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Outline
 What is the storage hierarchy?
 Registers
 Cache
 Main Memory (RAM)
 The Relationship Between RAM and Cache
 The Importance of Being Local
 Hard Disk
 Virtual Memory
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What is the Storage Hierarchy?

 Registers
 Cache memory
 Main memory (RAM)
 Hard disk
 Removable media (CD, DVD etc)
 Internet

Fast, expensive, few

Slow, cheap, a lot
[5]
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Henry’s Laptop

 Intel Core2 Duo SU9600                  
1.6 GHz w/3 MB L2 Cache

 4 GB 1066 MHz DDR3 SDRAM
 256 GB SSD Hard Drive
 DVD+RW/CD-RW Drive (8x)
 1 Gbps Ethernet Adapter

Dell Latitude Z600[4]
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Storage Speed, Size, Cost

Henry’s
Laptop

Registers
(Intel  

Core2 Duo
1.6 GHz)

Cache
Memory

(L2)

Main
Memory

(1066MHz 
DDR3 

SDRAM)

Hard 
Drive
(SSD)

Ethernet
(1000 
Mbps)

DVD+R
(16x)

Phone 
Modem

(56 Kbps)

Speed
(MB/sec)

[peak]

314,573[6]

(12,800 
MFLOP/s*)

27,276 [7] 4500 [7] 250      
[9]

125 22             
[10]

0.007

Size
(MB)

304 bytes**
[11]

3 4096 256,000 unlimited unlimited unlimited

Cost
($/MB) –

$285 [12] $0.03     
[12]

$0.002
[12]

charged
per month
(typically)

$0.00005 
[12]

charged 
per month 
(typically)

*   MFLOP/s: millions of floating point operations per second
** 8 32-bit integer registers, 8 80-bit floating point registers, 8 64-bit MMX integer registers,

8 128-bit floating point XMM registers
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What Are Registers?
Registers are memory-like locations inside the Central 

Processing Unit that hold data that are being used 
right now in operations.

…

Arithmetic/Logic UnitControl Unit Registers
Fetch Next Instruction Add Sub

Mult Div

And Or

Not …

Integer

Floating Point

…

Fetch Data Store Data

Increment Instruction Ptr

Execute Instruction

…

CPU
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How Registers Are Used
 Every arithmetic or logical operation has one or more 

operands and one result.
 Operands are contained in source registers.
 A “black box” of circuits performs the operation.
 The result goes into a destination register.

Ex
am

pl
e:

addend in R0

augend in R1
ADD sum in R2

5

7
12

Register Ri

Register Rj
Register Rk

operand

operand

result

Operation circuitry
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How Many Registers?
Typically, a CPU has less than 4 KB (4096 bytes) of registers, usually 

split into registers for holding integer values and registers for 
holding floating point (real) values, plus a few special purpose 
registers.

Examples:
 IBM POWER5+ (found in IBM p-Series supercomputers):         

80 64-bit integer registers and 72 64-bit floating point         
registers (1,216 bytes) [12]

 Intel Pentium4 EM64T: 8 64-bit integer registers, 8 80-bit 
floating point registers, 16 128-bit floating point vector registers 
(400 bytes) [4]

 Intel Itanium2: 128 64-bit integer registers, 128 82-bit floating 
point registers (2304 bytes) [23]
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What is Cache?
 A special kind of memory where data reside that are

about to be used or have just been used.
 Very fast => very expensive => very small (typically 100 

to 10,000 times as expensive as RAM per byte)
 Data in cache can be loaded into or stored from registers 

at speeds comparable to the speed of performing 
computations.

 Data that are not in cache (but that are in Main Memory) 
take much longer to load or store.

 Cache is near the CPU: either inside the CPU or on the 
motherboard that the CPU sits on.
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From Cache to the CPU

Typically, data move between cache and the CPU at speeds 
relatively near to that of the CPU performing calculations.

CPU

Cache

27 GB/sec (6x RAM)[7]

307 GB/sec[7]
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Multiple Levels of Cache
Most contemporary CPUs have more than one level of cache. 

For example:
 Intel Pentium4 EM64T (Yonah) [??]

 Level 1 caches:    32 KB instruction, 32 KB data
 Level 2 cache:  2048 KB unified (instruction+data)

 IBM POWER7 [12]

 Level 1 cache: 32 KB instruction, 32 KB data per core
 Level 2 cache: 256 KB unified per core
 Level 3 cache: 4 MB unified per core
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Why Multiple Levels of Cache?
The lower the level of cache:
 the faster the cache can transfer data to the CPU;
 the smaller that level of cache is, because

faster => more expensive => smaller.
Example: IBM POWER4 latency to the CPU [12]

 L1 cache:   2 cycles = 0.57 ns for 3.5 GHz
 L2 cache:   8 cycles = 2.29 ns for 3.5 GHz
 L3 cache: 25 cycles = 7.14 ns for 3.5 GHz
Example: Intel Itanium2 latency to the CPU [19]

 L1 cache:   1 cycle   =   1.0 ns for 1.0 GHz
 L2 cache:   5 cycles =   5.0 ns for 1.0 GHz
 L3 cache: 12-15 cycles = 12 – 15 ns for 1.0 GHz
Example: Intel Pentium4 (Yonah)
 L1 cache:   3 cycles =  1.64 ns for a 1.83 GHz CPU =  12 calculations
 L2 cache: 14 cycles =  7.65 ns for a 1.83 GHz CPU =  56 calculations
 RAM:       48 cycles = 26.2 ns for a 1.83 GHz CPU = 192 calculations 
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Cache & RAM Latencies
Cache & RAM Latency: Intel T2400 (1.83 GHz)
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What is Main Memory?
 Where data reside for a program that is  currently running
 Sometimes called RAM (Random Access Memory): you can 

load from or store into any main memory location at any time
 Sometimes called core (from magnetic “cores” that some 

memories used, many years ago)
 Much slower => much cheaper => much bigger
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What Main Memory Looks Like

…
0 1 2 3 4 5 6 7 8 9 10

536,870,911

You can think of main memory as a 
big long 1D array of bytes.



The Relationship 
Between

Main Memory & Cache
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RAM is Slow
CPU 307 GB/sec[6]

4.4 GB/sec[7] (1.4%)

Bottleneck

The speed of data transfer
between Main Memory and the
CPU is much slower than the
speed of calculating, so the CPU
spends most of its time waiting
for data to come in or go out.
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Why Have Cache?
CPUCache is much closer to the speed

of the CPU, so the CPU doesn’t
have to wait nearly as long for
stuff that’s already in cache:
it can do more
operations per second! 4.4 GB/sec[7] (1%)

27 GB/sec (9%)[7]
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Cache & RAM Bandwidths
Cache & RAM Bandwidth: Intel T2400 (1.83 GHz)
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Cache Use Jargon
 Cache Hit:  the data that the CPU needs right now are 

already in cache.
 Cache Miss: the data that the CPU needs right now are 

not currently in cache.
If all of your data are small enough to fit in cache, then when 

you run your program, you’ll get almost all cache hits 
(except at the very beginning), which means that your 
performance could be excellent!

Sadly, this rarely happens in real life: most problems of 
scientific or engineering interest are bigger than just a few 
MB.
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Cache Lines
 A cache line is a small, contiguous region in cache, 

corresponding to a contiguous region in RAM of the same 
size, that is loaded all at once.

 Typical size:  32 to 1024 bytes
 Examples

 Pentium 4 (Yonah) [26]

 L1 data cache:           64 bytes per line
 L2 cache:                 128 bytes per line

 POWER4 [12]

 L1 instruction cache: 128 bytes per line
 L1 data cache:           128 bytes per line
 L2 cache:                   128 bytes per line
 L3 cache:                   512 bytes per line 
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How Cache Works
When you request data from a particular address in Main 

Memory, here’s what happens:
1. The hardware checks whether the data for that address is 

already in cache. If so, it uses it.
2. Otherwise, it loads from Main Memory the entire cache 

line that contains the address.
For example, on a 1.83 GHz Pentium4 Core Duo (Yonah), a 

cache miss makes the program stall (wait) at least 48 
cycles (26.2 nanoseconds) for the next cache line to load –
time that could have been spent performing up to 192 
calculations! [26]
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If It’s in Cache, It’s Also in RAM
If a particular memory address is currently in cache, then it’s 

also in Main Memory (RAM).
That is, all of a program’s data are in Main Memory, but some

are also in cache.
We’ll revisit this point shortly.

Parallel & Cluster: Storage Hierarchy
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Mapping Cache Lines to RAM
Main memory typically maps into cache in one of three 

ways:
 Direct mapped    (occasionally)
 Fully associative (very rare these days)
 Set associative    (common)

DON’T
PANIC!
Parallel & Cluster: Storage Hierarchy
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Direct Mapped Cache
Direct Mapped Cache is a scheme in which each location in 

main memory corresponds to exactly one location in cache 
(but not the reverse, since cache is much smaller than main 
memory).

Typically, if a cache address is represented by c bits, and a 
main memory address is represented by m bits, then the 
cache location associated with main memory address A is 
MOD(A,2c); that is,  the lowest c bits of A.

Example: POWER4 L1 instruction cache

Parallel & Cluster: Storage Hierarchy
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Direct Mapped Cache Illustration
Must go into
cache address

11100101

Main Memory Address
0100101011100101

Notice that 11100101 
is the low 8 bits of 
0100101011100101.
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Jargon: Cache Conflict
Suppose that the cache address 11100101 currently contains 

RAM address 0100101011100101.
But, we now need to load RAM address 1100101011100101, 

which maps to the same cache address as 
0100101011100101.

This is called a cache conflict : the CPU needs a RAM 
location that maps to a cache line already in use.

In the case of direct mapped cache, every cache conflict leads 
to the new cache line clobbering the old cache line.

This can lead to serious performance problems.

Parallel & Cluster: Storage Hierarchy
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Problem with Direct Mapped: F90
If you have two arrays that start in the same place relative 

to cache, then they might clobber each other all the 
time: no cache hits!

REAL,DIMENSION(multiple_of_cache_size) :: a, b, c
INTEGER :: index

DO index = 1, multiple_of_cache_size
a(index) = b(index) + c(index)

END DO

In this example, a(index), b(index) and 
c(index) all map to the same cache line, so loading 
c(index) clobbers  b(index) – no cache reuse!

Parallel & Cluster: Storage Hierarchy
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Problem with Direct Mapped: C
If you have two arrays that start in the same place relative 

to cache, then they might clobber each other all the 
time: no cache hits!
float a[multiple_of_cache_size],

b[multiple_of_cache_size,
c[multiple_of_cache_size];

int index;

for (index = 0; index < multiple_of_cache_size;
index++)
{ a[index] = b[index] + c[index]; }

In this example, a[index], b[index] and 
c[index] all map to the same cache line, so loading 
c[index] clobbers  b[index] – no cache reuse!
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Fully Associative Cache
Fully Associative Cache can put any line of main memory into 

any cache line.
Typically, the cache management system will put the newly 

loaded data into the Least Recently Used cache line, though 
other strategies are possible (e.g., Random, First In First 
Out, Round Robin, Least Recently Modified).

So, this can solve, or at least reduce, the cache conflict 
problem.

But, fully associative cache tends to be expensive, so it’s pretty 
rare: you need Ncache

. NRAM connections!

Parallel & Cluster: Storage Hierarchy
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Fully Associative Illustration

Could go into
any cache line

Main Memory Address
0100101011100101
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Set Associative Cache
Set Associative Cache is a compromise between direct 

mapped and fully associative.  A line in main memory 
can map to any of a fixed number of cache lines.

For example, 2-way Set Associative Cache can map each 
main memory line to either of 2 cache lines (e.g., to the 
Least Recently Used), 3-way maps to any of 3 cache 
lines, 4-way to 4 lines, and so on.

Set Associative cache is cheaper than fully associative –
you need K . NRAM connections – but more robust than 
direct mapped.
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2-Way Set Associative Illustration
Could go into 
cache address

11100101

Main Memory Address
0100101011100101

Could go into
cache address

01100101

OR
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Cache Associativity Examples
 Pentium 4 EM64T (Yonah) [26]

 L1 data cache:           8-way set associative
 L2 cache:                   8-way set associative

 POWER4 [12]

 L1 instruction cache:  direct mapped
 L1 data cache:            2-way set associative
 L2 cache:                    8-way set associative
 L3 cache:                    8-way set associative

Parallel & Cluster: Storage Hierarchy
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If It’s in Cache, It’s Also in RAM
As we saw earlier:

If a particular memory address is currently in cache, then 
it’s also in Main Memory (RAM).
That is, all of a program’s data are in Main Memory, but 
some are also in cache.

Parallel & Cluster: Storage Hierarchy
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Changing a Value That’s in Cache
Suppose that you have in cache a particular line of main 

memory (RAM).
If you don’t change the contents of any of that line’s bytes 

while it’s in cache, then when it gets clobbered by another 
main memory line coming into cache, there’s no loss of 
information.

But, if you change the contents of any byte while it’s in cache, 
then you need to store it back out to main memory before 
clobbering it. 

Parallel & Cluster: Storage Hierarchy
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Cache Store Strategies
Typically, there are two possible cache store strategies:
 Write-through: every single time that a value in cache is 

changed, that value is also stored back into main memory 
(RAM).

 Write-back: every single time that a value in cache is 
changed, the cache line containing that cache location gets 
marked as dirty. When a cache line gets clobbered, then if it 
has been marked as dirty, then it is stored back into main 
memory (RAM). [14]
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More Data Than Cache
Let’s say that you have 1000 times more data than cache.  

Then won’t most of your data be outside the cache?

YES!
Okay, so how does cache help?

Parallel & Cluster: Storage Hierarchy
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Improving Your Cache Hit Rate
Many scientific codes use a lot more data than can fit in cache 

all at once.
Therefore, you need to ensure a high cache hit rate even 

though you’ve got much more data than cache.
So, how can you improve your cache hit rate?
Use the same solution as in Real Estate:
Location, Location, Location!

Parallel & Cluster: Storage Hierarchy
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Data Locality
Data locality is the principle that, if you use data in a particular 

memory address, then very soon you’ll use either the same 
address or a nearby address.

 Temporal locality:  if you’re using address A now, then 
you’ll probably soon use address A again.

 Spatial locality:  if you’re using address A now, then you’ll 
probably soon use addresses between  A-k and  A+k, 
where k is small.

Note that this principle works well for sufficiently small values 
of “soon.”

Cache is designed to exploit locality, which is why a cache miss 
causes a whole line to be loaded.

Parallel & Cluster: Storage Hierarchy
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Data Locality Is Empirical: C
Data locality has been observed empirically in many, many 

programs.

void ordered_fill (float* array, int array_length)
{ /* ordered_fill */
int index;

for (index = 0; index < array_length; index++) {
array[index] = index;

} /* for index */
} /* ordered_fill */

Parallel & Cluster: Storage Hierarchy
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Data Locality Is Empirical: F90
Data locality has been observed empirically in many, many 

programs.

SUBROUTINE ordered_fill (array, array_length)
IMPLICIT NONE
INTEGER,INTENT(IN) :: array_length
REAL,DIMENSION(array_length),INTENT(OUT) :: array
INTEGER :: index

DO index = 1, array_length
array(index) = index

END DO
END SUBROUTINE ordered_fill

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010



47

No Locality Example: C
In principle, you could write a program that exhibited 

absolutely no data locality at all:

void random_fill (float* array,
int* random_permutation_index,
int array_length)

{ /* random_fill */
int index;

for (index = 0; index < array_length; index++) {
array[random_permutation_index[index]] = index;

} /* for index */
} /* random_fill */

Parallel & Cluster: Storage Hierarchy
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No Locality Example: F90
In principle, you could write a program that exhibited 

absolutely no data locality at all:
SUBROUTINE random_fill (array,

random_permutation_index, array_length)
IMPLICIT NONE
INTEGER,INTENT(IN) :: array_length
INTEGER,DIMENSION(array_length),INTENT(IN) :: &

&   random_permutation_index
REAL,DIMENSION(array_length),INTENT(OUT) :: array
INTEGER :: index

DO index = 1, array_length
array(random_permutation_index(index)) = index

END DO
END SUBROUTINE random_fill

Parallel & Cluster: Storage Hierarchy
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Permuted vs. Ordered

In a simple array fill, locality provides a factor of 8 to 20 
speedup over a randomly ordered fill on a Pentium4.
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Exploiting Data Locality
If you know that your code is capable of operating with a 

decent amount of data locality, then you can get speedup by 
focusing your energy on improving the locality of the 
code’s behavior.

This will substantially increase your cache reuse.

Parallel & Cluster: Storage Hierarchy
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A Sample Application
Matrix-Matrix Multiply
Let A, B and C be matrices of sizes
nr × nc, nr × nk and nk × nc, respectively:
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The definition of A = B • C  is

for r ∈ {1, nr}, c ∈ {1, nc}.
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Matrix Multiply w/Initialization
SUBROUTINE matrix_matrix_mult_by_init (dst, src1, src2, &
&                                     nr, nc, nq)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN)  :: src1
REAL,DIMENSION(nq,nc),INTENT(IN)  :: src2

INTEGER :: r, c, q

DO c = 1, nc
DO r = 1, nr
dst(r,c) = 0.0
DO q = 1, nq
dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)

END DO !! q = 1, nq
END DO !! r = 1, nr

END DO !! c = 1, nc
END SUBROUTINE matrix_matrix_mult_by_init

Parallel & Cluster: Storage Hierarchy
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Matrix Multiply w/Initialization
void matrix_matrix_mult_by_init (

float** dst, float** src1, float** src2,
int nr, int nc, int nq)

{ /* matrix_matrix_mult_by_init */
int r, c, q;

for (r = 0; r < nr; r++) {
for (c = 0; c < nc; c++) {
dst[r][c] = 0.0;
for (q = 0; q < nq; q++) {
dst[r][c] = dst[r][c] + src1[r][q] * src2[q][c];

} /* for q */
} /* for c */

} /* for r */
} /* matrix_matrix_mult_by_init */
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Matrix Multiply Via Intrinsic
SUBROUTINE matrix_matrix_mult_by_intrinsic ( &
&           dst, src1, src2, nr, nc, nq)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN)  :: src1
REAL,DIMENSION(nq,nc),INTENT(IN)  :: src2

dst = MATMUL(src1, src2)
END SUBROUTINE matrix_matrix_mult_by_intrinsic
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Matrix Multiply Behavior

If the matrix is big, then each sweep of a row will clobber nearby values in cache.



Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010 56

Performance of Matrix Multiply
Matrix-Matrix Multiply
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Tiling
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Tiling
 Tile: a small rectangular subdomain of a problem domain.  

Sometimes called a block or a chunk.
 Tiling: breaking the domain into tiles.
 Tiling strategy: operate on each tile to completion, then 

move to the next tile.
 Tile size can be set at runtime, according to what’s best for 

the machine that you’re running on.
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Tiling Code: F90
SUBROUTINE matrix_matrix_mult_by_tiling (dst, src1, src2, nr, nc, nq, &
&           rtilesize, ctilesize, qtilesize)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN)  :: src1
REAL,DIMENSION(nq,nc),INTENT(IN)  :: src2
INTEGER,INTENT(IN) :: rtilesize, ctilesize, qtilesize

INTEGER :: rstart, rend, cstart, cend, qstart, qend

DO cstart = 1, nc, ctilesize
cend = cstart + ctilesize - 1
IF (cend > nc) cend = nc
DO rstart = 1, nr, rtilesize

rend = rstart + rtilesize - 1
IF (rend > nr) rend = nr
DO qstart = 1, nq, qtilesize

qend = qstart + qtilesize - 1
IF (qend > nq) qend = nq
CALL matrix_matrix_mult_tile(dst, src1, src2, nr, nc, nq, &

&                                   rstart, rend, cstart, cend, qstart, qend)
END DO !! qstart = 1, nq, qtilesize

END DO !! rstart = 1, nr, rtilesize
END DO !! cstart = 1, nc, ctilesize

END SUBROUTINE matrix_matrix_mult_by_tiling
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Tiling Code: C
void matrix_matrix_mult_by_tiling (

float** dst, float** src1, float** src2,
int nr, int nc, int nq,
int rtilesize, int ctilesize, int qtilesize)

{ /* matrix_matrix_mult_by_tiling */
int rstart, rend, cstart, cend, qstart, qend;

for (rstart = 0; rstart < nr; rstart += rtilesize) {
rend = rstart + rtilesize – 1;
if (rend >= nr) rend = nr - 1;
for (cstart = 0; cstart < nc; cstart += ctilesize) {
cend = cstart + ctilesize – 1;
if (cend >= nc) cend = nc - 1;
for (qstart = 0; qstart < nq; qstart += qtilesize) {
qend = qstart + qtilesize – 1;
if (qend >= nq) qend = nq - 1;
matrix_matrix_mult_tile(dst, src1, src2, nr, nc, nq,

rstart, rend, cstart, cend, qstart, qend);
} /* for qstart */

} /* for cstart */
} /* for rstart */

} /* matrix_matrix_mult_by_tiling */
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Multiplying Within a Tile: F90
SUBROUTINE matrix_matrix_mult_tile (dst, src1, src2, nr, nc, nq, &
&             rstart, rend, cstart, cend, qstart, qend)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN)  :: src1
REAL,DIMENSION(nq,nc),INTENT(IN)  :: src2
INTEGER,INTENT(IN) :: rstart, rend, cstart, cend, qstart, qend

INTEGER :: r, c, q

DO c = cstart, cend
DO r = rstart, rend
IF (qstart == 1) dst(r,c) = 0.0
DO q = qstart, qend
dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)

END DO !! q = qstart, qend
END DO !! r = rstart, rend

END DO !! c = cstart, cend
END SUBROUTINE matrix_matrix_mult_tile
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Multiplying Within a Tile: C
void matrix_matrix_mult_tile (

float** dst, float** src1, float** src2,
int nr, int nc, int nq,
int rstart, int rend, int cstart, int cend,
int qstart, int qend)

{ /* matrix_matrix_mult_tile */
int r, c, q;

for (r = rstart; r <= rend; r++) {
for (c = cstart; c <= cend; c++) {

if (qstart == 0) dst[r][c] = 0.0;
for (q = qstart; q <= qend; q++) {

dst[r][c] = dst[r][c] + src1[r][q] * src2[q][c];
} /* for q */

} /* for c */
} /* for r */

} /* matrix_matrix_mult_tile */
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Performance with Tiling

Matrix-Matrix Mutiply Via Tiling (log-log)
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The Advantages of Tiling
 It allows your code to exploit data locality better, to get 

much more cache reuse: your code runs faster!
 It’s a relatively modest amount of extra coding (typically a 

few wrapper functions and some changes to loop bounds).
 If you don’t need tiling – because of the hardware, the 

compiler or the problem size – then you can  turn it off by 
simply setting the tile size equal to the problem size.
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Will Tiling Always Work?
Tiling WON’T always work. Why?
Well, tiling works well when:
 the order in which calculations occur doesn’t matter much, 

AND
 there are lots and lots of calculations to do for each memory 

movement.
If either condition is absent, then tiling won’t help.

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010



Hard Disk



67

Why Is Hard Disk Slow?
Your hard disk is much much slower than main memory (factor of 

10-1000).  Why?
Well, accessing data on the hard disk involves physically moving:

 the disk platter
 the read/write head

In other words, hard disk is slow because objects move much slower 
than electrons: Newtonian speeds are much slower than 
Einsteinian speeds.
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I/O Strategies
Read and write the absolute minimum amount.
 Don’t reread the same data if you can keep it in memory.
 Write binary instead of characters.
 Use optimized I/O libraries like NetCDF [17] and HDF [18].
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Avoid Redundant I/O: C
An actual piece of code seen at OU:
for (thing = 0; thing < number_of_things; thing++) {

for (timestep = 0; timestep < number_of_timesteps; timestep++) {
read_file(filename[timestep]);
do_stuff(thing, timestep);

} /* for timestep */
} /* for thing */

Improved version:
for (timestep = 0; timestep < number_of_timesteps; timestep++) {

read_file(filename[timestep]);
for (thing = 0; thing < number_of_things; thing++) {

do_stuff(thing, timestep);
} /* for thing */

} /* for timestep */

Savings (in real life):  factor of 500!
Parallel & Cluster: Storage Hierarchy
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Avoid Redundant I/O: F90
An actual piece of code seen at OU:

DO thing = 1, number_of_things
DO timestep = 1, number_of_timesteps

CALL read_file(filename(timestep))
CALL do_stuff(thing, timestep)

END DO !! timestep
END DO !! thing

Improved version:
DO timestep = 1, number_of_timesteps

CALL read_file(filename(timestep))
DO thing = 1, number_of_things

CALL do_stuff(thing, timestep)
END DO !! thing

END DO !! timestep

Savings (in real life):  factor of 500!
Parallel & Cluster: Storage Hierarchy
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Write Binary, Not ASCII
When you write binary data to a file, you’re writing (typically) 

4 bytes per value.
When you write ASCII (character) data, you’re writing 

(typically) 8-16 bytes per value.
So binary saves a factor of 2 to 4 (typically).
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Problem with Binary I/O
There are many ways to represent data inside a computer, 

especially floating point (real) data.
Often, the way that one kind of computer (e.g., a Pentium4) 

saves binary data is different from another kind of 
computer (e.g., a POWER5).

So, a file written on a Pentium4 machine may not be readable 
on a POWER5.
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Portable I/O Libraries
NetCDF and HDF are the two most commonly used I/O 

libraries for scientific computing.
Each has its own internal way of representing numerical data.  

When you write a file using, say, HDF, it can be read by a 
HDF on any kind of computer.

Plus, these libraries are optimized to make the I/O very fast.
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Virtual Memory
 Typically, the amount of main memory (RAM) that a CPU 

can address is larger than the amount of data physically 
present in the computer.

 For example, Henry’s laptop can address 32 GB of main 
memory (roughly 32 billion bytes), but only contains        
2 GB (roughly 2 billion bytes).

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010



76

Virtual Memory (cont’d)
 Locality:  Most programs don’t jump all over the memory 

that they use; instead, they work in a particular area of 
memory for a while, then move to another area.

 So, you can offload onto hard disk much of the memory 
image of a program that’s running.
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Virtual Memory (cont’d)
 Memory is chopped up into many pages of modest size (e.g., 

1 KB – 32 KB; typically 4 KB).
 Only pages that have been recently used actually reside in 

memory; the rest are stored on hard disk.
 Hard disk is 10 to 1,000 times slower than main memory, so 

you get better performance if you rarely get a page fault, 
which forces a read from (and maybe a write to) hard disk: 
exploit data locality!
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Cache vs. Virtual Memory
 Lines (cache) vs. pages (VM)
 Cache faster than RAM (cache) vs. RAM faster than disk 

(VM)
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Storage Use Strategies
 Register reuse: do a lot of work on the same data before 

working on new data.
 Cache reuse: the program is much more efficient if all of 

the data and instructions fit in cache; if not, try to use what’s 
in cache a lot before using anything that isn’t in cache (e.g., 
tiling).

 Data locality: try to access data that are near each other in 
memory before data that are far.

 I/O efficiency: do a bunch of I/O all at once rather than a 
little bit at a time; don’t mix calculations and I/O.
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