

b=a*c;

The value of b depends on the value of a, so these two
statements must be executed in order.

OSCERE Ql; Parallel Programming: Compilers EARLHAM
—wm - ' i . . COLLEGE
K llt AR OK Supercomputing Symposium, Tue Oct 11 2011

Q) Output Dependencies (F90)

x =a /b
= x + 2
=d - e

no
I

Notice that x is assigned two different values, but only one

of them is retained after these statements are done executing.

In this context, the final value of x is the “output.”

Again, we are forced to execute in order.

g;QE\OSCEF;EI’: Ql; Parallel Programming: Compilers EARLHAM
—p. < X i . - COLLEGE =
R llt fiomeoey OK Supercomputing Symposium, Tue Oct 11 2011 4/‘

21

Q) Output Dependencies (C)

x = a / b;
= x + 2;
=d - e;

no
I

Notice that x is assigned two different values, but only one

of them is retained after these statements are done executing.

In this context, the final value of x is the “output.”

Again, we are forced to execute in order.

g;QE\OSCEF;EI’: Ql; Parallel Programming: Compilers EARLHAM
—p. < X i . - COLLEGE =
R llt fiomeoey OK Supercomputing Symposium, Tue Oct 11 2011 4/‘

22

) Why Does Order Matter?

= Dependencies can affect whether we can execute a
particular part of the program in parallel.

= |If we cannot execute that part of the program in parallel,
then i1t’ll be SLOW.

1 nmaney OK Supercomputing Symposium, Tue Oct 11 2011 corrEer

THE UNIVERSITY OF OKLAHOMA

23

%77 Parallel Programming: Compilers EARLHAM 0

) L_oop Dependency Example

if ((dst == srcl) && (dst == src2)) {
for (index = 1; index < length; index++) ({
dst[index] = dst[index-1] + dst[index];
}

else if (dst == srcl) {
for (index = 1; index < length; index++) {
} dst[index] = dst[index-1] + src2[index];
}
else if (dst == src2) {
for (index = 1; index < length; index++) {
} dst[index] = srcl[index-1] + dst[index];
}
else if (srcl == src2) {
for (index = 1; index < length; index++) {
dst[index = srcl[index-1] + srcl[index];

}

else {
for (index = 1; index < length; index++) {
dst[index] = srcl[index-1] + src2[index];

ooad Parallel Programming: Compilers EARLHAM
g | ! weonsney OK Supercomputing Symposium, Tue Oct 11 2011 °F 4/1 24

\\\\\\\\\\\\\\\\\\\\\\\\\\

df ((dst == srcl) && (dst == src2)) {
for (index = 1; index < length; index++) {
dst[index] = dst[index-1] + dst[index];

else if (dst == srcl) {
for (index = 1; index < length; index++) {
dst[index] = dst[index-1] + src2[index];
}

}
else if (dst == src2) {

for (index = 1; index < length; index++) {
dst[index] = srcl[index-1] + dst[index];
}

}

else if (srcl == src2) {
for (index = 1; index < length; index++) {
dst[index] = srcl[index-1] + srcl[index];
}

else {
for (index = 1; index < length; index++) {
dst[index] = srcl[index-1] + src2[index];

}
}
The various versions of the loop either:
= do have loop carried dependencies, or

m don’t have loop carried dependencies.

o) Parallel Programming: Compilers EARLHAM

Q’l! Jeomenow OK Supercomputing Symposium, Tue Oct 112011 ©° """

THE UNIVERSITY OF OKLAHOMA

Q) Loop Dep Example (cont’d)

| -
]

@

L_oop Dependency Performance

Better

MFLOPs

Loop Carried Dependency Performance

200
180
160
140

W Pentium3 500 MHz
B POWER4

B Pentium4 2GHz

W EM64T 3.2 GHz

120
100

Q3 J Parallel Programming: Compilers cha&ﬁ]i@éy o
Plissmazer OK Supercomputing Symposium, Tue Oct 11 2011 4(‘ 26

TTTTTTTTTTTTTTTTTTTTTTT

Stupid Compiler

Q|| Tricks

Q) Stupid Compiler Tricks

= Tricks Compilers Play
= Scalar Optimizations
= Loop Optimizations
= Inlining
= Tricks You Can Play with Compilers

= Profiling
= Hardware counters

LLLLLLL

OK Supercomputing Symposium, Tue Oct 11 2011 28

Parallel Programming: Compilers EARLHAM ”
A

Compiler Design

The people who design compilers have a lot of experience
working with the languages commonly used in High
Performance Computing:

= Fortran: 50ish years
= C: 40ish years
= C++:. 25ish years, plus C experience

So, they’ve come up with clever ways to make programs
run faster.

LLLLLLL

Parallel Programming: Compilers EARLHAM
OK Supercomputing Symposium, Tue Oct 11 2011 4/‘

29

Q|| Tricks Compilers Play

Q) Scalar Optimizations

= Copy Propagation

= Constant Folding

= Dead Code Removal

= Strength Reduction

= Common Subexpression Elimination
= Variable Renaming

= Loop Optimizations

Not every compiler does all of these, so it sometimes can be
worth doing these by hand.

Much of this discussion is from [2] and [6].

OSCERE Ql; Parallel Programming: Compilers EARLHAM
= -) i . . COLLESGE
s llt fomooey OK Supercomputing Symposium, Tue Oct 11 2011

Q) Copy Propagation (F90)

X =Y
Before z =1+ x

Has data dependency
Compile
X =Y

No data dependency

' ll neomaanon QK Supercomputing Symposium, Tue Oct 112011 “ """ ° "

TTTTTTTTTTTTTTTTTTTTTTT

oo P 4 Parallel Programming: Compilers EARLHAM 1I
32
g

Q) Copy Propagation (C)

X =Y/

Before z =1 + x;

Has data dependency
Compile
X =YV,
After z=1+y;

No data dependency

oo P 4 Parallel Programming: Compilers EARLHAM
YR omaney 0K Supercomputing Symposium, Tue Oct 11 2011

TTTTTTTTTTTTTTTTTTTTTTT

Q) Constant Folding (F90)

Before After
add = 100 sum = 300
aug = 200
sum = add + aug

Notice that sum Is actually the sum of two constants, so the

compiler can precalculate it, eliminating the addition that
otherwise would be performed at runtime.

X P 4 Parallel Programming: Compilers Ezc’ﬁxﬁ]il;hfxg\/i
' l' ', fomaoe OK Supercomputing Symposium, Tue Oct 11 2011 4/1

34

Q) Constant Folding (C)

Before After
add = 100; sum = 300;
aug = 200;
sum = add + aug;

Notice that sum Is actually the sum of two constants, so the
compiler can precalculate it, eliminating the addition that
otherwise would be performed at runtime.

1 nmaney OK Supercomputing Symposium, Tue Oct 11 2011 corrEer

THE UNIVERSITY OF OKLAHOMA

- ? Parallel Programming: Compilers EARLHAM ”

35

) Dead Code Removal (F90)

Before After
var = 5 var = 5
PRINT *, wvar PRINT *, wvar
STOP STOP

PRINT *, var * 2

Since the last statement never executes, the compiler can
eliminate it.

%77 Parallel Programming: Compilers EARLHAM

THE UNIVERSITY OF OKLAHOMA

T Jeomenow OK Supercomputing Symposium, Tue Oct 112011 ©° """ 4/1

36

) Dead Code Removal (C)

Before After
var = 5; var = 5;
printf ("%$d", wvar); printf ("%d", wvar);
exit(-1); exit(-1);

printf ("%d", var * 2);

Since the last statement never executes, the compiler can
eliminate it.

1 nmaney OK Supercomputing Symposium, Tue Oct 11 2011 corrEer

THE UNIVERSITY OF OKLAHOMA

%77 Parallel Programming: Compilers EARLHAM 1i
| 37
g

Q) Strength Reduction (F90)

Before After
x =y ** 2.0 X =y *y
a=c/ 2.0 a=c¢* 0.5

Raising one value to the power of another, or dividing, is more
expensive than multiplying. If the compiler can tell that the
power is a small integer, or that the denominator is a constant,

it’1l use multiplication instead.

Note: In Fortran, “y ** 2.0 means “y to the power 2.”

oGY
HOMA

g;QE\OSCEF;EI’: Ql; Parallel Programming: Compilers EARLHAM
—a L X w . - e o i 44 mmaa. COLLEGE =
K. llt fomooey OK Supercomputing Symposium, Tue Oct 11 2011 4/‘

38

Strength Reduction (C)

Before After
x = pow(y, 2.0); x=y *y;
a=c/ 2.0; a=c¢* 0.5;

Raising one value to the power of another, or dividing, is more
expensive than multiplying. If the compiler can tell that the
power is a small integer, or that the denominator is a constant,

it’1l use multiplication instead.

Note: In C, “pow (y, 2.0)” means “y to the power 2.”

LLLLLLL

Parallel Programming: Compilers EARLHAM
OK Supercomputing Symposium, Tue Oct 11 2011 4/‘

39

@ Common Subexpression Elimination (F90)

Before After
d=c * (a/ b) adivb = a / b
e = (a/ b)) *¥2.0 d = ¢ * adivb

e = adivb * 2.0

The subexpression (a / b) occurs in both assignment
statements, so there’s no point in calculating it twice.

This is typically only worth doing if the common
subexpression is expensive to calculate.

OK Supercomputing Symposium, Tue Oct 112011 -~ """ °" 40

Parallel Programming: Compilers EARLHAM -
A

Common Subexpression Elimination (C)

Before After
d=c * (a/ b); adivb = a / b;
e = (a/ b) * 2.0; d = c * adivb;

e = adivb * 2.0;

The subexpression (a / b) occurs in both assignment
statements, so there’s no point in calculating it twice.

This is typically only worth doing if the common
subexpression is expensive to calculate.

LLLLLLL

OK Supercomputing Symposium, Tue Oct 11 2011 41

Parallel Programming: Compilers EARLHAM -
A

) Variable Renaming (F90)

Before After
x =y * z x0 =y * z
q=r + x * 2 q=r + x0 * 2
x =a+b x=a+b

The original code has an output dependency, while the new
code doesn’t — but the final value of x is still correct.

1 nmaney OK Supercomputing Symposium, Tue Oct 11 2011 corrEer

THE UNIVERSITY OF OKLAHOMA

%77 Parallel Programming: Compilers EARLHAM 1i
| 42
g

) Variable Renaming (C)

Before After
xX =y * z; x0 =y * z;
q=r + x * 2; q=r + x0 * 2;
Xx = a + b; Xx = a + b;

The original code has an output dependency, while the new
code doesn’t — but the final value of x is still correct.

1 nmaney OK Supercomputing Symposium, Tue Oct 11 2011 corrEer

THE UNIVERSITY OF OKLAHOMA

43

%77 Parallel Programming: Compilers EARLHAM 1i
g

) LLoop Optimizations

Hoisting Loop Invariant Code
Unswitching

Iteration Peeling

Index Set Splitting

Loop Interchange

Unrolling

Loop Fusion

Loop Fission

Not every compiler does all of these, so it sometimes can be

worth doing some of these by hand.
Much of this discussion is from [3] and [6].

COLLESGE

nomeior OK Supercomputing Symposium, Tue Oct 11 2011

4 Parallel Programming: Compilers EARLHAM
EUOSCER;\; % Q;-Iit/ g g p

@ Hoisting Loop Invariant Code (F90)

DO i =1, n

Code that . .
= b
doesn’t change Before ®

Inside the loop is

known as END DO
loop invariant.
It doesn’t need
to be calculated temp = ¢ * d
over and over. DO i=1, n
After a(i) = b(i) + temp
END DO
e = g(n)

LLLLLLL

OK Supercomputing Symposium, Tue Oct 11 2011 45

Parallel Programming: Compilers EARLHAM @

@ Hoisting Loop Invariant Code (C)

for (i = 0; i < my i++) {

Code that a[i] = D[i] @
doesn’t change Before

Inside the loop is @

known as }

loop invariant.

It doesn’t need

to be calculated temp = ¢ * d;
over and over. for (i = 0; i < n; i++) {
After af[i] = b[1i] + temp;

}
e = g(n);

LLLLLLL

OK Supercomputing Symposium, Tue Oct 11 2011 46

Parallel Programming: Compilers EARLHAM -
A

Unswitching (F90)

The condition Is

"5 0) THEN j-independent.
= a(i,j) * t(i) + b(3)

1,3) = 0.0
N 350 Before

DO i =1, n
IF_(£(i) > 0) THEN So, It can migrate
R Mgl de the 5 |
ali,j) = a(i,j) * t(i) + b(3) outside the 5 loop.
END DO
ELSE
DO j(_:_?, no 0 Af
a(i, = 0.
END DOJ ter
END IF

END DO

LLLLLLL

OK Supercomputing Symposium, Tue Oct 11 2011

Parallel Programming: Compilers EARLHAM 1i
47
g

Unswitching (C)

g The condition is

) .

0.0; Before

for (1 = 0; 1 <
if (t[:L] > O)

} a[l?[J] =
}
else {

for (]
a[x?[:] 2

THE UNIVERSITY OF OKLAHOMA

OK Supercomputing Symposium, Tue Oct 11 2011

n; i++) {
{

3 <. n; 3t So, it can migrate

alillgl = el + 21317 gytside the 5§ loop.

After

8<n, j++) {

LLLLLLL

Parallel Programming: Compilers EARLHAM 1i
48
g

) Iteration Peeling (F90)

DO i=1, n

IF ((i == 1) .OR. (i == n)) THEN
x(1) = y(1)
ELSE
Before x(i) =y(1 + 1) + y(1 - 1)
END IF
END DO

We can eliminate the IF by peeling the weird iterations.

x(1) = y(1)
DO i =2, n-1
After x(i) = y(i + 1) + y(i - 1)
END DO
x(n) = y(n)
Parallel Programming: Compilers EARLHAM
Al -

LLLLLLL

OK Supercomputing Symposium, Tue Oct 11 2011

®) Iteration Peeling (C)

for (i = 0; i < n; i++) {

if ((1 = 0) || (1 == (n-1))) {
x[1] = yI[1i]~
}
Before alse {
x[i] = y[1 + 1] + y[1i - 1];

}

We can eliminate the if by peeling the weird iterations.

x[0] = y[O0];

for (i =1; i < n -1; i++) {
After x[i] = y[i + 1] + y[i - 11;

}

x[n-1]

y[n-1];
Parallel Programming: Compilers EARLHAM 1‘
50
g

LLLLLLL

OK Supercomputing Symposium, Tue Oct 11 2011

) Index Set Splitting (F90)

DO 1 =1, n
a(i) = b(i) + c(1i)
IF (i > 10) THEN
d(i) = a(i) + b(i - 10)
e I Before
END DO

DO i = 1, 10
a(i) = b(i) + c(i)

END DO
DO 1 =11, n

a(i) = b(i) + c(1i)

d(i) = a(i) + b(i - 10) After
END DO

Note that this is a generalization of peeling.

X P 4 Parallel Programming: Compilers Ezc“-\ﬁlilllég\/i
N | JonaTey OK Supercomputing Symposium, Tue Oct 11 2011 4/1 51

THE UNIVERSITY OF OKLAHOMA

) Index Set Splitting (C)

for (i = 0; i < n; i++) {

a[i] = b[1] + c[1i];

if (1 >= 10) {

} d[i] = a[i] + b[i - 10]; Before
}
for (i = 0; i < 10; i++) {

a[i] = b[i] + c[i];
}
for (i = 10; i < n; i++) {

a[i] = b[i] + c[i];

d[i] = a[i] + b[i - 10]; After
}

Note that this is a generalization of peeling.

7 4 Parallel Programming: Compilers EARLHAM 1‘
52
g

Q’l! Jeomenow OK Supercomputing Symposium, Tue Oct 112011 ©° """

\\\\\\\\\\\\\\\\\\\\\\\\\\

Loop Interchange (F90)

Before After
DO i = 1, ni DO j = 1, nj
DO j = 1, ;}\ DO i = 1, ni
a(i,j) = b(i,J) a(i,j) = b(i,3])
END DO END DO
END DO END DO

Array elements a(i,3j) and a(i+1,j) are near each
other in memory, while a (i, j+1) may be far, so it makes
sense to make the i loop be the inner loop. (This is
reversed in C, C++ and Java.)

OK Supercomputing Symposium, Tue Oct 112011 """~

Parallel Programming: Compilers EARLHAM ‘

®) L_oop Interchange (C)

Before After
for (j = 0; j < nj; j++) for (i = 0; i < ni; i++)
for (i = 0; i < ni; i+;f\r“ {

cq e . for (j = 0; j < nj;
} al[i][3] = b[1][3]]; J++) 1
al[i][J] = bl[1]I[3]~
}
}
}

Array elements a[i][j] and a[i] [j+1] are near each
other in memory, while a[i+1] [j] may be far, so it makes
sense to make the 3§ loop be the inner loop. (This is
reversed in Fortran.)

Parallel Programming: Compilers EARLHAM
OK Supercomputing Symposium, Tue Oct 112011 =~~~ " °° 4/‘

54

Unrolling (F90)

DO i =1, n
Before a(i) = a(i)+b (i)
END DO

DO 1i =1, n, 4
a(i) = a(1i) + b (1)
a(i+l) = a(i+1l) + b(i+1)
After a(i+2) = a(1i+2) + b(i+2)
a(i+3) a(i+3) + b(i+3)
END DO

You generally shouldn’t unroll by hand.

LLLLLLL

OK Supercomputing Symposium, Tue Oct 11 2011

Parallel Programming: Compilers EARLHAM ‘

55

Unrolling (C)

for (i = 0; 1i < n; i++) {
Before af[i] al[i] + b[i];
}

for (1 = 0; 1 < n; 1 += 4) {
a[i] = a[1] + b[1i];
a[i+l] = a[i+l] + b[i+1l];
After a[i+2] = a[i+2] + b[i+2];
al[i+3] a[i+3] + b[i+3];

You generally shouldn’t unroll by hand.

LLLLLLL

OK Supercomputing Symposium, Tue Oct 11 2011

Parallel Programming: Compilers EARLHAM ‘
. 56
.

Why Do Compilers Unroll?

We saw last time that a loop with a lot of operations gets
better performance (up to some point), especially if there
are lots of arithmetic operations but few main memory
loads and stores.

Unrolling creates multiple operations that typically load from
the same, or adjacent, cache lines.

So, an unrolled loop has more operations without increasing
the memory accesses by much.

Also, unrolling decreases the number of comparisons on the
loop counter variable, and the number of branches to the
top of the loop.

nomeior OK Supercomputing Symposium, Tue Oct 11 2011

S R 7 4 Parallel Programming: Compilers EARLHAM -
- : c: Q’ | COLLEGE jjt
G ,:"/V;; v of o x\nf‘:\\\\\ l[t }(‘ "E:

L_oop Fusion (F90)

DO i =1, n

a(i) = b(i) + 1
END DO
DO i =1, n

c(i) =
END DO Before
DO i =1, n

d(i)
END DO

I
[
~
Q
L
R

DO i =
a(i)
c(i)
d(i)

END DO

nunne

+ 1
(i2 After

As with unrolling, this has fewer branches. It also has fewer
total memory references.

1 nmaney OK Supercomputing Symposium, Tue Oct 11 2011 corrEer

THE UNIVERSITY OF OKLAHOMA

58

%77 Parallel Programming: Compilers EARLHAM 0

L_oop Fusion (C)

for (1 = 0; i < n; i++) {
ali] = b[i] + 1;
}
for (1 = 0; 1 < n; i++) {
c[i] = a[i] / 2;
b . . Before
for (i = 0; 1 < n; i++) {
d[i] =1 / c[i];
}
for (1 = 0; 1 < n; i++) {
al[i] = b[i] 7 1;
c[i] = al[i] 2;
d[i] = 1 / cli]; After
}

As with unrolling, this has fewer branches. It also has fewer
total memory references.

1 nmaney OK Supercomputing Symposium, Tue Oct 11 2011 corrEer

THE UNIVERSITY OF OKLAHOMA

59

%77 Parallel Programming: Compilers EARLHAM 0

LLoop Fission (F90)

DO i =1, n
a(i) = b(1i) -}- 1
c(i) = a(i) 2
d(i) = 1 / c(i) Before
END DO
DO i =1, n
a(i) = b(i) + 1
END DO
DO i =1, n
c(i) = a(i) / 2
END DO
DOi=1, n After
d(i) = 1 / c(i)
END DO

Fission reduces the cache footprint and the number of
operations per iteration.

1 nmaney OK Supercomputing Symposium, Tue Oct 11 2011 corrEer

THE UNIVERSITY OF OKLAHOMA

60

%77 Parallel Programming: Compilers EARLHAM ‘

L_oop Fission (C)

for (i = 0; i < n; i++) {
af[i] = b[1i] -}- 1;
c[i] = a[i] 2;
d[i] = 1 / c[i]; Before
}
for (1 = 0; 1 < n; i++) {
a[i] = b[i] + 1;
}
for (1 = 0; 1 < n; i++) {
c[i] = a[i] / 2;
}
for (i = 0; i < n; i++) { After
d[i] =1 / c[i];
}

Fission reduces the cache footprint and the number of
operations per iteration.

1 nmaney OK Supercomputing Symposium, Tue Oct 11 2011 corrEer

THE UNIVERSITY OF OKLAHOMA

%77 Parallel Programming: Compilers EARLHAM
| | 61
A

To Fuse or to Fi1zz?

The question of when to perform fusion versus when to
perform fission, like many many optimization questions, Is
highly dependent on the application, the platform and a lot
of other issues that get very, very complicated.

Compilers don’t always make the right choices.

That’s why 1t’s important to examine the actual behavior of the
executable.

OTR Ql; Parallel Programming: Compilers EARLHAM -
n g 3 ’ - - C OLLEGE =
B ent llt fiomeoey OK Supercomputing Symposium, Tue Oct 11 2011 4/‘

Q) Inlining (F90)

Before After
DO1=1,n DO i=1, n

REAL FUNCTION func (x)

func = x * 3
END FUNCTION func
When a function or subroutine is inlined, its contents are
transferred directly into the calling routine, eliminating the

overhead of making the call.

Parallel Programming: Compilers Efxﬁlilzlfxg\d ‘

HOSCERE Qj;:t* . .
s l[, nomaroey OK Supercomputing Symposium, Tue Oct 11 2011

oGY
HOMA

63

Inlining (C)

Before After
for (i = 0; for (i = 0:
i< n; it++) { _ .
a[i] = func(i+l); a[i? i ?i+i;+l g.
} \ ;

float func (x) {
return x * 3;

}

When a function or subroutine is inlined, its contents are
transferred directly into the calling routine, eliminating the
overhead of making the call.

Q’l! Jeomenow OK Supercomputing Symposium, Tue Oct 112011 ©° """

\\\\\\\\\\\\\\\\\\\\\\\\\\

64

4 Parallel Programming: Compilers EARLHAM ‘

Tricks You Can Play

Q|| with Compilers

Q) The Joy of Compiler Options

Every compiler has a different set of options that you can set.

Among these are options that control single processor
optimization: superscalar, pipelining, vectorization, scalar
optimizations, loop optimizations, inlining and so on.

g;QE\OSCEF;EI’: Ql; Parallel Programming: Compilers EARLHAM
—um = L i . . COLLEGE =
S llt fiomeoey OK Supercomputing Symposium, Tue Oct 11 2011 4/‘

66

nJ Example Compile Lines

= IBM XL
x1£f90 -O —gmaxmem=-1 —-garch=auto

Intel —gqtune=auto —-gcache=auto —-ghot
] nte
ifort -O —march=core2 -mtune=core?2

= Portland Group 90
pgf90 -03 -fastsse —-tp core2-64

= NAG f95
f95 -04 -Ounsafe -ieee=nonstd

OSCERE Ql; Parallel Programming: Compilers EARLHAM
= « 3 ’ - . C OLLEGE
RO llt fomooey OK Supercomputing Symposium, Tue Oct 11 2011

Al

67

@ What Does the Compiler Do? #1

Example: NAG Fortran 77/90/95 compiler 1!
nagfor -O<level> source.£f90

Possible levelsare -00, -01, -02, -03, -04:

-00 No optimisation.

-01 Minimal quick optimisation.
-02 Normal optimisation.

-03 Further optimisation.

-04 Maximal optimisation.

The manual page Is pretty cryptic.

4 Parallel Programming: Compilers EARLHAM
:=O&ER§~ Q]lt/ . . COLLEGE
R) feomenay - OK Supercomputing Symposium, Tue Oct 11 2011

@ What Does the Compiler Do? #2

Example: Intel ifort compiler Pl
ifort -O<level> source.f90

Possible levelsare =00, -01, -02, -03:

-00 Disables all -0<n> optimizations.
-01 ... [E]lnables optimizations for speed.
-02

Inlining of intrinsics.

Intra-file interprocedural optimizations, which include:
inlining, constant propagation, forward substitution, routine
attribute propagation, variable address-taken analysis, dead
static function elimination, and removal of unreferenced

variables.
-03 Enables -02 optimizations plus more aggressive
optimizations, such as prefetching, scalar replacement, and

loop transformations. Enables optimizations for maximum
speed, but does not guarantee higher performance unless loop
and memory access transformations take place.

@?ﬁgf Parallel Programming: Compilers EARLHAM
97 L ionaney OK Supercomputing Symposium, Tue Oct 11 2011

TECHNOLOGY
JIVERSITY OF OKLAHOMA

@ Arithmetic Operation Speeds

600

Ordered Arithmetic Operations

Better 500

400

300

MFLOP/s

200

100

radd
iadd

X

l' | INFORMATION
: TECHNOLOGY

TTTTTTTTTTTTTTTTTTTTTTT

£t £t 55 3:558F2258588¢888%
g 2 2 2 E E g EEE = = 2 E 2 82 &%

| W Intel/Xeon ® PGI/Xeon M NAG/Xeon M xI/POWER4 |

Parallel Programming: Compilers Ezcﬂﬁlilzléy
OK Supercomputing Symposium, Tue Oct 11 2011 4{1 70

Q) Optimization Performance

Performance
80
Better 70
® 60
% 50
1 40

LL
= 30
20
10 -
O_
€ 8§ 5§ 5§ 3 32 E £ ¢
Operation

B Pentium3 NAG OO0 M Pentium3 NAG O4 B Pentium3 Vast no opt M Pentium3 Vast opt

oo 7 Parallel Programming: Compilers EARLHAM
ll nromwanon - OK Supercomputing Symposium, Tue Oct 11 2011 /‘ 71

TTTTTTTTTTTTTTTTTTTTTTT

@ More Optimized Performance

Performance
250
Better
200
v
o
o 150
—
LL 100
>
50
0_
E §E B B 8 3 8 23 2 2 8§
c £ E E = =& £ © & © o b
Operation

B Pentium3 NAG OO0 M Pentium3 NAG 04
B Pentium3 VAST no opt B Pentium3 VAST opt

X 7 Parallel Programming: Compilers EzCRORL]TI;Lf&E\d
ll nromwanon - OK Supercomputing Symposium, Tue Oct 11 2011 4{‘ 72

TTTTTTTTTTTTTTTTTTTTTTT

Q|| Profiling

Q) Profiling

Profiling means collecting data about how a program executes.
The two major kinds of profiling are:

= Subroutine profiling

= Hardware timing

nomeior OK Supercomputing Symposium, Tue Oct 11 2011

o 4 Parallel Programming: Compilers EARLHAM
:):O&ERE Qjlt COLLEGE ~
& ’?('//Vﬁ;x,'\','i";’;‘\'cn:\‘\“\\ [- }{ % 74

Subroutine Profiling

Subroutine profiling means finding out how much time is
spent in each routine.

The 90-10 Rule: Typically, a program spends 90% of its
runtime in 10% of the code.

Subroutine profiling tells you what parts of the program to
spend time optimizing and what parts you can ignore.

Specifically, at regular intervals (e.g., every millisecond), the
program takes note of what instruction it’s currently on.

LLLLLLL

OK Supercomputing Symposium, Tue Oct 11 2011 75

Parallel Programming: Compilers EARLHAM r

) Profiling Example

On GNU compilers systems:

gee -0 -g -pg ..
The =g -pg options tell the compiler to set the executable up
to collect profiling information.
Running the executable generates a file named gmon . out,
which contains the profiling information.

OSCERE Ql; Parallel Programming: Compilers EARLHAM
—wm - ' i . . COLLEGE
K llt AR OK Supercomputing Symposium, Tue Oct 11 2011

Profiling Example (cont’d)

When the run has completed, a file named gmon . out has
been generated.

Then:
gprof executable

produces a list of all of the routines and how much time was
spent in each.

1 nmaney OK Supercomputing Symposium, Tue Oct 11 2011 corrEer

THE UNIVERSITY OF OKLAHOMA

77

- ? Parallel Programming: Compilers EARLHAM ”

Profiling Result

%

time
27.

N
[

O R P R EFPEFEFEFEFDMNMNDMNDWDLMAIJ

O O N W OTIDNDWOERAIdDNDOWOO

cumulative

52

114
127

144
152

172
174

177

99.
.19
.94
136.
.79
.22
156.
160.
163.
166.
169.
.00
.27
176.
.94

seconds
.72

06

91

65
77
97
79
53

13

e —

)Wy o3F
S) l[INFORMATION
S "W TECHNOLOGY
THE UNIVERSITY OF OKLAHOMA

self

seconds

52

=
w

R P NDNNMNDMNMNDNDWAELAEIJO©

.72
46.
15.
.75
.96
.88
.43
.43
.12
.20
.82
.74
.47
.27
.86
.81

35
13

calls
480000
897
300
299
300
300
300
897
300
300
300
300
300
480000
299
300

Parallel Programming: Compilers
OK Supercomputing Symposium, Tue Oct 11 2011

self

ms/call

0.
51.
50.
45.
29.
26.
24.

4.
13.
10.
.40
.13
.23
.00
.22
.04

o O O 00 OV ©

11
67
43
98
88
27
77
94
73
66

total

ms/call

0.
51.
50.
45.
29.
31.

212.
56.
24.
10.

9.

9.
15.

0.

177.

.04

11
67
43
98
88
52
36
61
39
66
40
13
33
12
45

name
longwave_ [5]
mpdata3_ [8]

turb_ [9]
turb_scalar_ [10]
advect2_z_ [12]
cloud [11]
radiation_ [3]
smlr [7]

tke full [13]
shear prod_ [15]
rhs_ [16]
advect2 _xy [17]
poisson_ [14]

long wave_ [4]
advect_scalar_ [6]
buoy [19]

EARLHAM

COLLESGE

Thanks for your
attention!

Q||

Questions?

References

7

=

Kevin Dowd and Charles Severance, High Performance Computing,
2" ed. O’Reilly, 1998, p. 173-191.

2] Ibid, p. 91-99.

3] Ibid, p. 146-157.
4
5
6]

NAG £95 man page, version 5.1.

5] Intel ifoxrt man page, version 10.1.
] Michael Wolfe, High Performance Compilers for Parallel Computing,
Addison-Wesley Publishing Co., 1996.

Kevin R. Wadleigh and Isom L. Crawford, Software Optimization for High

Performance Computing, Prentice Hall PTR, 2000, pp. 14-15.

1 weonsney OK Supercomputing Symposium, Tue Oct 11 2011 corrEer

\\\\\\\\\\\\\\\\\\\\\\\\\\

%/7 Parallel Programming: Compilers EARLHAM 1i
80
g

