Exascale Challenges for the Computational Science Community

Horst Simon Lawrence Berkeley National Laboratory and UC Berkeley

Oklahoma Supercomputing Symposium 2010 October 6, 2010

Office of Science

Key Message

- The transition from petascale to exascale will be characterized by significant and dramatics changes in hardware and architecture.
- This transition will be disruptive, but create unprecedented opportunities for computational science.

Overview

- From 1999 to 2009: evolution from Teraflops to Petaflops computing
- From 2010 to 2020: key technology changes towards Exaflops computing
- Impact on Computational Science

Jaguar: World's most powerful computer since 2009

ASCI Red: World's Most Powerful Computer in 1999

Comparison Jaguar (2009) vs. ASCI Red (1999)

- 739x performance (LINPACK)
- 267x memory
- 800x disk
- 24x processors/cores
- 8.2x power

Significant increase in operations cost

Essentially the same architecture and software environment

Parallelism and faster processors made about equal contributions to performance increase

Overview

- From 1999 to 2009: evolution from Teraflops to Petaflops computing
- From 2010 to 2020: key technology changes towards Exaflops computing
- Impact on Computational Science

Traditional Sources of Performance Improvement are Flat-Lining (2004)

- New Constraints
 - 15 years of exponential clock rate growth has ended
- Moore's Law reinterpreted:
 - How do we use all of those transistors to keep performance increasing at historical rates?
 - Industry Response: #cores per chip doubles every 18 months *instead* of clock frequency!

Figure courtesy of Kunle Olukotun, Lance Hammond, Herb Sutter, and Burton Smith

Managed by the University of California for the U.S. Department of Energy

Performance Development

Projected Performance Development

Concurrency Levels

What's Next?

BERKELEY LAB

Managed by the University of California for the U.S. Department of Energy

EY NATIONAL LABORATORY

.....

BEBKELEY LA

Moore's Law reinterpreted

- Number of cores per chip will double every two years
- Clock speed will not increase (possibly decrease)
- Need to deal with systems with millions of concurrent threads
- Need to deal with inter-chip parallelism as well as intra-chip parallelism

Performance Development

Annual Performance Increase of the TOP500

Total Power Levels (kW) for TOP500 systems

Power Efficiency (Mflops/Watt) for different Processor Generations

Cores per Processor

Power Efficiency (Mflops/Watt) related to Interconnects

Power Consumption

Power Efficiency

Koomey's Law

- Computations per kWh have improved by a factor about 1.5 per year
- "Assessing Trends in Electrical Efficiency over Time", see IEEE Spectrum, March 2010

BERKELEY LAB AWRENCE BERKELEY NATIONAL LABORATORY Managed by the University of California for the U.S. Department of Energy

Trend Analysis

- Processors and Systems have become more energy efficient over time
 - Koomey's Law shows factor of 1.5 improvement in computations/kWh
- Supercomputers have become more powerful over time
 - TOP500 data show factor of 1.86 increase of computations/sec per system
- Consequently power/system increases by about 1.24 per year
- Based on these projections: 495 Pflop/s Linpack-Rmax system with 60 MW in 2020

Roadrunner - A Likely Future Scenario

after Don Grice, IBM, Roadrunner Presentation, ISC 2008

Why MPI will persist

- Obviously MPI will not disappear in five years
- By 2014 there will be 20 years of legacy software in MPI
- New systems are not sufficiently different to lead to new programming model

What will be the "X" in MPI+X

Likely candidates are

- PGAS languages
- OpenMP
- Autotuning
- CUDA, OpenCL
- A wildcard from commercial space

What's Wrong with MPI Everywhere?

What's Wrong with MPI Everywhere?

- One MPI process per core is wasteful of intra-chip latency and bandwidth
- Weak scaling: success model for the "cluster era"
 - -not enough memory per core
- Heterogeneity: MPI per CUDA threadblock?

We won't reach Exaflops with the current approach

From Peter Kogge, DARPA Exascale Study

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY Managed by the University of California for the U.S. Department of Energy

... and the power costs will still be staggering

From Peter Kogge, DARPA Exascale Study

A decadal DOE plan for providing exascale applications and technologies for DOE mission needs

Rick Stevens and Andy White, co-chairs

Pete Beckman, Ray Bair-ANL; Jim Hack, Jeff Nichols, Al Geist-ORNL; Horst Simon, Kathy Yelick, John Shalf-LBNL; Steve Ashby, Moe Khaleel-PNNL; Michel McCoy, Mark Seager, Brent Gorda-LLNL; John Morrison, Cheryl Wampler-LANL; James Peery, Sudip Dosanjh, Jim Ang-SNL; Jim Davenport, Tom Schlagel, BNL; Fred Johnson, Paul Messina, ex officio

Process for identifying exascale applications and technology for DOE missions ensures broad community input

- Town Hall Meetings April-June 2007
- Scientific Grand Challenges
 Workshops Nov, 2008 Oct, 2009
 - Climate Science (11/08),
 - High Energy Physics (12/08),
 - Nuclear Physics (1/09),
 - Fusion Energy (3/09),
 - Nuclear Energy (5/09),
 - Biology (8/09),
 - Material Science and Chemistry (8/09),
 - National Security (10/09)
 - Cross-cutting technologies (2/10)
- Exascale Steering Committee
 - "Denver" vendor NDA visits 8/2009
 - SC09 vendor feedback meetings
 - Extreme Architecture and Technology Workshop 12/2009
- International Exascale Software Project
 - Santa Fe, NM 4/2009; Paris, France 6/2009; Tsukuba, Japan 10/2009

Scientific Grand Challenges

Scientific Grand Challenges

LENGES IN CLIMATE CHANGE SCIENCE AND

UNIVERSE AND THE ROLE C

NERGY

ERGY

FUNDAMENTAL SCIENCE

DOE mission imperatives require simulation and analysis for policy and decision making

- Climate Change: Understanding, mitigating and adapting to the effects of global warming
 - Sea level rise
 - Severe weather
 - Regional climate change
 - Geologic carbon sequestration
- Energy: Reducing U.S. reliance on foreign energy sources and reducing the carbon footprint of energy production
 - Reducing time and cost of reactor design and deployment
 - Improving the efficiency of combustion energy systems
- National Nuclear Security: Maintaining a safe, secure and reliable nuclear stockpile
 - Stockpile certification
 - Predictive scientific challenges
 - Real-time evaluation of urban nuclear detonation

Accomplishing these missions requires exascale resources.

Exascale simulation will enable fundamental advances in basic science.

- High Energy & Nuclear Physics
 - Dark-energy and dark matter
 - Fundamentals of fission fusion reactions
- Facility and experimental design
 - Effective design of accelerators
 - Probes of dark energy and dark matter
 - ITER shot planning and device control
- Materials / Chemistry
 - Predictive multi-scale materials
 modeling: observation to control
 - Effective, commercial technologies in renewable energy, catalysts, batteries and combustion
- Life Sciences
 - Better biofuels
 - Sequence to structure to function

These breakthrough scientific discoveries and facilities require exascale applications and resources.

System attributes	2010	"2015"		"2018"	
System peak	2 Peta	200 Petaflop/sec		1 Exaflop/sec	
Power	6 MW	15 MW		20 MW	
System memory	0.3 PB	5 PB		32-64 PB	
Node performance	125 GF	0.5 TF	7 TF	1 TF	10 TF
Node memory BW	25 GB/s	0.1 TB/sec	1 TB/sec	0.4 TB/sec	4 TB/sec
Node concurrency	12	O(100)	O(1,000)	O(1,000)	O(10,000)
System size (nodes)	18,700	50,000	5,000	1,000,000	100,000
Total Node Interconnect BW	1.5 GB/s	20 GB/sec		200 GB/sec	
MTTI	days	O(1day)		O(1 day)	

Comparison Comparison (2009)

- 500x performance (peak)
- 100x memory
- 5000x concurrency
- 3x power

Significantly different architecture and software environment

All performance increase is based on more parallelism

DOE Exascale Technology Roadmap

Key Observations from DOE Exascale Architecture and Technology Workshop, San Diego, Dec. 2009, <u>http://extremecomputing.labworks.org/ha</u> <u>rdware/index.stm</u>

Where do we get 1000x performance improvement for 10x power?

- 1. Processors
- 2. On-chip data movement
- 3. System-wide data movement
- 4. Memory Technology
- 5. Resilience Mechanisms

Low-Power Design Principles

- Power5 (server)
 - 120W@1900MHz
 - Baseline
 - Intel Core2 sc (laptop) :
 - 15W@1000MHz
 - 4x more FLOPs/watt than baseline
- Intel Atom (handhelds)
 - 0.625W@800MHz
 - 80x more
- Tensilica XTensa DP (Moto Razor) :
 - 0.09W@600MHz
 - 400x more (80x-120x sustained)

Low Power Design Principles

- Power5 (server)
 - 120W@1900MHz
 - Baseline
- Intel Core2 sc (laptop) :
 - 15W@1000MHz
 - 4x more FLOPs/watt than baseline
- Intel Atom (handhelds)
 - 0.625W@800MHz
 - 80x more
- Tensilica XTensa DP (Moto Razor) :
 - 0.09W@600MHz
 - 400x more (80x-100x sustained)

Even if each simple core is 1/4th as computationally efficient as complex core, you can fit hundreds of them on a single chip and still be 100x more power efficient. BERKELEY LAB

Projected Parallelism for Exascale

How much parallelism must be handled by the program? From Peter Kogge (on behalf of Exascale Working Group), "Architectural *Challenges* at the <u>Exascale</u> Frontier", June 20, 2008

Conclusion: Solving Logic Power Drives Move to Massive Parallelism

- Future HPC must move to simpler power-efficient core designs
 - Embedded/consumer electronics technology is central to the future of HPC
 - Convergence inevitable because it optimizes both cost and power efficiency

How much parallelism must be handled by the program? From Peter Kogge (on behalf of Exascale Working Group), "Architectural *Challenges* at the <u>Exascale</u> Frontier", June 20, 2008

- Consequence is massive on-chip parallelism
 - A thousand cores on a chip by 2018
 - 1 Million to 1 Billion-way System Level Parallelism
 - Must express massive parallelism in algorithms and pmodels

- Must manage massive parallelism in system software U.S. DEPARTMENT OF CONFICE OF Science Managed by the University of California for the U.S. Department of Energy

The Cost of Data Movement

How do those cores talk to each other?

The problem with Wires:

Energy to move data proportional to distance

• Cost to move a bit on copper wire:

energy = bitrate * Length² / cross-section area

- Wire data capacity constant as feature size shrinks
- Cost to move bit proportional to distance
- ~1TByte/sec max feasible off-chip BW (10GHz/pin)
- Photonics reduces distance-dependence of bandwidth

Photonics requires no redrive and passive switch little power

Copper requires to signal amplification even for on-chip connections

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY Managed by the University of California for the U.S. Department of Energy

The Cost of Data Movement

Managed by the University of California for the U.S. Department of Energy

The Cost of Data Movement

Managed by the University of California for the U.S. Department of Energy

The situation will not improve in 2018

Important to know when you are on-chip and when data is off-chip!

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY Managed by the University of California for the U.S. Department of Energy

Memory

Projections of Memory Density Improvements

•Memory density is doubling every three years; processor logic is every two

- Project 8Gigabit DIMMs in 2018
- 16Gigabit if technology acceleration (or higher cost for early release)

•Storage costs (dollars/Mbyte) are dropping gradually compared to logic costs

•Industry assumption: \$1.80/memory chip is median commodity cost

Managed by the University of California for the U.S. Department of Energy

Cost of Memory Capacity 2 different potential Memory Densities

....

Managed by the University of California for the U.S. Department of Energy

Exascale Memory Power Consumption (San Diego Meeting)

- Power consumption with standard technology roadmap
- Power consumption with investment in advanced memory technology

70 MW total

20 MW total

Memory Technology Bandwidth costs power

Limiting Memory Bandwidth Limits System Scope

Power Considerations Drive Future Architectures in the Exascale Era

- Massive parallelism with low power processors
- Limited amount of memory, low memory/flop ratios (processing is free)
- Cost of data movement, locality is becoming more important

What are critical exascale technology investments?

- **System power** is a first class constraint on exascale system performance and effectiveness.
- Memory is an important component of meeting exascale power and applications goals.
- **Programming model**. Early investment in several efforts to decide in 2013 on exascale programming model, allowing exemplar applications effective access to 2015 system for both mission and science.
- **Investment in exascale processor design** to achieve an exascale-like system in 2015.
- **Operating System strategy for exascale** is critical for node performance at scale and for efficient support of new programming models and run time systems.
- Reliability and resiliency are critical at this scale and require applications neutral movement of the file system (for check pointing, in particular) closer to the running apps.
- **HPC co-design strategy and implementation** requires a set of a hierarchical performance models and simulators as well as commitment from apps, software and architecture communities.

Overview

- From 1999 to 2009: evolution from Teraflops to Petaflops computing
- From 2010 to 2020: key technology changes towards Exaflops computing
- Impact on Computational Science
 - Co-design

The trade space for exascale is very complex.

Co-design expands the feasible solution space to allow better solutions.

Technology driven: Fit your application to this technology. Sub-optimal.

A first step toward co-design was the last exascale workshop.

 The approach will be to engage experts in computational science, applied mathematics and CS with the goal of

Cross-cutting Technologies for Computing at the Exascale February 2-5, 2010 · Washington, D.C.

- Producing a first cut at the characteristics of systems that (a) could be fielded by 2018 and (b) would meet applications' needs
- Outlining the R&D needed for "co-design" of system architecture, system software and tools, programming frameworks, mathematical models and algorithms, and scientific application codes at the exascale, and
- Exploring whether this anticipated phase change in technology (like parallel computing in 1990s) provides any opportunities for applications. That is, whether a requirement for revolutionary application design allows new methods, algorithms, and mathematical models to be brought to bear on mission and science questions.

Summary of some priority research directions (PRD)

Black – Crosscutting workshop report

Green – HDS interpretation

- Investigate and develop new exascale programming paradigms to support 'billion-way' concurrency
 - Think 10,000 times more parallel
 - Expect MPI+X programming model
 - Think of algorithms that can easily exploit the intra node parallelism, especially if CS researchers develop automatics tools for X

Summary of some priority research directions (PRD) -- cont.

- Re-cast critical applied mathematics algorithms to reflect impact of anticipated macro architecture evolution, such as memory and communication constraints
 - Live with less memory/thread and less bandwidth
- Develop new mathematical models and formulations that effectively exploit anticipated exascale hardware architectures
 - Add more physics and not just more refinement
- Address numerical analysis questions associated with moving away from bulk-synchronous programs to multitask approaches
 - No more SPMD; think of mapping coarse grain data flow in frameworks

Summary of some priority research directions (PRD) – cont.

- Adapt data analysis algorithms to exascale environments
- Extract essential elements of critical science applications as "mini-applications" that hardware and system software designers can use to understand computational requirements
- Develop tools to simulate emerging architectures for use in co-design
 - Applied mathematicians/computer scientists should be ready to lead co-design teams

Summary

- Major Challenges are ahead for extreme computing
 - Power
 - Parallelism
 - … and many others not discussed here
- We will need completely new approaches and technologies to reach the Exascale level
- This opens up many new opportunities for computer scientists, applied mathematicians, and computational scientists

Shackleton's Quote on Exascale

Ernest Shackleton's 1907 ad in London's Times, recruiting a crew to sail with him on his exploration of the South Pole

"Wanted. Men/women for hazardous architectures. Low wages. Bitter cold. Long hours of software development. Safe return doubtful. Honor and recognition in the event of success."

