
Parallel Programming &
Cluster Computing

The Tyranny of
the Storage Hierarchy
Henry Neeman, Director

OU Supercomputing Center for Education & Research
University of Oklahoma Information Technology

Oklahoma Supercomputing Symposium, Tue Oct 5 2010

2

Outline
 What is the storage hierarchy?
 Registers
 Cache
 Main Memory (RAM)
 The Relationship Between RAM and Cache
 The Importance of Being Local
 Hard Disk
 Virtual Memory

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

3

What is the Storage Hierarchy?

 Registers
 Cache memory
 Main memory (RAM)
 Hard disk
 Removable media (CD, DVD etc)
 Internet

Fast, expensive, few

Slow, cheap, a lot
[5]

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

Parallel & Cluster: Overview
Oklahoma Supercomputing Symposium 2010 4

Henry’s Laptop

 Intel Core2 Duo SU9600
1.6 GHz w/3 MB L2 Cache

 4 GB 1066 MHz DDR3 SDRAM
 256 GB SSD Hard Drive
 DVD+RW/CD-RW Drive (8x)
 1 Gbps Ethernet Adapter

Dell Latitude Z600[4]

Parallel & Cluster: Overview
Oklahoma Supercomputing Symposium 2010 5

Storage Speed, Size, Cost

Henry’s
Laptop

Registers
(Intel

Core2 Duo
1.6 GHz)

Cache
Memory

(L2)

Main
Memory

(1066MHz
DDR3

SDRAM)

Hard
Drive
(SSD)

Ethernet
(1000
Mbps)

DVD+R
(16x)

Phone
Modem

(56 Kbps)

Speed
(MB/sec)

[peak]

314,573[6]

(12,800
MFLOP/s*)

27,276 [7] 4500 [7] 250
[9]

125 22
[10]

0.007

Size
(MB)

304 bytes**
[11]

3 4096 256,000 unlimited unlimited unlimited

Cost
($/MB) –

$285 [12] $0.03
[12]

$0.002
[12]

charged
per month
(typically)

$0.00005
[12]

charged
per month
(typically)

* MFLOP/s: millions of floating point operations per second
** 8 32-bit integer registers, 8 80-bit floating point registers, 8 64-bit MMX integer registers,

8 128-bit floating point XMM registers

Registers

[25]

7

What Are Registers?
Registers are memory-like locations inside the Central

Processing Unit that hold data that are being used
right now in operations.

…

Arithmetic/Logic UnitControl Unit Registers
Fetch Next Instruction Add Sub

Mult Div

And Or

Not …

Integer

Floating Point

…

Fetch Data Store Data

Increment Instruction Ptr

Execute Instruction

…

CPU

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

8

How Registers Are Used
 Every arithmetic or logical operation has one or more

operands and one result.
 Operands are contained in source registers.
 A “black box” of circuits performs the operation.
 The result goes into a destination register.

Ex
am

pl
e:

addend in R0

augend in R1
ADD sum in R2

5

7
12

Register Ri

Register Rj
Register Rk

operand

operand

result

Operation circuitry

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

9

How Many Registers?
Typically, a CPU has less than 4 KB (4096 bytes) of registers, usually

split into registers for holding integer values and registers for
holding floating point (real) values, plus a few special purpose
registers.

Examples:
 IBM POWER5+ (found in IBM p-Series supercomputers):

80 64-bit integer registers and 72 64-bit floating point
registers (1,216 bytes) [12]

 Intel Pentium4 EM64T: 8 64-bit integer registers, 8 80-bit
floating point registers, 16 128-bit floating point vector registers
(400 bytes) [4]

 Intel Itanium2: 128 64-bit integer registers, 128 82-bit floating
point registers (2304 bytes) [23]

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

Cache

[4]

11

What is Cache?
 A special kind of memory where data reside that are

about to be used or have just been used.
 Very fast => very expensive => very small (typically 100

to 10,000 times as expensive as RAM per byte)
 Data in cache can be loaded into or stored from registers

at speeds comparable to the speed of performing
computations.

 Data that are not in cache (but that are in Main Memory)
take much longer to load or store.

 Cache is near the CPU: either inside the CPU or on the
motherboard that the CPU sits on.

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010 12

From Cache to the CPU

Typically, data move between cache and the CPU at speeds
relatively near to that of the CPU performing calculations.

CPU

Cache

27 GB/sec (6x RAM)[7]

307 GB/sec[7]

13

Multiple Levels of Cache
Most contemporary CPUs have more than one level of cache.

For example:
 Intel Pentium4 EM64T (Yonah) [??]

 Level 1 caches: 32 KB instruction, 32 KB data
 Level 2 cache: 2048 KB unified (instruction+data)

 IBM POWER7 [12]

 Level 1 cache: 32 KB instruction, 32 KB data per core
 Level 2 cache: 256 KB unified per core
 Level 3 cache: 4 MB unified per core

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

14

Why Multiple Levels of Cache?
The lower the level of cache:
 the faster the cache can transfer data to the CPU;
 the smaller that level of cache is, because

faster => more expensive => smaller.
Example: IBM POWER4 latency to the CPU [12]

 L1 cache: 2 cycles = 0.57 ns for 3.5 GHz
 L2 cache: 8 cycles = 2.29 ns for 3.5 GHz
 L3 cache: 25 cycles = 7.14 ns for 3.5 GHz
Example: Intel Itanium2 latency to the CPU [19]

 L1 cache: 1 cycle = 1.0 ns for 1.0 GHz
 L2 cache: 5 cycles = 5.0 ns for 1.0 GHz
 L3 cache: 12-15 cycles = 12 – 15 ns for 1.0 GHz
Example: Intel Pentium4 (Yonah)
 L1 cache: 3 cycles = 1.64 ns for a 1.83 GHz CPU = 12 calculations
 L2 cache: 14 cycles = 7.65 ns for a 1.83 GHz CPU = 56 calculations
 RAM: 48 cycles = 26.2 ns for a 1.83 GHz CPU = 192 calculations

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

15

Cache & RAM Latencies
Cache & RAM Latency: Intel T2400 (1.83 GHz)

0

10

20

30

40

50

60

10
24

20
48

40
32

72
96

12
48

0
21

05
6
35

13
6
58

17
6
96

00
0

15
76

32

25
84

96

42
35

52

69
35

04

11
35

48
8

18
58

43
2

30
41

40
8

49
76

96
0

81
43

74
4

Array Size (bytes)

L
at

en
cy

 (c
lo

ck
 c

yc
le

s)

Memory Latency

3 cycles

14 cycles

47 cycles

Better
[26]

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

Main Memory

[13]

17

What is Main Memory?
 Where data reside for a program that is currently running
 Sometimes called RAM (Random Access Memory): you can

load from or store into any main memory location at any time
 Sometimes called core (from magnetic “cores” that some

memories used, many years ago)
 Much slower => much cheaper => much bigger

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010 18

What Main Memory Looks Like

…
0 1 2 3 4 5 6 7 8 9 10

536,870,911

You can think of main memory as a
big long 1D array of bytes.

The Relationship
Between

Main Memory & Cache

Parallel & Cluster: Overview
Oklahoma Supercomputing Symposium 2010 20

RAM is Slow
CPU 307 GB/sec[6]

4.4 GB/sec[7] (1.4%)

Bottleneck

The speed of data transfer
between Main Memory and the
CPU is much slower than the
speed of calculating, so the CPU
spends most of its time waiting
for data to come in or go out.

Parallel & Cluster: Overview
Oklahoma Supercomputing Symposium 2010 21

Why Have Cache?
CPUCache is much closer to the speed

of the CPU, so the CPU doesn’t
have to wait nearly as long for
stuff that’s already in cache:
it can do more
operations per second! 4.4 GB/sec[7] (1%)

27 GB/sec (9%)[7]

22

Cache & RAM Bandwidths
Cache & RAM Bandwidth: Intel T2400 (1.83 GHz)

0

2000

4000

6000

8000

10000

12000

14000

16000

10
24

17
40

8
33

79
2

66
56

0

12
08

32

20
68

48

34
81

60

58
06

08

96
05

12

15
84

12
8

26
00

96
0

42
65

98
4

69
88

80
0

Array Size (bytes)

B
an

dw
id

th
 (M

B
/s

ec
)

Read BW
Write BW

32 KB (L1 cache size)

2 MB (L2 cache size)

7.7 GB/sec14.2 GB/sec

3.5 GB/sec

1.4 GB/sec

Better

[26]

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

23

Cache Use Jargon
 Cache Hit: the data that the CPU needs right now are

already in cache.
 Cache Miss: the data that the CPU needs right now are

not currently in cache.
If all of your data are small enough to fit in cache, then when

you run your program, you’ll get almost all cache hits
(except at the very beginning), which means that your
performance could be excellent!

Sadly, this rarely happens in real life: most problems of
scientific or engineering interest are bigger than just a few
MB.

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

24

Cache Lines
 A cache line is a small, contiguous region in cache,

corresponding to a contiguous region in RAM of the same
size, that is loaded all at once.

 Typical size: 32 to 1024 bytes
 Examples

 Pentium 4 (Yonah) [26]

 L1 data cache: 64 bytes per line
 L2 cache: 128 bytes per line

 POWER4 [12]

 L1 instruction cache: 128 bytes per line
 L1 data cache: 128 bytes per line
 L2 cache: 128 bytes per line
 L3 cache: 512 bytes per line

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

25

How Cache Works
When you request data from a particular address in Main

Memory, here’s what happens:
1. The hardware checks whether the data for that address is

already in cache. If so, it uses it.
2. Otherwise, it loads from Main Memory the entire cache

line that contains the address.
For example, on a 1.83 GHz Pentium4 Core Duo (Yonah), a

cache miss makes the program stall (wait) at least 48
cycles (26.2 nanoseconds) for the next cache line to load –
time that could have been spent performing up to 192
calculations! [26]

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

26

If It’s in Cache, It’s Also in RAM
If a particular memory address is currently in cache, then it’s

also in Main Memory (RAM).
That is, all of a program’s data are in Main Memory, but some

are also in cache.
We’ll revisit this point shortly.

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

27

Mapping Cache Lines to RAM
Main memory typically maps into cache in one of three

ways:
 Direct mapped (occasionally)
 Fully associative (very rare these days)
 Set associative (common)

DON’T
PANIC!
Parallel & Cluster: Storage Hierarchy

Oklahoma Supercomputing Symposium 2010

28

Direct Mapped Cache
Direct Mapped Cache is a scheme in which each location in

main memory corresponds to exactly one location in cache
(but not the reverse, since cache is much smaller than main
memory).

Typically, if a cache address is represented by c bits, and a
main memory address is represented by m bits, then the
cache location associated with main memory address A is
MOD(A,2c); that is, the lowest c bits of A.

Example: POWER4 L1 instruction cache

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010 29

Direct Mapped Cache Illustration
Must go into
cache address

11100101

Main Memory Address
0100101011100101

Notice that 11100101
is the low 8 bits of
0100101011100101.

30

Jargon: Cache Conflict
Suppose that the cache address 11100101 currently contains

RAM address 0100101011100101.
But, we now need to load RAM address 1100101011100101,

which maps to the same cache address as
0100101011100101.

This is called a cache conflict : the CPU needs a RAM
location that maps to a cache line already in use.

In the case of direct mapped cache, every cache conflict leads
to the new cache line clobbering the old cache line.

This can lead to serious performance problems.

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

31

Problem with Direct Mapped: F90
If you have two arrays that start in the same place relative

to cache, then they might clobber each other all the
time: no cache hits!

REAL,DIMENSION(multiple_of_cache_size) :: a, b, c
INTEGER :: index

DO index = 1, multiple_of_cache_size
a(index) = b(index) + c(index)

END DO

In this example, a(index), b(index) and
c(index) all map to the same cache line, so loading
c(index) clobbers b(index) – no cache reuse!

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

32

Problem with Direct Mapped: C
If you have two arrays that start in the same place relative

to cache, then they might clobber each other all the
time: no cache hits!
float a[multiple_of_cache_size],

b[multiple_of_cache_size,
c[multiple_of_cache_size];

int index;

for (index = 0; index < multiple_of_cache_size;
index++)
{ a[index] = b[index] + c[index]; }

In this example, a[index], b[index] and
c[index] all map to the same cache line, so loading
c[index] clobbers b[index] – no cache reuse!

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

33

Fully Associative Cache
Fully Associative Cache can put any line of main memory into

any cache line.
Typically, the cache management system will put the newly

loaded data into the Least Recently Used cache line, though
other strategies are possible (e.g., Random, First In First
Out, Round Robin, Least Recently Modified).

So, this can solve, or at least reduce, the cache conflict
problem.

But, fully associative cache tends to be expensive, so it’s pretty
rare: you need Ncache

. NRAM connections!

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010 34

Fully Associative Illustration

Could go into
any cache line

Main Memory Address
0100101011100101

35

Set Associative Cache
Set Associative Cache is a compromise between direct

mapped and fully associative. A line in main memory
can map to any of a fixed number of cache lines.

For example, 2-way Set Associative Cache can map each
main memory line to either of 2 cache lines (e.g., to the
Least Recently Used), 3-way maps to any of 3 cache
lines, 4-way to 4 lines, and so on.

Set Associative cache is cheaper than fully associative –
you need K . NRAM connections – but more robust than
direct mapped.

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010 36

2-Way Set Associative Illustration
Could go into
cache address

11100101

Main Memory Address
0100101011100101

Could go into
cache address

01100101

OR

37

Cache Associativity Examples
 Pentium 4 EM64T (Yonah) [26]

 L1 data cache: 8-way set associative
 L2 cache: 8-way set associative

 POWER4 [12]

 L1 instruction cache: direct mapped
 L1 data cache: 2-way set associative
 L2 cache: 8-way set associative
 L3 cache: 8-way set associative

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

38

If It’s in Cache, It’s Also in RAM
As we saw earlier:

If a particular memory address is currently in cache, then
it’s also in Main Memory (RAM).
That is, all of a program’s data are in Main Memory, but
some are also in cache.

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

39

Changing a Value That’s in Cache
Suppose that you have in cache a particular line of main

memory (RAM).
If you don’t change the contents of any of that line’s bytes

while it’s in cache, then when it gets clobbered by another
main memory line coming into cache, there’s no loss of
information.

But, if you change the contents of any byte while it’s in cache,
then you need to store it back out to main memory before
clobbering it.

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

40

Cache Store Strategies
Typically, there are two possible cache store strategies:
 Write-through: every single time that a value in cache is

changed, that value is also stored back into main memory
(RAM).

 Write-back: every single time that a value in cache is
changed, the cache line containing that cache location gets
marked as dirty. When a cache line gets clobbered, then if it
has been marked as dirty, then it is stored back into main
memory (RAM). [14]

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

The Importance of
Being Local

[15]

42

More Data Than Cache
Let’s say that you have 1000 times more data than cache.

Then won’t most of your data be outside the cache?

YES!
Okay, so how does cache help?

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

43

Improving Your Cache Hit Rate
Many scientific codes use a lot more data than can fit in cache

all at once.
Therefore, you need to ensure a high cache hit rate even

though you’ve got much more data than cache.
So, how can you improve your cache hit rate?
Use the same solution as in Real Estate:
Location, Location, Location!

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

44

Data Locality
Data locality is the principle that, if you use data in a particular

memory address, then very soon you’ll use either the same
address or a nearby address.

 Temporal locality: if you’re using address A now, then
you’ll probably soon use address A again.

 Spatial locality: if you’re using address A now, then you’ll
probably soon use addresses between A-k and A+k,
where k is small.

Note that this principle works well for sufficiently small values
of “soon.”

Cache is designed to exploit locality, which is why a cache miss
causes a whole line to be loaded.

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

45

Data Locality Is Empirical: C
Data locality has been observed empirically in many, many

programs.

void ordered_fill (float* array, int array_length)
{ /* ordered_fill */
int index;

for (index = 0; index < array_length; index++) {
array[index] = index;

} /* for index */
} /* ordered_fill */

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

46

Data Locality Is Empirical: F90
Data locality has been observed empirically in many, many

programs.

SUBROUTINE ordered_fill (array, array_length)
IMPLICIT NONE
INTEGER,INTENT(IN) :: array_length
REAL,DIMENSION(array_length),INTENT(OUT) :: array
INTEGER :: index

DO index = 1, array_length
array(index) = index

END DO
END SUBROUTINE ordered_fill

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

47

No Locality Example: C
In principle, you could write a program that exhibited

absolutely no data locality at all:

void random_fill (float* array,
int* random_permutation_index,
int array_length)

{ /* random_fill */
int index;

for (index = 0; index < array_length; index++) {
array[random_permutation_index[index]] = index;

} /* for index */
} /* random_fill */

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

48

No Locality Example: F90
In principle, you could write a program that exhibited

absolutely no data locality at all:
SUBROUTINE random_fill (array,

random_permutation_index, array_length)
IMPLICIT NONE
INTEGER,INTENT(IN) :: array_length
INTEGER,DIMENSION(array_length),INTENT(IN) :: &

& random_permutation_index
REAL,DIMENSION(array_length),INTENT(OUT) :: array
INTEGER :: index

DO index = 1, array_length
array(random_permutation_index(index)) = index

END DO
END SUBROUTINE random_fill

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

49

Permuted vs. Ordered

In a simple array fill, locality provides a factor of 8 to 20
speedup over a randomly ordered fill on a Pentium4.

Better
0

5

10

15

20

25

30

0 5 10 15 20 25 30

Array size (log2 bytes)

C
PU

 s
ec

on
ds

Random
Ordered

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

50

Exploiting Data Locality
If you know that your code is capable of operating with a

decent amount of data locality, then you can get speedup by
focusing your energy on improving the locality of the
code’s behavior.

This will substantially increase your cache reuse.

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

51

A Sample Application
Matrix-Matrix Multiply
Let A, B and C be matrices of sizes
nr × nc, nr × nk and nk × nc, respectively:























=

ncnrnrnrnr

nc

nc

nc

aaaa

aaaa
aaaa
aaaa

,3,2,1,

,33,32,31,3

,23,22,21,2

,13,12,11,1











A























=

nknrnrnrnr

nk

nk

nk

bbbb

bbbb
bbbb
bbbb

,3,2,1,

,33,32,31,3

,23,22,21,2

,13,12,11,1











B























=

ncnknknknk

nc

nc

nc

cccc

cccc
cccc
cccc

,3,2,1,

,33,32,31,3

,23,22,21,2

,13,12,11,1











C

∑
=

⋅++⋅+⋅+⋅=⋅=
nk

k
cnknkrcrcrcrckkrcr cbcbcbcbcba

1
,,,33,,22,,11,,,, 

The definition of A = B • C is

for r ∈ {1, nr}, c ∈ {1, nc}.
Parallel & Cluster: Storage Hierarchy

Oklahoma Supercomputing Symposium 2010

52

Matrix Multiply w/Initialization
SUBROUTINE matrix_matrix_mult_by_init (dst, src1, src2, &
& nr, nc, nq)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN) :: src1
REAL,DIMENSION(nq,nc),INTENT(IN) :: src2

INTEGER :: r, c, q

DO c = 1, nc
DO r = 1, nr
dst(r,c) = 0.0
DO q = 1, nq
dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)

END DO !! q = 1, nq
END DO !! r = 1, nr

END DO !! c = 1, nc
END SUBROUTINE matrix_matrix_mult_by_init

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

53

Matrix Multiply w/Initialization
void matrix_matrix_mult_by_init (

float** dst, float** src1, float** src2,
int nr, int nc, int nq)

{ /* matrix_matrix_mult_by_init */
int r, c, q;

for (r = 0; r < nr; r++) {
for (c = 0; c < nc; c++) {
dst[r][c] = 0.0;
for (q = 0; q < nq; q++) {
dst[r][c] = dst[r][c] + src1[r][q] * src2[q][c];

} /* for q */
} /* for c */

} /* for r */
} /* matrix_matrix_mult_by_init */

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

54

Matrix Multiply Via Intrinsic
SUBROUTINE matrix_matrix_mult_by_intrinsic (&
& dst, src1, src2, nr, nc, nq)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN) :: src1
REAL,DIMENSION(nq,nc),INTENT(IN) :: src2

dst = MATMUL(src1, src2)
END SUBROUTINE matrix_matrix_mult_by_intrinsic

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010 55

Matrix Multiply Behavior

If the matrix is big, then each sweep of a row will clobber nearby values in cache.

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010 56

Performance of Matrix Multiply
Matrix-Matrix Multiply

0

100

200

300

400

500

600

700

800

0 10000000 20000000 30000000 40000000 50000000 60000000

Total Problem Size in bytes (nr*nc+nr*nq+nq*nc)

C
PU

 se
c

Naive

Init

IntrinsicBetter

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010 57

Tiling

58

Tiling
 Tile: a small rectangular subdomain of a problem domain.

Sometimes called a block or a chunk.
 Tiling: breaking the domain into tiles.
 Tiling strategy: operate on each tile to completion, then

move to the next tile.
 Tile size can be set at runtime, according to what’s best for

the machine that you’re running on.

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

59

Tiling Code: F90
SUBROUTINE matrix_matrix_mult_by_tiling (dst, src1, src2, nr, nc, nq, &
& rtilesize, ctilesize, qtilesize)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN) :: src1
REAL,DIMENSION(nq,nc),INTENT(IN) :: src2
INTEGER,INTENT(IN) :: rtilesize, ctilesize, qtilesize

INTEGER :: rstart, rend, cstart, cend, qstart, qend

DO cstart = 1, nc, ctilesize
cend = cstart + ctilesize - 1
IF (cend > nc) cend = nc
DO rstart = 1, nr, rtilesize

rend = rstart + rtilesize - 1
IF (rend > nr) rend = nr
DO qstart = 1, nq, qtilesize

qend = qstart + qtilesize - 1
IF (qend > nq) qend = nq
CALL matrix_matrix_mult_tile(dst, src1, src2, nr, nc, nq, &

& rstart, rend, cstart, cend, qstart, qend)
END DO !! qstart = 1, nq, qtilesize

END DO !! rstart = 1, nr, rtilesize
END DO !! cstart = 1, nc, ctilesize

END SUBROUTINE matrix_matrix_mult_by_tiling

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

60

Tiling Code: C
void matrix_matrix_mult_by_tiling (

float** dst, float** src1, float** src2,
int nr, int nc, int nq,
int rtilesize, int ctilesize, int qtilesize)

{ /* matrix_matrix_mult_by_tiling */
int rstart, rend, cstart, cend, qstart, qend;

for (rstart = 0; rstart < nr; rstart += rtilesize) {
rend = rstart + rtilesize – 1;
if (rend >= nr) rend = nr - 1;
for (cstart = 0; cstart < nc; cstart += ctilesize) {
cend = cstart + ctilesize – 1;
if (cend >= nc) cend = nc - 1;
for (qstart = 0; qstart < nq; qstart += qtilesize) {
qend = qstart + qtilesize – 1;
if (qend >= nq) qend = nq - 1;
matrix_matrix_mult_tile(dst, src1, src2, nr, nc, nq,

rstart, rend, cstart, cend, qstart, qend);
} /* for qstart */

} /* for cstart */
} /* for rstart */

} /* matrix_matrix_mult_by_tiling */

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

61

Multiplying Within a Tile: F90
SUBROUTINE matrix_matrix_mult_tile (dst, src1, src2, nr, nc, nq, &
& rstart, rend, cstart, cend, qstart, qend)
IMPLICIT NONE
INTEGER,INTENT(IN) :: nr, nc, nq
REAL,DIMENSION(nr,nc),INTENT(OUT) :: dst
REAL,DIMENSION(nr,nq),INTENT(IN) :: src1
REAL,DIMENSION(nq,nc),INTENT(IN) :: src2
INTEGER,INTENT(IN) :: rstart, rend, cstart, cend, qstart, qend

INTEGER :: r, c, q

DO c = cstart, cend
DO r = rstart, rend
IF (qstart == 1) dst(r,c) = 0.0
DO q = qstart, qend
dst(r,c) = dst(r,c) + src1(r,q) * src2(q,c)

END DO !! q = qstart, qend
END DO !! r = rstart, rend

END DO !! c = cstart, cend
END SUBROUTINE matrix_matrix_mult_tile

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

62

Multiplying Within a Tile: C
void matrix_matrix_mult_tile (

float** dst, float** src1, float** src2,
int nr, int nc, int nq,
int rstart, int rend, int cstart, int cend,
int qstart, int qend)

{ /* matrix_matrix_mult_tile */
int r, c, q;

for (r = rstart; r <= rend; r++) {
for (c = cstart; c <= cend; c++) {

if (qstart == 0) dst[r][c] = 0.0;
for (q = qstart; q <= qend; q++) {

dst[r][c] = dst[r][c] + src1[r][q] * src2[q][c];
} /* for q */

} /* for c */
} /* for r */

} /* matrix_matrix_mult_tile */

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010 63

Performance with Tiling

Matrix-Matrix Mutiply Via Tiling (log-log)

0.1

1

10

100

1000

101001000100001000001000000100000001E+08

Tile Size (bytes)

C
PU

 se
c

512x256

512x512

1024x512

1024x1024

2048x1024

Matrix-Matrix Mutiply Via Tiling

0

50

100

150

200

250

10100100010000100000100000010000000100000000

Tile Size (bytes)

Better

64

The Advantages of Tiling
 It allows your code to exploit data locality better, to get

much more cache reuse: your code runs faster!
 It’s a relatively modest amount of extra coding (typically a

few wrapper functions and some changes to loop bounds).
 If you don’t need tiling – because of the hardware, the

compiler or the problem size – then you can turn it off by
simply setting the tile size equal to the problem size.

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

65

Will Tiling Always Work?
Tiling WON’T always work. Why?
Well, tiling works well when:
 the order in which calculations occur doesn’t matter much,

AND
 there are lots and lots of calculations to do for each memory

movement.
If either condition is absent, then tiling won’t help.

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

Hard Disk

67

Why Is Hard Disk Slow?
Your hard disk is much much slower than main memory (factor of

10-1000). Why?
Well, accessing data on the hard disk involves physically moving:

 the disk platter
 the read/write head

In other words, hard disk is slow because objects move much slower
than electrons: Newtonian speeds are much slower than
Einsteinian speeds.

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

68

I/O Strategies
Read and write the absolute minimum amount.
 Don’t reread the same data if you can keep it in memory.
 Write binary instead of characters.
 Use optimized I/O libraries like NetCDF [17] and HDF [18].

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

69

Avoid Redundant I/O: C
An actual piece of code seen at OU:
for (thing = 0; thing < number_of_things; thing++) {

for (timestep = 0; timestep < number_of_timesteps; timestep++) {
read_file(filename[timestep]);
do_stuff(thing, timestep);

} /* for timestep */
} /* for thing */

Improved version:
for (timestep = 0; timestep < number_of_timesteps; timestep++) {

read_file(filename[timestep]);
for (thing = 0; thing < number_of_things; thing++) {

do_stuff(thing, timestep);
} /* for thing */

} /* for timestep */

Savings (in real life): factor of 500!
Parallel & Cluster: Storage Hierarchy

Oklahoma Supercomputing Symposium 2010

70

Avoid Redundant I/O: F90
An actual piece of code seen at OU:

DO thing = 1, number_of_things
DO timestep = 1, number_of_timesteps

CALL read_file(filename(timestep))
CALL do_stuff(thing, timestep)

END DO !! timestep
END DO !! thing

Improved version:
DO timestep = 1, number_of_timesteps

CALL read_file(filename(timestep))
DO thing = 1, number_of_things

CALL do_stuff(thing, timestep)
END DO !! thing

END DO !! timestep

Savings (in real life): factor of 500!
Parallel & Cluster: Storage Hierarchy

Oklahoma Supercomputing Symposium 2010

71

Write Binary, Not ASCII
When you write binary data to a file, you’re writing (typically)

4 bytes per value.
When you write ASCII (character) data, you’re writing

(typically) 8-16 bytes per value.
So binary saves a factor of 2 to 4 (typically).

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

72

Problem with Binary I/O
There are many ways to represent data inside a computer,

especially floating point (real) data.
Often, the way that one kind of computer (e.g., a Pentium4)

saves binary data is different from another kind of
computer (e.g., a POWER5).

So, a file written on a Pentium4 machine may not be readable
on a POWER5.

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

73

Portable I/O Libraries
NetCDF and HDF are the two most commonly used I/O

libraries for scientific computing.
Each has its own internal way of representing numerical data.

When you write a file using, say, HDF, it can be read by a
HDF on any kind of computer.

Plus, these libraries are optimized to make the I/O very fast.

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

Virtual Memory

75

Virtual Memory
 Typically, the amount of main memory (RAM) that a CPU

can address is larger than the amount of data physically
present in the computer.

 For example, Henry’s laptop can address 32 GB of main
memory (roughly 32 billion bytes), but only contains
2 GB (roughly 2 billion bytes).

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

76

Virtual Memory (cont’d)
 Locality: Most programs don’t jump all over the memory

that they use; instead, they work in a particular area of
memory for a while, then move to another area.

 So, you can offload onto hard disk much of the memory
image of a program that’s running.

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

77

Virtual Memory (cont’d)
 Memory is chopped up into many pages of modest size (e.g.,

1 KB – 32 KB; typically 4 KB).
 Only pages that have been recently used actually reside in

memory; the rest are stored on hard disk.
 Hard disk is 10 to 1,000 times slower than main memory, so

you get better performance if you rarely get a page fault,
which forces a read from (and maybe a write to) hard disk:
exploit data locality!

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

78

Cache vs. Virtual Memory
 Lines (cache) vs. pages (VM)
 Cache faster than RAM (cache) vs. RAM faster than disk

(VM)

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

79

Storage Use Strategies
 Register reuse: do a lot of work on the same data before

working on new data.
 Cache reuse: the program is much more efficient if all of

the data and instructions fit in cache; if not, try to use what’s
in cache a lot before using anything that isn’t in cache (e.g.,
tiling).

 Data locality: try to access data that are near each other in
memory before data that are far.

 I/O efficiency: do a bunch of I/O all at once rather than a
little bit at a time; don’t mix calculations and I/O.

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010 80

OK Supercomputing Symposium 2010

2006 Keynote:
Dan Atkins

Head of NSF’s
Office of

Cyberinfrastructure

2004 Keynote:
Sangtae Kim
NSF Shared

Cyberinfrastructure
Division Director

2003 Keynote:
Peter Freeman

NSF
Computer & Information
Science & Engineering

Assistant Director

2005 Keynote:
Walt Brooks

NASA Advanced
Supercomputing
Division Director

2007 Keynote:
Jay Boisseau

Director
Texas Advanced

Computing Center
U. Texas Austin

2008 Keynote:
José Munoz

Deputy Office
Director/ Senior

Scientific Advisor
NSF Office of

Cyberinfrastructure

2009 Keynote:
Douglass Post
Chief Scientist

US Dept of Defense
HPC Modernization

Program

FREE! Wed Oct 6 2010 @ OU
Over 235 registratons already!

Over 150 in the first day, over 200 in the first week, over
225 in the first month.

http://symposium2010.oscer.ou.edu/

2010 Keynote
Horst Simon, Director
National Energy Research Scientific Computing Center

http://symposium2010.oscer.ou.edu/�

Thanks for your
attention!

Questions?
www.oscer.ou.edu

http://www.oscer.ou.edu/�

Parallel & Cluster: Storage Hierarchy
Oklahoma Supercomputing Symposium 2010 82

References
[1] http://graphics8.nytimes.com/images/2007/07/13/sports/auto600.gif
[2] http://www.vw.com/newbeetle/
[3] http://img.dell.com/images/global/products/resultgrid/sm/latit_d630.jpg
[4] http://en.wikipedia.org/wiki/X64
[5] Richard Gerber, The Software Optimization Cookbook: High-performance Recipes for the Intel Architecture. Intel Press, 2002, pp. 161-168.
[6] http://www.anandtech.com/showdoc.html?i=1460&p=2
[8] http://www.toshiba.com/taecdpd/products/features/MK2018gas-Over.shtml
[9] http://www.toshiba.com/taecdpd/techdocs/sdr2002/2002spec.shtml
[10] ftp://download.intel.com/design/Pentium4/manuals/24896606.pdf
[11] http://www.pricewatch.com/
[12] http://en.wikipedia.org/wiki/POWER7
[13] http://www.kingston.com/branded/image_files/nav_image_desktop.gif
14] M. Wolfe, High Performance Compilers for Parallel Computing. Addison-Wesley Publishing Company, Redwood City CA, 1996.
[15] http://www.visit.ou.edu/vc_campus_map.htm
[16] http://www.storagereview.com/
[17] http://www.unidata.ucar.edu/packages/netcdf/
[18] http://hdf.ncsa.uiuc.edu/
[23] http://en.wikipedia.org/wiki/Itanium
[19] ftp://download.intel.com/design/itanium2/manuals/25111003.pdf
[20] http://images.tomshardware.com/2007/08/08/extreme_fsb_2/qx6850.jpg (em64t)
[21] http://www.pcdo.com/images/pcdo/20031021231900.jpg (power5)
[22] http://vnuuk.typepad.com/photos/uncategorized/itanium2.jpg (i2)
[??] http://www.anandtech.com/cpuchipsets/showdoc.aspx?i=2353&p=2 (Prescott cache latency)
[??] http://www.xbitlabs.com/articles/mobile/print/core2duo.html (T2400 Merom cache)
[??] http://www.lenovo.hu/kszf/adatlap/Prosi_Proc_Core2_Mobile.pdf (Merom cache line size)
[25] http://www.lithium.it/nove3.jpg
[26] http://cpu.rightmark.org/

http://graphics8.nytimes.com/images/2007/07/13/sports/auto600.gif�
http://www.vw.com/newbeetle/�
http://img.dell.com/images/global/products/resultgrid/sm/latit_d630.jpg�
http://en.wikipedia.org/wiki/X64�
http://www.anandtech.com/showdoc.html?i=1460&p=2�
http://www.toshiba.com/taecdpd/products/features/MK2018gas-Over.shtml�
http://www.toshiba.com/taecdpd/techdocs/sdr2002/2002spec.shtml�
ftp://download.intel.com/design/Pentium4/manuals/24896606.pdf�
http://www.pricewatch.com/�
http://en.wikipedia.org/wiki/POWER7�
http://www.kingston.com/branded/image_files/nav_image_desktop.gif�
http://www.visit.ou.edu/vc_campus_map.htm�
http://www.storagereview.com/�
http://www.unidata.ucar.edu/packages/netcdf/�
http://hdf.ncsa.uiuc.edu/�
http://en.wikipedia.org/wiki/Itanium�
ftp://download.intel.com/design/itanium2/manuals/25111003.pdf�
http://images.tomshardware.com/2007/08/08/extreme_fsb_2/qx6850.jpg�
http://www.pcdo.com/images/pcdo/20031021231900.jpg�
http://vnuuk.typepad.com/photos/uncategorized/itanium2.jpg�
http://www.anandtech.com/cpuchipsets/showdoc.aspx?i=2353&p=2�
http://www.xbitlabs.com/articles/mobile/print/core2duo.html�
http://www.lenovo.hu/kszf/adatlap/Prosi_Proc_Core2_Mobile.pdf�
http://www.lithium.it/nove3.jpg�
http://cpu.rightmark.org/�

	Parallel Programming & Cluster Computing�The Tyranny of�the Storage Hierarchy
	Outline
	What is the Storage Hierarchy?
	Henry’s Laptop
	Storage Speed, Size, Cost
	�Registers
	What Are Registers?
	How Registers Are Used
	How Many Registers?
	�Cache
	What is Cache?
	From Cache to the CPU
	Multiple Levels of Cache
	Why Multiple Levels of Cache?
	Cache & RAM Latencies
	Main Memory
	What is Main Memory?
	What Main Memory Looks Like
	The Relationship Between�Main Memory & Cache
	RAM is Slow
	Why Have Cache?
	Cache & RAM Bandwidths
	Cache Use Jargon
	Cache Lines
	How Cache Works
	If It’s in Cache, It’s Also in RAM
	Mapping Cache Lines to RAM
	Direct Mapped Cache
	Direct Mapped Cache Illustration
	Jargon: Cache Conflict
	Problem with Direct Mapped: F90
	Problem with Direct Mapped: C
	Fully Associative Cache
	Fully Associative Illustration
	Set Associative Cache
	2-Way Set Associative Illustration
	Cache Associativity Examples
	If It’s in Cache, It’s Also in RAM
	Changing a Value That’s in Cache
	Cache Store Strategies
	The Importance of Being Local
	More Data Than Cache
	Improving Your Cache Hit Rate
	Data Locality
	Data Locality Is Empirical: C
	Data Locality Is Empirical: F90
	No Locality Example: C
	No Locality Example: F90
	Permuted vs. Ordered
	Exploiting Data Locality
	A Sample Application
	Matrix Multiply w/Initialization
	Matrix Multiply w/Initialization
	Matrix Multiply Via Intrinsic
	Matrix Multiply Behavior
	Performance of Matrix Multiply
	Tiling
	Tiling
	Tiling Code: F90
	Tiling Code: C
	Multiplying Within a Tile: F90
	Multiplying Within a Tile: C
	Performance with Tiling
	The Advantages of Tiling
	Will Tiling Always Work?
	Hard Disk
	Why Is Hard Disk Slow?
	I/O Strategies
	Avoid Redundant I/O: C
	Avoid Redundant I/O: F90
	Write Binary, Not ASCII
	Problem with Binary I/O
	Portable I/O Libraries
	Virtual Memory
	Virtual Memory
	Virtual Memory (cont’d)
	Virtual Memory (cont’d)
	Cache vs. Virtual Memory
	Storage Use Strategies
	OK Supercomputing Symposium 2010
	Thanks for your attention!���Questions?�www.oscer.ou.edu
	References

