Preregistration Profile

- **Organizations**
 - **Academic**: preregistered 32 institutions in 7 states (AR,IL,IN,KS,LA,OK,TX)
 - Includes 25 institutions in 4 EPSCoR states (AR,KS,LA,OK)
 - **Industry**: preregistered 21 firms
 - **Government**: preregistered 11 agencies (federal, state, local)
 - **Non-governmental**: preregistered 6 organizations

- **Demographics (preregistrations)**
 - 46% OU, 54% non-OU
 - 77% Oklahoma, 23% non-Oklahoma
 - 85% from EPSCoR states, 15% non-EPSCoR
 - 81% academic, 19% non-academic
Some Accomplishments

- NSF EPSCoR C2, MRI grants
- Over 4 million batch jobs run already on Sooner, the cluster that we deployed a year ago – over 3 times all of the jobs on the previous cluster, Topdawg, over its entire lifetime!
- In Oklahoma, we’ve now given the “Supercomputing in Plain English” overview talk to 11 of 13 public universities, 7 private universities, 1 tribal college and 1 high school.
- Outside Oklahoma, we’ve given that talk to 9 universities in other states and one in another country.
- MATLAB on our cluster is now available to non-OU users.
Outline

- What Does OSCER Do?
 - Resources
 - Education
 - Research
 - Dissemination
- OSCER’s Future
OSCER:
Who, What, Where, When, Why, How
What is OSCER?

- Multidisciplinary center
- Division of OU Information Technology
- Provides:
 - Supercomputing **education**
 - Supercomputing **expertise**
 - Supercomputing **resources**: hardware, storage, software
- For:
 - Undergrad students
 - Grad students
 - Staff
 - Faculty
 - Their collaborators (including **off campus**)
Who is OSCER? Academic Depts

- Aerospace & Mechanical Engr
- Anthropology
- Biochemistry & Molecular Biology
- Biological Survey
- Botany & Microbiology
- Chemical, Biological & Materials Engr
- Chemistry & Biochemistry
- Civil Engr & Environmental Science
- Computer Science
- Economics
- Electrical & Computer Engr
- Finance
- Health & Sport Sciences
- History of Science
- Industrial Engr
- Geography
- Geology & Geophysics
- Library & Information Studies
- Mathematics
- Meteorology
- Petroleum & Geological Engr
- Physics & Astronomy
- Psychology
- Radiological Sciences
- Surgery
- Zoology

More than 150 faculty & staff in 26 depts in Colleges of Arts & Sciences, Atmospheric & Geographic Sciences, Business, Earth & Energy, Engineering, and Medicine – with more to come!
Who is OSCER? OU Groups

1. Advanced Center for Genome Technology
2. Center for Analysis & Prediction of Storms
3. Center for Aircraft & Systems/Support Infrastructure
4. Cooperative Institute for Mesoscale Meteorological Studies
5. Center for Engineering Optimization
6. Fears Structural Engineering Laboratory
7. Human Technology Interaction Center
8. Institute of Exploration & Development Geosciences
9. Instructional Development Program
10. Interaction, Discovery, Exploration, Adaptation Laboratory
11. Microarray Core Facility
12. OU Information Technology
13. OU Office of the VP for Research
14. Oklahoma Center for High Energy Physics
15. Robotics, Evolution, Adaptation, and Learning Laboratory
16. Sasaki Applied Meteorology Research Institute
17. Symbiotic Computing Laboratory
Oklahoma Collaborators

1. Cameron U (masters)
2. East Central U (masters)
3. Langston U (minority-serving, masters)
4. NOAA National Severe Storms Laboratory
5. NOAA Storm Prediction Center
6. Northeastern State U (masters)
7. Oklahoma Baptist U (bachelors)
8. Oklahoma City U (masters)
9. Oklahoma Climatological Survey
10. Oklahoma Medical Research Foundation
11. NEW! Oklahoma Panhandle State U
12. Oklahoma School of Science & Mathematics (high school)
13. Oklahoma State U (Stillwater)
14. Rogers State U (masters)
15. St. Gregory’s U (bachelors)
16. Samuel Roberts Noble Foundation
17. Southeastern Oklahoma State U (masters)
18. NEW! Southern Nazarene U (masters)
19. Southwestern Oklahoma State U (masters)
20. U Central Oklahoma (masters)
21. U Tulsa

- YOU COULD BE HERE!
National Collaborators (22 states)

1. California State Polytechnic U Pomona
 (minority-serving, masters)
2. Colorado State U
3. Contra Costa College (CA, *minority-serving, 2-year*)
4. Delaware State U *(EPSCoR, masters)*
5. Earlham College (IN, *bachelors*)
7. Florida State U
8. Georgia Institute of Technology
9. Great Plains Network
10. Harvard U (MA)
11. Indiana U
12. Kansas State U *(EPSCoR)*
13. Kean U (NJ)
14. Longwood U (VA, *masters*)
15. Marshall U (WV, *EPSCoR, masters*)
17. Purdue U (IN)
18. Riverside Community College (CA, *2-year*)
19. St. Cloud State U (MN, *masters*)
20. Syracuse U (NY)
21. Texas A&M U
22. Texas A&M U-Corpus Christi *(masters)*
23. U Arkansas *(EPSCoR)*
24. U Arkansas Little Rock *(EPSCoR)*
25. U California Santa Barbara
26. U Illinois at Urbana-Champaign
27. U Kansas *(EPSCoR)*
28. U Nebraska-Lincoln *(EPSCoR)*
29. U North Dakota *(EPSCoR)*
30. U Northern Iowa *(masters)*
31. U Utah *(EPSCoR)*
32. Widener U *(masters)*
33. Worcester Polytechnic Institute (MA)

- YOU COULD BE HERE!
Who Are the Users?

Over 700 users so far, including:

- Roughly equal split between students vs faculty/staff (students are the bulk of the active users);
- many off campus users (roughly 20%);
- … more being added *every month*.

Comparison: TeraGrid, consisting of 11 resource provide sites across the US, has ~5000 unique users.

Fun Fact: Oklahoma’s HPC user density per 100,000 population is roughly 9 times as high as TeraGrid’s.
Biggest Consumers

- **Center for Analysis & Prediction of Storms:** daily real time weather forecasting
- **Oklahoma Center for High Energy Physics:** simulation and data analysis of banging tiny particles together at unbelievably high speeds
- **Chemical Engineering:** lots and lots of molecular dynamics
Who? OSCER Personnel

- Director: Henry Neeman
- Associate Director for Remote & Heterogeneous Computing: Horst Severini
- Manager of Operations: Brandon George
- System Administrator: David Akin
- System Administrator: Brett Zimmerman
- HPC Application Software Specialist: Josh Alexander
- A little bit of OU IT sysadmin Chris Franklin to run the Condor pool.
Why OSCER?

Computational Science & Engineering has become **sophisticated enough** to take its place alongside experimentation and theory.

- **Most students** – and most faculty and staff – **don’t learn much CSE**, because CSE is seen as needing too much computing background, and as needing HPC, which is seen as very hard to learn.

- **HPC can be hard to learn**: few materials for novices; most documents written for experts as reference guides.

- **We need a new approach**: HPC and CSE for computing novices – **OSCER’s mandate!**
Why Bother Teaching Novices?

- Application scientists & engineers typically know their applications very well, much better than a collaborating computer scientist ever would.
- Commercial software lags far behind the research community.
- Many potential CSE users don’t need full time CSE and HPC staff, just some help.
- One HPC expert can help dozens of research groups.
- Today’s novices are tomorrow’s top researchers, especially because today’s top researchers will eventually retire.
Science and engineering faculty from all over America learn supercomputing at OU by playing with a jigsaw puzzle (NCSI @ OU 2004).
What Does OSCER Do? Rounds

OU undergrads, grad students, staff and faculty learn how to use supercomputing in their specific research.
OSCER Resources
(and a little history)
2002 OSCER Hardware

TOTAL: 1220.8 GFLOPs*, 302 CPU cores, 302 GB RAM

- Aspen Systems Pentium4 Xeon 32-bit Linux Cluster (Boomer)
 - 270 Pentium4 Xeon CPUs, 270 GB RAM, 1080 GFLOPs
- IBM Regatta p690 Symmetric Multiprocessor (Sooner)
 - 32 POWER4 CPUs, 32 GB RAM, 140.8 GFLOPs
- IBM FAStT500 FiberChannel-1 Disk Server
- Qualstar TLS-412300 Tape Library
- Internet2

* GFLOPs: billions of calculations per second
2005 OSCER Hardware

- **TOTAL:** 8009 GFLOPs*, 1288 CPU cores, 2504 GB RAM
- Dell Pentium4 Xeon 64-bit Linux Cluster (Topdawg)
 - 1024 Pentium4 Xeon CPUs, 2176 GB RAM, 6553.6 GFLOPs
- Aspen Systems Itanium2 cluster (Schooner)
 - 64 Itanium2 CPUs, 128 GB RAM, 256 GFLOPs
- Condor Pool: 200 student lab PCs, 1200 GFLOPs
- National Lambda Rail (10 Gbps network), Internet2
- Storage library: Qualstar (10 TB, AIT-3)

* GFLOPs: billions of calculations per second
Current OSCER Hardware

- **TOTAL:** 54,626.88 GFLOPs; 6304 cores; 12,390 GB RAM
- Dell Xeon Quad Core Linux Cluster (Sooner)
 - 531 Xeon 2.0 GHz Harpertown dual socket quad core, 16 GB RAM
 - 3 Xeon 2.33 GHz Clovertown dual socket quad core, 16 GB RAM
 - 2 Xeon 2.4 GHz quad socket quad core nodes, 128 GB RAM each
 - 34,514.88 GFLOPs
 - 24 NVIDIA Tesla C1060 cards (933/78 GFLOPs each)
- Condor Pool: 795 lab PCs, 20,112 GFLOPs, 3590 GB RAM
 - 205 x Intel Core i7 quad 2.4 GHz with 6 GB RAM each
 - 400 x Intel Core2 Duo 2.4 GHz with 4 GB RAM each
 - 190 x Intel Core2 Duo 3.0 GHz with 4 GB RAM each
- National Lambda Rail, Internet2 (10 Gbps networks)
Improvement in OSCER Hardware

GFLOPs:
2008 = 39 x 2002

RAM:
2008 = 29 x 2002

CPU cores:
2008 = 19 x 2002

Moore’s Law:
2008 = 16 x 2002
OK Cyberinfrastructure Initiative

- All academic institutions in Oklahoma are eligible to sign up for free use of OU’s and OSU’s centrally-owned CI resources.
- Other kinds of institutions (government, NGO, commercial) are eligible to use, though not necessarily for free.
- Everyone can participate in our CI education initiative.
- The Oklahoma Supercomputing Symposium, our annual conference, continues to be offered to all.
Dell Intel Xeon Linux Cluster

1,076 Intel Xeon CPU chips/4288 cores

- 528 dual socket/quad core Harpertown 2.0 GHz, 16 GB each
- 3 dual socket/quad core Harpertown 2.66 GHz, 16 GB each
- 3 dual socket/quad core Clovertown 2.33 GHz, 16 GB each
- 2 x quad socket/quad core Tigerton, 2.4 GHz, 128 GB each

8,800 GB RAM

~130 TB globally accessible disk

QLogic Infiniband

Force10 Networks Gigabit Ethernet

Red Hat Enterprise Linux 5

Peak speed: 34.5 TFLOPs*

*TFLOPs: trillion calculations per second

sooner.oscer.ou.edu
DEBUTED NOVEMBER 2008 AT:

- #90 worldwide
- #47 in the US
- #14 among US academic
- #10 among US academic excluding TeraGrid
- #2 in the Big 12
- #1 in the Big 12 excluding TeraGrid

sooner.oscer.ou.edu
Dell Intel Xeon Linux Cluster

Purchased mid-July 2008
First friendly user Aug 15 2008
Full production Oct 3 2008

Christmas Day 2008: >~75% of nodes and ~66% of cores were in use.
Condor Pool

Condor is a software technology that allows idle desktop PCs to be used for number crunching. OU IT has deployed a large Condor pool (795 desktop PCs in IT student labs all over campus). It provides a huge amount of additional computing power – more than was available in all of OSCER in 2005. 20+ TFLOPs peak compute speed. And, the cost is very very low – almost literally free. Also, we’ve been seeing empirically that Condor gets about 80% of each PC’s time.
National Lambda Rail
Internet2

www.internet2.edu

OSCER State of the Center Address
Wednesday October 6 2010
What Does OSCER Do?
What Does OSCER Do?

- Resources
- Teaching
- Research
- Dissemination
- Oklahoma Cyberinfrastructure Initiative
OSCER Teaching
What Does OSCER Do? Teaching

Science and engineering faculty from all over America learn supercomputing at OU by playing with a jigsaw puzzle (NCSI @ OU 2004).
What Does OSCER Do? Rounds

OU undergrads, grad students, staff and faculty learn how to use supercomputing in their specific research.

OSCER State of the Center Address
Wednesday October 6 2010
OSCER’s Education Strategy

- “Supercomputing in Plain English” workshops
- Supercomputing tours (like last night)
- Rounds
Supercomputing in Plain English workshops target not only people who are sophisticated about computing, but especially students and researchers with strong science or engineering backgrounds but modest computing experience. Prerequisite: 1 semester of Fortran, C, C++ or Java

Taught by analogy, storytelling and play, with minimal use of jargon, and assuming very little computing background.

Streaming video: http://www.oscer.ou.edu/education.php

Registrations: over 800 from 2001 to 2009
Workshop Topics

- Overview
- The Storage Hierarchy
- Instruction Level Parallelism
- High Performance Compilers
- Shared Memory Parallelism
- Distributed Parallelism
- Applications & Types of Parallelism
- Multicore
- High Throughput Computing
- GPGPU: Number Crunching in Your Graphics Card
- Grab Bag: Scientific Libraries, I/O libraries, Visualization
Teaching: Workshops

Supercomputing in Plain English: 746 so far!

- Fall 2001: 87 registered, 40 – 60 attended each time
- Fall 2002: 66 registered, c. 30 – 60 attended each time
- Fall 2004: 47 registered, c. 30-40 attend each time
- Fall 2007: 41 @ OU, 80 at 28 other institutions
- Spring 2009: 65 @ OU, 360 at over 70 other institutions

- NCSI Parallel & Cluster Computing workshop (summer 2004, summer 2005)
- Linux Clusters Institute workshop (June 2005, Feb 2007)
- Co-taught at NCSI Parallel & Cluster Computing workshop at Houston Community College (May 2006)
- **NEW! NCSI Intermediate Parallel & Cluster Computing workshop (summer 2010)**
 … and more to come.

OU is the only institution in the world to host and co-instruct multiple workshops sponsored by each of NCSI, LCI and the SC education program.
Teaching: Academic Coursework

- CS: Empirical Methods (A. Fagg)
- CS: Scientific Computing (S. Lakshmivarahan)
- CS: Computer Networks & Distributed Processing (S. Lakshmivarahan)
- Meteorology: Computational Fluid Dynamics (M. Xue)
- Chemistry: Molecular Modeling (R. Wheeler)
- Electrical Engr: Computational Bioengineering (T. Ibrahim)
- Parallel Computing course at Cameron U (OK)
- Software Engineering course at Oklahoma City U
- **NEW!** Bioinformatics course at U Tulsa (OK)
- **NEW!** Parallel Computing course at East Central U (OK)
- **PLANNED:** Chemistry course at Northeastern State U (OK), Fall 2010
- **PLANNED:** Chemistry course at Rogers State U (OK), Spring 2011
Teaching: Presentations & Tours

Courses at OU
2. Engineering Numerical Methods (U. Nollert)
4. Electrical Engr: Computational Bioengineering (T. Ibrahim)

Research Experience for Undergraduates at OU
1. Ind Engr: Metrology REU (T. Reed Rhoads)
2. Ind Engr: Human Technology Interaction Center REU (R. Shehab)
3. Meteorology REU (D. Zaras)

External
1. American Society of Mechanical Engineers, OKC Chapter
2. Association for Computing Machinery (ACM) Special Interest Group on Computer Science Education (SIGCSE) 2010
3. Oklahoma State Chamber of Commerce
5. Norman (OK) Lions Club
8. Shawnee (OK) Lions Club
9. NEW! Oklahoma Louis Stokes Alliance for Minority Participation (@ OSU) 2010 (Keynote)

Other Universities
1. SUNY Binghamton (NY)
2. Bradley University (IL)
3. Cameron University (OK)
4. NEW! The Citadel (SC)
5. NEW! College of the Muscogee Nation (OK)
6. DeVry University (OK)
7. East Central University (OK)
8. El Bosque University (Bogota Colombia)
9. Southwestern University (TX)
10. Langston University (OK)
11. Louisiana State University
12. Midwestern State University (TX)
13. Northeastern Oklahoma State University
14. Northwestern Oklahoma State University
15. Oklahoma Baptist University
16. Oklahoma City University
17. Oklahoma State University x 2
18. Oklahoma State University – OKC
19. Oral Roberts University (OK) x 2
20. St. Gregory’s University (OK) x 2
21. Southeastern Oklahoma State University x 2
22. NEW! Southern Nazarene University (OK)
23. Southwestern Oklahoma State University x 2
24. Texas A&M-Commerce
25. University of Arkansas Fayetteville
26. University of Arkansas at Little Rock
27. NEW! University of Central Oklahoma
28. NEW! University of Tulsa (OK)

High Schools and High School Programs
1. Oklahoma School of Science & Mathematics x 2
2. Oklahoma Christian University’s Opportunity Bytes Summer Academy
3. Dept of Energy National Scholarship Finalists
4. Ardmore High School (OK)

OSCER State of the Center Address
Wednesday October 6 2010
What Does OSCER Do? Rounds

OU undergrads, grad students, staff and faculty learn how to use supercomputing in their specific research.
Research & Teaching: Rounds

Rounds: interacting regularly with several research groups

- **Brainstorm** ideas for applying supercomputing to the group’s research
- **Code**: design, develop, debug, test, benchmark
- **Learn** new computing environments
- **Write** papers and posters

Has now evolved into [supercomputing help sessions](#), where many different groups work at the same time.
OSCER Research
OSCER Research

- OSCER’s Approach
- Rounds
- Grants
- Upcoming Initiatives
What Does OSCER Do? Rounds

OU undergrads, grad students, staff and faculty learn how to use supercomputing in their specific research.
Research: OSCER’s Approach

- **Typically**, supercomputing centers provide resources and have in-house application groups, but **most users are more or less on their own**.

- OSCER’s approach: we **partner directly** with research teams, providing supercomputing expertise to help their research move forward faster (**rounds**).

- This way, OSCER has a stake in each team’s success, and each team has a stake in OSCER’s success.
Research & Teaching: Rounds

Rounds: interacting regularly with several research groups

- **Brainstorm** ideas for applying supercomputing to the group’s research
- **Code**: design, develop, debug, test, benchmark
- **Learn** new computing environments
- **Write** papers and posters

Has now evolved into **supercomputing help sessions**, where many different groups work at the same time.
Research: Grant Proposals

- OSCER provides text not only about resources but especially about education and research efforts (workshops, rounds, etc).
- Faculty write in small amount of money for:
 - funding of small pieces of OSCER personnel;
 - storage (disk, tape);
 - special purpose software.
- In many cases, OSCER works with faculty on developing and preparing proposals.
- OSCER has a **line item** in the OU proposal web form that all new proposals have to fill out.
As usual, OSCER played a major role in the Spring Storm Experiment, which involved the Center for Analysis & Prediction of Storms, the NOAA Storm Prediction Center, Oak Ridge National Laboratory, and others.

We were the primary HPC provider for the part of the project run by the Center for Collaborative Adaptive Sensing of the Atmosphere (CASA).

This project consumed 20-60% of Sooner every day for 3 months.
High Energy Physics

- **Dzero project**: #1 most productive US academic site, 2010
- **ATLAS project**: #5 most productive US academic site, 2010
External Research Grants

1. H. Neeman, D. Brunson (OSU), J. Deaton (OneNet), J. He (Noble Foundation), D. Schoenefeld (TU), J. Snow (Langston U), M. Strauss (OU), X. Xiao (OU), M. Xue (OU), “Oklahoma Optical Initiative,” NSF, $1.17M

7. D. Cole, Alberto Striolo, “Structure and Dynamics of Earth Materials, Interfaces and Reactions,” DOE, $1.5M ($90K OU)

8. R. Sigal, F. Civan, D. Devegowda, “Simulation of Shale Gas Reservoirs Incorporating the Correct Physics of Capillarity and Fluid Transport,” Research Partnership to Secure Energy for America (RPSEA), $1.05M

OSCER-RELATED FUNDING TO DATE:
$186M total, $99M to OU
External Research Grants (cont’d)

15. M. Xue, F. Kong, “Advanced Multi-Moment Microphysics for Precipitation and Tropical Cyclone Forecast Improvement with COAMPS,” ONR, $592K

20. X. Wang, “Improving satellite radiance data assimilation using a hybrid ensemble-Gridpoint Statistical Interpolation (GSI) method for global numerical weather prediction,” NASA, $334K

21. X. Wang, M. Xue, “Improving NOAA operational global numerical weather prediction using a hybrid-ensemble Kalman filter data assimilation and ensemble forecast system,” NOAA, $322K

23. D. Oliver, “Data analysis and inversion for mobile nanosensors,” AEC, $320K

29. A. Striolo, “Probing regular solution theory for mixed amphoteric/ionic surfactant systems by molecular dynamics simulations,” ACS, $100K

OSCER-RELATED FUNDING TO DATE:
$186M total, $99M to OU

OSCER State of the Center Address
Wednesday October 6 2010
30. K. Brewster, M. Xue, F. Kong, meteorology project, $211K
31. M. Xue, meteorology project, $120K
37. J. Cruz, R. Todd, “Medium-Density Parity-Check Codes for Tape Systems,” INSIC, $36K
39. P. Attar, “High-Fidelity Computational Aeroelastic Solver Research,” Ohio Aerospace Institute, $60K
40. J. Straka, K. Kanak, “Development of Unmanned Aircraft System for Research in a Severe Storm Environment and Deployment within the VORTEX 2,” NSF, $44K
42. J. Cruz, R. Todd, “Signal Processing for Magnetic Recording Channels,” private company, $30K
44. P. Attar, P. Vedula, “Novel Reduced Order in Time Models for Problems in Nonlinear Aeroelasticity,” Advanced Dynamics, $29K
45. F. Carr, J. Straka, “Severe storm research,” Jonathon Merage Foundation, $21K

OSCER-RELATED FUNDING TO DATE:
$186M total, $99M to OU

OSCER State of the Center Address
Wednesday October 6 2010
OSCER State of the Center Address
Wednesday October 6 2010

External Research Grants (cont’d)

<table>
<thead>
<tr>
<th>Grant Number</th>
<th>Principal Investigator(s)</th>
<th>Title</th>
<th>Funding Agency</th>
<th>Funding Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>A. Striolo</td>
<td>“Electrolytes at Solid-Water Interfaces: Theoretical Studies for Practical Applications,” DOE EPSCoR</td>
<td>$450K</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>A. Striolo, Saha</td>
<td>“Experimental and Theoretical Studies of Carbon Nanotube Hierarchical Structures in Multifunctional Polymer Composites,” DOD EPSCoR</td>
<td>$450K</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>D. Cole (ORNL), A. Striolo</td>
<td>“Structure and Dynamics of Earth Materials, Interfaces and Reactions,” DÖE, $1.5M ($75K OU)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>D. Papavassiliou, A. Striolo</td>
<td>“Effects of Hydrophobicity-Induced Wall Slip on Turbulence Drag and Turbulence Structure,” NSF, $230K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>M. Xue, Y. Hong, X. Hu (GSU)</td>
<td>“Integrated Weather and Wildfire Simulation and Optimization for Wildfire Management,” NSF, $997K ($483K OU)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Y. Hong</td>
<td>“Next Generation QPE: Toward a Multi-Sensor Approach for Integration of Radar, Satellite, and Surface Observations to Produce Very High-resolution Precipitation Data,” NOAA/OAR/NSSL via CIMMS, $83K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>R. Palmer, Y. Hong</td>
<td>“Phased Array Technology for Weather Radar Applications,” NOAA/OAR/NSSL via CIMMS, $426K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Y. Hong, Baski (OSU)</td>
<td>“Proactive approach to transportation resource allocation under severe winter weather emergencies,” OK-DOT/OTC, $261K ($101K OU)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Y. Hong</td>
<td>“Toward Improved Flood Prediction and Risk Mitigation: Capacity Building for Africa,” NASA, $87K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Y. Hong</td>
<td>“Improving NASA Global Hazard System and Implementing SERVIR-Africa,” NASA, $272K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Y. Hong</td>
<td>“Link SERVIR-Africa Work to NASA Land Information System: Workshop Training and Data Assimilation of GRACE to NASA-OU Hydrologic Model,” NASA, $10K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>R. Adler (NASA), Y. Hong</td>
<td>“Global Hazard (Flood-Landslide) Decision-Support System,” NASA, $900K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>S. Schroeder</td>
<td>“CAREER: Advancing Viral RNA Structure Prediction,” NSF, $750K</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OSCER-RELATED FUNDING TO DATE:

$186M total, $99M to OU
<table>
<thead>
<tr>
<th></th>
<th>Grant Description</th>
<th>Institution</th>
<th>Amount ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>P. Attar, “High Fidelity Computational Aeroelastic Analysis of a Flexible Membrane Airfoil Undergoing Dynamic Motion,” Ohio Aerospace Institute</td>
<td>$35K</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>P. Attar, “Computational Model Development and Experimental Validation Measurements for Membrane-Batten Wing” Flexible Membrane Airfoil Undergoing Dynamic Motion,” Ohio Aerospace Institute</td>
<td>$43K</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>K. Droegemeier, F. Kong, P. Attar, “A Partnership to Develop, Conduct, and Evaluate Realtime High-Resolution Ensemble and Deterministic Forecasts for Convective-scale Hazardous Weather,” NOAA</td>
<td>$375K</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>S. Ahalt, A. Apon, D. Lifka, H. Neeman, “NSF Workshop High Performance Computing Center Sustainability,” NSF</td>
<td>$49K ($0 OU)</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Y. Luo, S. Lakshmivarahan, “Development of a Data Assimilation Capability towards Ecological Forecasting in a Data-Rich Era,” NSF</td>
<td>$1.08M</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>P. Risser et al, “A cyberCommons for Ecological Forecasting,” NSF</td>
<td>$6M ($2.78M OU)</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>M. Xue, X. Wang, X. Li (OSU), R. Barnes, S. Sanielevici (PSC), H. Neeman, “Enabling Petascale Ensemble-Based Data Assimilation for the Numerical Analysis and Prediction of High-Impact Weather,” NSF</td>
<td>$1.2M ($902K OU)</td>
<td></td>
</tr>
</tbody>
</table>
External Research Grants (cont’d)

75. D.S. Oliver, software, $16.7M
77. K. Droegemeier, F. Kong, “Multisensor Studies of Precipitation for Model Verification and Data Assimilation,” U Minn, ($7K OU)
79. M. Nollert, Scholarship, FD-OMRF, $12K
80. R. Sigal, R. Philp, C. Rai, S. Shah, R. Slatt, C. Sondergeld, D. Zhang, energy company, $1.9M
81. B. Grady, D. Schmidtke, A. Striolo, A. Cheville, D. Teeters, “Polymer Nanostructures on Solid Surfaces,” $208K ($125K OU)
82. T. Conway, “E. coli Model Organism Resource,” UN-Purdue, ($685K OU)
84. D. Cole (ORNL), A. Striolo, “Rates and Mechanisms of Mineral-Fluid Interactions at the Nanoscale,” DOE, $1.65M (total), ($55K OU)
87. M. Xue, “Contribution to WRF Model Development by the Center for Analysis and Prediction of Storms,” DOC-NOAA, $821K

OSCER-RELATED FUNDING TO DATE:
$186M total, $99M to OU

OSCER State of the Center Address
Wednesday October 6 2010
External Research Grants (cont’d)

92. M. Xue, “Contribution to Model Development and Enhancement Research Team by the Center for Analysis and Prediction of Storms,” DOC-NOAA, $180,000

93. M. Xue, K. Brewster, “Ensemble-based Data Assimilation for Convective Storms and Hurricanes,” DOC-NOAA, $100,000

94. S. Schroeder, "Discovering Satellite Tobacco Mosaic Virus Structure," OCAST, $85K

95. S. Schroeder, "ComputationalAdvances Toward Predicting Encapsidated Viral RNA Structure," Pharmaceutical Research and Manufactuerer's Association of America, $60K

98. A. McGovern, "Developing Spatiotemporal Relational Models to Anticipate Tornado Formation," NSF, $500K

100. J. Straka, K. Kanak, Davies-Jones, “Challenges in understanding tornadogenesis and associated phenomena,” NSF, $854K (total), $584K (OU)

103. A. Striolo, "Electrolytes at Solid-Water Interfaces: Theoretical Studies for Practical Applications," OSRHE Nanotechnology, $15K

OSCER-RELATED FUNDING TO DATE:
$186M total, $99M to OU
External Research Grants (cont’d)

106. K. Droegemeier et al., “Linked Environments for Atmospheric Discovery (LEAD),” NSF, $11.25M (total), $2.5M (OU)

111. J. Levit, D. Ebert (Purdue), C. Hansen (U Utah), “Advanced Weather Data Visualization,” NSF, $300K

114. R. Wheeler, “Principal mode analysis and its application to polypeptide vibrations,” NSF, $385K

118. Y. Wang, P. Mukherjee, “Wavelet based analysis of WMAP data,” NASA, $150K

OSCER-RELATED FUNDING TO DATE:
$186M total, $99M to OU
External Research Grants (cont’d)

121. R. Wheeler, T. Click, “National Institutes of Health/Predoctoral Fellowships for Students with Disabilities,” NIH/NIGMS, $80K

128. M. Xue, F. Carr, A. Shapiro, K. Brewster, J. Gao, “Research on Optimal Utilization and Impact of Water Vapor and Other High Resolution Observations in Storm-Scale QPF,” NSF, $880K

130. K. Mish, K. Muraleetharan, “Computational Modeling of Blast Loading on Bridges,” OTC, $125K

133. Y. Wang, P. Mukherjee, “Wavelet based analysis of WMAP data,” NASA, $150K

134. R. Wheeler et al., “Testing new methods for structure prediction and free energy calculations (Predoctoral Fellowship for Students with Disabilities),” NIH/NIGMS, $24K

OSCER-RELATED FUNDING TO DATE:
$186M total, $99M to OU
<table>
<thead>
<tr>
<th>#</th>
<th>Project Description</th>
<th>Sponsor</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>136</td>
<td>Neeman, Severini, “Cyberinfrastructure for Distributed Rapid Response to National Emergencies”</td>
<td>NSF</td>
<td>$132K</td>
</tr>
<tr>
<td>137</td>
<td>Neeman, Roe, Severini, Wu et al., “Cyberinfrastructure Education for Bioinformatics and Beyond,”</td>
<td>NSF, DOE</td>
<td>$250K</td>
</tr>
<tr>
<td>139</td>
<td>J. Snow, "Oklahoma Center for High Energy Physics", DOE EPSCoR</td>
<td>$3.4M (total), $169K (LU)</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>M. Xue, F. Kong, “OSSE Experiments for airborne weather sensors,” Boeing</td>
<td>$90K</td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>M. Xue, K. Brewster, J. Gao, A. Shapiro, “Storm-Scale Quantitative Precipitation Forecasting Using Advanced Data Assimilation Techniques: Methods, Impacts and Sensitivities,”</td>
<td>NSF</td>
<td>$835K</td>
</tr>
<tr>
<td>146</td>
<td>T. Ibrahim et al., “A Demonstration of Low-Cost Reliable Wireless Sensor for Health Monitoring of a Precast Prestressed Concrete Bridge Girder,” OK Transportation Center</td>
<td>$80K</td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>T. Ibrahim et al., “Micro-Neural Interface,” OCAST</td>
<td>$135K</td>
<td></td>
</tr>
</tbody>
</table>

OSCER-RELATED FUNDING TO DATE:

$186M total, $99M to OU

OSCER State of the Center Address
Wednesday October 6 2010
External Research Grants (cont’d)

152. E. Chesnokov, “Fracture Prediction Methodology Based On Surface Seismic Data,” Devon Energy, $1M

153. E. Chesnokov, “Scenario of Fracture Event Development in the Barnett Shale (Laboratory Measurements and Theoretical Investigation),” Devon Energy, $1.3M

156. D.V. Papavassiliou, “Turbulent Transport in Anisotropic Velocity Fields,” NSF, $292.5K

157. D. Oliver, software license grant, $1.5M

159. A. Fagg, “Development of a Bidirectional CNS Interface or Robotic Control,” NIH, $600K

160. M. Xue, J. Gao, "An Investigation on the Importance of Environmental Variability to Storm-scale Radar Data Assimilation,” NSSL, $72K

OSCER-RELATED FUNDING TO DATE: $186M total, $99M to OU
External Funding Summary

- External research funding facilitated by OSCER (Fall 2001- Fall 2009): $186M total, $99M to OU
- Funded projects: 162
- 102 OU faculty and staff in 19 academic departments and 2 other campus organizations (research centers etc)
- Comparison: Fiscal Year 2002-10 (July 2001 – June 2010): OU Norman externally funded research expenditure: $611M

Since being founded in fall of 2001, OSCER has enabled research projects comprising more than 1 / 7 of OU Norman's total externally funded research expenditure, with a 7-to-1 return on investment.
Publications Facilitated by OSCER

124 publications facilitated by OSCER rounds/help sessions
- 2010: 9 papers (so far)
- 2009: 9 papers
- 2008: 19
- 2007: 12
- 2006: 29
- 2005: 18
- 2004: 12
- 2003: 5
- 2002: 8
- 2001: 3

472 publications facilitated by OSCER resources only
- 2010: 115 papers (so far)
- 2009: 96 papers
- 2008: 81
- 2007: 60
- 2006: 56
- 2005: 45
- 2004: 15
- 2003: 4

Includes:
- 20 MS theses
- 19 PhD dissertations

TOTAL SO FAR: 596 publications

http://www.oscer.ou.edu/papers_from_rounds.php

These papers would have been impossible, or much more difficult, or would have taken much longer, without OSCER’s direct, hands-on help.
OK Cyberinfrastructure Initiative

- Oklahoma submitted an NSF EPSCoR Research Infrastructure Proposal in Jan 2008 ($15M).
- Starting that year, all NSF EPSCoR RII “Track 1” proposals HAD TO include a statewide Cyberinfrastructure plan.
- Oklahoma’s plan – the Oklahoma Cyberinfrastructure Initiative (OCII) – involves:
 - all academic institutions in the state are eligible to sign up for free use of OU’s and OSU’s centrally-owned CI resources;
 - other kinds of institutions (government, NGO, commercial) are eligible to use, though not necessarily for free.
- To join: See Henry after this talk.
NEW GRANT! NSF EPSCoR C2

Oklahoma has been awarded an NSF EPSCoR RII Intra-campus and Inter-campus Cyber Connectivity (C2) grant (PI Neeman), a collaboration among OU, OneNet and several other academic and nonprofit institutions, which will:

- upgrade the statewide ring from routed components to optical components, making it straightforward and affordable to provision dedicated “lambda” circuits within the state;
- upgrade several institutions’ connections;
- provide telepresence capability to institutions statewide;
- provide networking professionals to speak to data networks courses about what it’s like to do networking for a living.
Oklahoma Optical Initiative

- Statewide ring goes from 3 sites (OU Norman as a sidebar) to 5 sites (OU Norman as co-equal).
- Replace routed mux/demuxes with Reconfigurable Optical Add Drop Modules, add 10 Gbps line cards, crossponders.

“OOI will transform Oklahoma’s existing research ring from a routed network to an optical network, leveraging existing infrastructure – chassis and fibers – while advancing optical switching components to a new level of technology, facilitating substantial improvement in reliability, robustness, availability and potentially bandwidth, as well as enabling the ability to provision dedicated lambdas straightforwardly and affordably.”
Institutional Upgrades

- **OU**: Upgrade Sooner’s connection to 10 Gbps (10X increase)
- **OSU**: Upgrade Pistol Pete’s connection to 10 Gbps (10X)
- **U Tulsa**: Upgrade research networking to 1 Gbps (5X)
- **Langston U**: Upgrade High Energy Physics cluster to 10 Gbps (100X)
- **Samuel Roberts Noble Foundation**: upgrade to 250 Mbps (5X)
- **Rural hubsites** inherit routed mux/demuxes, replacing elderly SONET components.
 - Lawton: Cameron U, Comanche Nation College
 - Chickasha: U Science & Arts of Oklahoma
 - Tonkawa: Northern Oklahoma College
Tribal Colleges

- We’re working with Tribal Colleges and Tribal-serving institutions that have very low connectivity, to help improve their capabilities.
- We visited College of the Muscogee last week and are working with them on a plan involving their beautiful new building.
- We have plans to finalize a date with Comanche Nation College soon.
- We’ve gotten in touch with Pawnee Nation College.
OK Networking Mentorship

The Oklahoma Networking Mentorship Program is sending networking professionals to universities, colleges, career techs and even a high school statewide.

These professionals will give talks on the practicalities of being a networking professional – what that career choice means day by day.

We’ll also provide both live and virtual job shadowing opportunities – students can follow networking professionals around to see what their work looks like, either in person or via Twitter and Facebook.
OK Networking Mentorship

Already signed up for Fall 2010:

1. Cameron U (spring 2011)
2. Eastern Oklahoma County Technology Center
3. Eastern Oklahoma State College
4. Gordon Cooper Technology Center
5. Langston U
6. Oklahoma Christian U
7. Oklahoma City U
8. Oklahoma Panhandle State U
9. Oklahoma School of Science & Mathematics
10. Oklahoma State U
11. Oklahoma State U-Oklahoma City
12. U Central Oklahoma (spring 2011)
13. OU Norman
14. OU Tulsa
NEW GRANT: Petascale Storage

OU has been awarded an NSF Major Research Instrumentation (MRI) grant (PI Neeman).

We’ll purchase and deploy a combined disk/tape bulk storage archive:

- the NSF budget will pay for the hardware, software and warranties/maintenance for 3 years;
- OU cost share and institutional commitment will pay for space, power, cooling and labor, as well as maintenance after the 3 year project period;
- individual users (e.g., faculty across Oklahoma) will pay for the media (disk drives and tape cartridges).
OK PetaStore Strategy

- Many media slots, few media.
- Most of the media the grant purchases will be allocated to the research projects in the proposal.
- Slots are available on a first come first serve basis.
- Under the Oklahoma Cyberinfrastructure Initiative, this is also true for academic institutions statewide (and also many non-academic institutions).
MRI Research Projects

- **Numerical Prediction and Data Assimilation for Convection Storms, Tornadoes and Hurricanes**: Xue, Meteorology and Center for Analysis & Prediction of Storms (CAPS)
- **ATLAS Tier 2 High Energy Physics**: Strauss, Skubic, Severini, Physics & Astronomy, Oklahoma Center for High Energy Physics
- **Earth Observations for Biogeochemistry, Climate and Global Health**: Xiao, Botany & Microbiology, Center for Spatial Analysis
- **Adaption of Robust Kernel Methods to Geosciences**: Trafalis, Industrial Engr; Richman, Leslie, Meteorology
- **3D Synthetic Spectroscopy of Astrophysical Objects**: Baron, Physics & Astronomy
- **Credibility Assessment Research Initiative**: Jensen, Management Information Systems, Center for Applied Social Research
MRI Research Projects (cont’d)

- Developing Spatiotemporal Relational Models to Anticipate Tornado Formation: McGovern, Computer Science (CS), Interaction, Discovery, Exploration, Adaptation (IDEA) Lab

- Coastal Hazards Modeling: Kolar, Dresback, Civil Engineering & Environmental Science (CEES), Natural Hazards Center

- High Resolution Polarimetric Radar Studies Using OU-PRIME Radar: Palmer, Meteorology & Atmospheric Radar Research Center

- Perceptual and cognitive capacity: Modeling Behavior and Neurophysiology: Wenger, Psychology

- Multiscale Transport in Micro- and Nano-structures: Papavassiliou, Chemical, Biological & Materials Engr

- Electron Transfer Cofactors and Charge Transport: Wheeler, Chemistry & Biochemistry
Beginning mid-January 2011, **ALL** proposals to the NSF **MUST** have 2-page data management plans. (The plan could be an argument that no data management plan is needed).

I’ll be meeting with the Asst VP for Research to work on both boilerplate text describing the Oklahoma PetaStore, as well as strategizing how to assist researchers in constructing plans for metadata, provenance, etc.
What a Bargain!

When you hand in a completed **EVALUATION FORM**, you’ll get a beautiful new **Wednesday October 6 2010 T-SHIRT, FREE!**
Thanks!

- Academic sponsors
 - Oklahoma EPSCoR
 - Great Plains Network

- Industry sponsors
 - Platinum: Intel
 - Gold: Cray, Dell, Hewlett Packard, IBM, Lumenate, Qlogic, Storage Assessments
 - Silver: Bright Computing, Mellanox, Panasas
 - Bronze: Advanced Clustering Technologies, Spectra Logic
Thanks!

- **OU IT**
 - OU CIO/VPIT Dennis Aebersold
 - Associate VPIT Loretta Early
 - Symposium coordinator Michelle Wiginton
 - Assistant to the CIO Pam Ketner
 - OSCER Operations Team: Brandon George, Dave Akin, Brett Zimmerman, Josh Alexander
 - Videographer Kevin Blake
 - All of the OU IT folks who helped put this together

- **CCE Forum**
 - Deb Corley
 - The whole Forum crew who helped put this together

- **Tutorial instructors:** Charlie Peck, Andrew Fitz Gibbon
Thanks!

1. Keynote speaker: Horst Simon, LBL
 - Plenary Speakers
 2. Jennifer M. Schopf, NSF
 3. Jan E. Odegard, Rice U
 4. Dan Stanzione, TACC
 5. Stephen Wheat, Intel
 - Breakout speakers
 6. Amy Apon, University of Arkansas
 7. Dana Brunson, Oklahoma State University
 8. Clay Carley, East Central U
 10. Dan Dawson, NOAA National Severe Storms Laboratory
 11. Kendra Dresback, OU
 12. Brent Eskridge, Southern Nazarene U
 14. Dan Fraster, U Chicago
 - Breakout speakers (continued)
 16. Roger Hall, U Arkansas Little Rock
 17. Kevin Heisler, Qlogic
 18. Deepthi Konatham, OU
 19. Allen LaBryer, OU
 20. Evan Lemley, University of Central Oklahoma
 21. Greg Monaco, Great Plains Network
 22. Jeff Pummill, University of Arkansas
 23. Steve Rovarino, Quantum Corp.
 24. Larry Sells, Oklahoma City U
 25. Horst Severini, OU
 26. Wade Vinson, Hewlett Packard
 27. Kent Winchell, IBM
 28. Charlie Zhao, Cameron U
Thanks!

To all of your for participating, and to those many of you who’ve shown us so much loyalty over the past 9 years.

NEXT YEAR: Oklahoma Supercomputing Symposium 2011 will be Tue Oct 11 – Wed Oct 12 2011. Our tenth anniversary and our tenth Symposium – don’t miss it!
To Learn More About OSCER

http://www.oscer.ou.edu/
Thanks for your attention!

Questions?