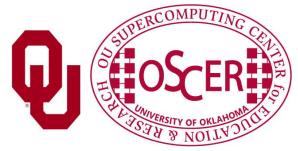
Parallel Programming & Cluster Computing

GPGPU: Number Crunching in Your Graphics Card

Henry Neeman, Director

OU Supercomputing Center for Education & Research University of Oklahoma Information Technology Oklahoma Supercomputing Symposium, Tue Oct 5 2010



Outline

- What is GPGPU?
- GPU Programming
- Digging Deeper: CUDA on NVIDIA
- CUDA Thread Hierarchy and Memory Hierarchy
- CUDA Example: Matrix-Matrix Multiply

What is GPGPU?

Accelerators

No, not this

http://gizmodo.com/5032891/nissans-eco-gas-pedal-fights-back-to-help-you-save-gas

Accelerators

- In HPC, an accelerator is hardware component whose role is to speed up some aspect of the computing workload.
- In the olden days (1980s), supercomputers sometimes had *array processors*, which did vector operations on arrays, and PCs sometimes had *floating point accelerators*: little chips that did the floating point calculations in hardware rather than software.
- More recently, *Field Programmable Gate Arrays* (FPGAs) allow reprogramming deep into the hardware.

Why Accelerators are Good

Parallel & Cluster: GPGPU
Oklahoma Supercomputing Symposium 2010

Accelerators are good because:

they make your code run faster.

Why Accelerators are Bad

Accelerators are bad because:

- they're expensive;
- they're hard to program;
- your code on them isn't portable to other accelerators, so the labor you invest in programming them has a very short half-life.

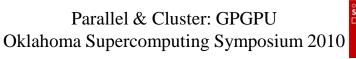
The King of the Accelerators

The undisputed champion of accelerators is:

the graphics processing unit.

http://www.amd.com/us-en/assets/content_type/DigitalMedia/46928a_01_ATI-FirePro_V8700_angled_low_res.gif

http://www.gamecyte.com/wp-content/uploads/2009/01/ibm-sony-toshiba-cell.jpg



Why GPU?

- Graphics Processing Units (GPUs) were originally designed to accelerate graphics tasks like image rendering.
- They became very very popular with videogamers, because they've produced better and better images, and lightning fast.
- And, prices have been extremely good, ranging from three figures at the low end to four figures at the high end.

GPUs are Popular

- Chips are expensive to design (hundreds of millions of \$\$\$), expensive to build the factory for (billions of \$\$\$), but cheap to produce.
- In 2006 2007, GPUs sold at a rate of about 80 million cards per year, generating about \$20 billion per year in revenue.

http://www.xbitlabs.com/news/video/display/20080404234228_Shipments_of_Discrete_Graphi
 cs_Cards_on_the_Rise_but_Prices_Down_Jon_Peddie_Research.html

Parallel & Cluster: GPGPU
Oklahoma Supercomputing Symposium 2010

 This means that the GPU companies have been able to recoup the huge fixed costs.

GPU Do Arithmetic

- GPUs mostly do stuff like rendering images.
- This is done through mostly floating point arithmetic the same stuff people use supercomputing for!

GPU Programming

Hard to Program?

- In the olden days that is, until just the last few years programming GPUs meant either:
 - using a graphics standard like OpenGL (which is mostly meant for rendering), or
 - getting fairly deep into the graphics rendering pipeline.
- To use a GPU to do general purpose number crunching, you had to make your number crunching pretend to be graphics.

Parallel & Cluster: GPGPU
Oklahoma Supercomputing Symposium 2010

This was hard. So most people didn't bother.

Easy to Program?

More recently, GPU manufacturers have worked hard to make GPUs easier to use for general purpose computing.

This is known as **General Purpose Graphics Processing Units**.

How to Program a GPU

- Proprietary programming language or extensions
 - NVIDIA: CUDA (C/C++)
 - AMD/ATI: StreamSDK/Brook+ (C/C++)
- OpenCL (Open Computing Language): an industry standard for doing number crunching on GPUs.

- Portland Group Fortran and C compilers with accelerator directives.
- Others are popping up or in development now

NVIDIA CUDA

- NVIDIA proprietary
- Formerly known as "Compute Unified Device Architecture"
- Extensions to C to allow better control of GPU capabilities
- Modest extensions but major rewriting of the code
- Portland Group Inc (PGI) now has a Fortran implementation of CUDA available in their Fortran compiler.

CUDA Example Part 1

```
example1.cpp: Defines the entry point for the console applicati
    on.
//
#include "stdafx.h"
#include <stdio.h>
#include <cuda.h>
// Kernel that executes on the CUDA device
 _global___ void square_array(float *a, int N)
  int idx = blockIdx.x * blockDim.x + threadIdx.x;
 if (idx<N) a[idx] = a[idx] * a[idx];
```

http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/

CUDA Example Part 2

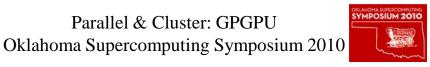
```
// main routine that executes on the host
int main(void)
 float *a h, *a d; // Pointer to host & device arrays
 const int N = 10; // Number of elements in arrays
 size t size = N * sizeof(float);
 a h = (float *)malloc(size); // Allocate array on host
 cudaMalloc((void **) &a_d, size);  // Allocate array on device
 // Initialize host array and copy it to CUDA device
 for (int i=0; i<N; i++) a h[i] = (float)i;
 cudaMemcpy(a d, a h, size, cudaMemcpyHostToDevice);
  // Do calculation on device:
  int block size = 4;
  int n blocks = N/block size + (N%block size == 0 ? 0:1);
 square array <<< n blocks, block size >>> (a d, N);
 // Retrieve result from device and store it in host array
 cudaMemcpy(a_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);
 // Print results
 for (int i=0; i<N; i++) printf("%d %f\n", i, a h[i]);
  // Cleanup
 free(a h); cudaFree(a d);
```


AMD/ATI Brook+

- AMD/ATI proprietary
- Formerly known as "Close to Metal" (CTM)
- Extensions to C to allow better control of GPU capabilities

Parallel & Cluster: GPGPU

No Fortran version available



Brook+ Example Part 1

```
float4 matmult_kernel (int y, int x, int k,
                       float4 M0[], float4 M1[])
    float4 total = 0;
    for (int c = 0; c < k / 4; c++)
        total += M0[y][c] * M1[x][c];
    return total;
```

http://developer.amd.com/gpu_assets/Stream_Computing_Overview.pdf

Brook+ Example Part 2

```
void matmult (float4 A[], float4 B'[], float4 C[])
    for (int i = 0; i < n; i++)
        for (j = 0; j < m / 4; j+)
            launch_thread{
                C[i][j] =
                    matmult_kernel(j, i, k, A, B');}
    sync_threads{}
```


OpenCL

- Open Computing Language
- Open standard developed by the Khronos Group, which is a consortium of many companies (including NVIDIA, AMD and Intel, but also lots of others)
- Initial version of OpenCL standard released in Dec 2008.
- Many companies will create their own implementations.
- Apple was first to market, with an OpenCL implementation included in Mac OS X v10.6 ("Snow Leopard") in 2009.


```
// create a compute context with GPU device
context = clCreateContextFromType(0, CL_DEVICE_TYPE_GPU, NULL, NULL,
   NULL);
// create a work-queue
queue = clCreateWorkQueue(context, NULL, NULL, 0);
// allocate the buffer memory objects
memobjs[0] =
    clCreateBuffer(context,
                   CL_MEM_READ_ONLY | CL_MEM_COPY_HOST PTR,
                   sizeof(float)*2*num entries, srcA);
memobis[1] =
    clCreateBuffer(context, CL MEM READ WRITE,
                   sizeof(float)*2*num entries, NULL);
// create the compute program
program =
    clCreateProgramFromSource(context, 1, &fft1D_1024_kernel_src, NULL);
// build the compute program executable
clBuildProgramExecutable(program, false, NULL, NULL);
// create the compute kernel
kernel = clCreateKernel(program, "fft1D 1024");
```



```
This kernel computes FFT of length 1024. The 1024 length FFT
// is decomposed into calls to a radix 16 function, another
// radix 16 function and then a radix 4 function
kernel void fft1D_1024 (
    global float2 *in, global float2 *out,
    local float *sMemx, __local float *sMemy)
    int tid = get_local_id(0);
    int blockIdx = get_group_id(0) * 1024 + tid;
    float2 data[16];
    // starting index of data to/from global memory
    in = in + blockIdx;
    out = out + blockIdxi
    globalLoads(data, in, 64); // coalesced global reads
```



```
twiddleFactorMul(data, tid, 1024, 0);
// local shuffle using local memory
localShuffle(data, sMemx, sMemy, tid,
   (((tid \& 15) * 65) + (tid >> 4)));
fftRadix16Pass(data);
                                // in-place radix-16 pass
twiddleFactorMul(data, tid, 64, 4); // twiddle factor multiplication
localShuffle(data, sMemx, sMemy, tid,
   (((tid >> 4) * 64) + (tid & 15)));
// four radix-4 function calls
fftRadix4Pass(data);
fftRadix4Pass(data + 4);
fftRadix4Pass(data + 8);
fftRadix4Pass(data + 12);
// coalesced global writes
globalStores(data, out, 64);
```


Portland Group Accelerator Directives

- Proprietary directives in Fortran and C
- Similar to OpenMP in structure
- If the compiler doesn't understand these directives, it ignores them, so the same code can work with an accelerator or without, and with the PGI compilers or other compilers.
- In principle, this will be able to work on a variety of accelerators, but the first instance is NVIDIA; PGI recently announced a deal with AMD/ATI.
- The directives tell the compiler what parts of the code happen in the accelerator; the rest happens in the regular hardware.

PGI Accelerator Example

```
!$acc region
    do k = 1, n1
         do i = 1, n3
             c(i,k) = 0.0
             do j = 1, n2
                  c(i,k) = c(i,k) +
                            a(i,j) * b(j,k)
\delta
             enddo
         enddo
    enddo
!$acc end region
```

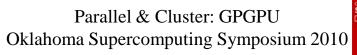

Parallel & Cluster: GPGPU

Digging Deeper: CUDA on NVIDIA

NVIDIA Tesla

- NVIDIA now offers a GPU platform named Tesla.
- It consists essentially of their highest end graphics card, minus the video out connector.

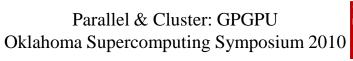
http://images.nvidia.com/products/tesla_C2050_C2070/Tesla_C2050_C2070_3qtr_low_new.png



NVIDIA Tesla C2050 Card Specs

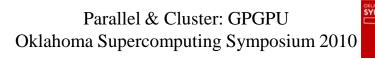
- 448 GPU cores
- 1.15 GHz

- Single precision floating point performance:
 1030.4 GFLOPs (2 single precision flops per clock per core)
- Double precision floating point performance:
 515.2 GFLOPs (1 double precision flop per clock per core)
- Internal RAM: 3 GB DDR5
- Internal RAM speed: 144 GB/sec (compared 21-25 GB/sec for regular RAM)
- Has to be plugged into a PCIe slot (at most 8 GB/sec)



NVIDIA Tesla S2050 Server Specs

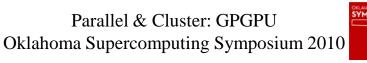
- 4 C2050 cards inside a 1U server (looks like a Sooner node)
- 1.15 GHz
- Single Precision (SP) floating point performance:
 4121.6 GFLOPs
- Double Precision (DP) floating point performance:
 2060.8 GFLOPs
- Internal RAM: 12 GB total (3 GB per GPU card)
- Internal RAM speed: 576 GB/sec aggregate
- Has to be plugged into two PCIe slots (at most 16 GB/sec)



Compare x86 vs S2050

Let's compare the best dual socket x86 server today vs S2050.

	Dual socket, AMD 2.3 GHz 12-core	NVIDIA Tesla S2050
Peak DP FLOPs	220.8 GFLOPs DP	2060.8 GFLOPs DP (9.3x)
Peak SP FLOPS	441.6 GFLOPs SP	4121.6 GFLOPs SP (9.3x)
Peak RAM BW	25 GB/sec	576 GB/sec (23x)
Peak PCIe BW	N/A	16 GB/sec
Needs x86 server to attach to?	No	Yes
Power/Heat	~450 W	\sim 900 W + \sim 400 W (\sim 2.9x)
Code portable?	Yes	No (CUDA)
		Yes (PGI, OpenCL)



Compare x86 vs S2050

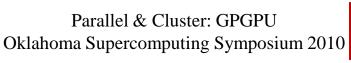
Here are some interesting measures:

	Dual socket, AMD 2.3 GHz 12-core	NVIDIA Tesla S2050
DP GFLOPs/Watt	~0.5 GFLOPs/Watt	~1.6 GFLOPs/Watt (~3x)
SP GFLOPS/Watt	~1 GFLOPs/Watt	~3.2 GFLOPs/Watt (~3x)
DP GFLOPs/sq ft	~590 GFLOPs/sq ft	~2750 GFLOPs/sq ft (4.7x)
SP GFLOPs/sq ft	~1180 GFLOPs/sq ft	~5500 GFLOPs/sq ft (4.7x)
Racks per PFLOP DP	142 racks/PFLOP DP	32 racks/PFLOP DP (23%)
Racks per PFLOP SP	71 racks/PFLOP SP	16 racks/PFLOP SP (23%)

OU's Sooner is 34.5 TFLOPs DP, which is just over <u>1 rack</u> of S2050.

What Are the Downsides?

- You have to rewrite your code into CUDA or OpenCL or PGI accelerator directives.
 - CUDA: Proprietary, but maybe portable soon
 - OpenCL: portable but cumbersome
 - PGI accelerator directives: not clear whether you can have most of the code live inside the GPUs.
- BUT: Many groups are coming out with GPGPU code development tools that may help a lot, such as:
 - Fortran-to-CUDA-C converter (NCAR)
 - CUDA C automatic optimizer (memory, threading etc)
 - OpenMP-to-CUDA converter
 - CUDA-to-x86 converter (CUDA code on non-CUDA system)



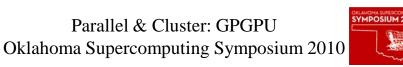
Programming for Performance

The biggest single performance bottleneck on GPU cards today is the PCIe slot:

- PCIe 2.0 x16: 8 GB/sec
- 1600 MHz Front Side Bus: 25 GB/sec
- GDDR4 GPU card RAM: 144 GB/sec per card

Your goal:

- At startup, move the data from x86 server RAM into GPU RAM.
- Do almost all the work inside the GPU.
- Use the x86 server only for I/O and message passing, to minimize the amount of data moved through the PCIe slot.



Does CUDA Help?

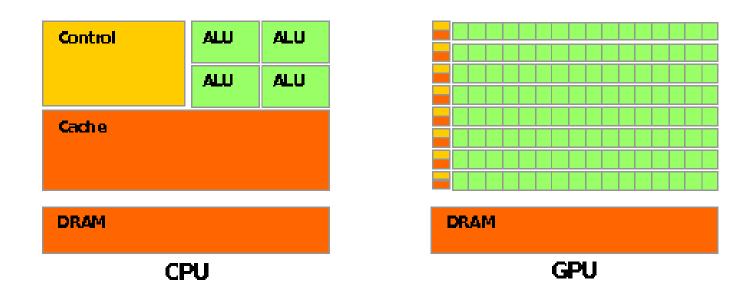
Example Applications	URL	Speedup
Seismic Database	http://www.headwave.com	66x – 100x
Mobile Phone Antenna Simulation	http://www.accelware.com	45x
Molecular Dynamics	http://www.ks.uiuc.edu/Research/vmd	21x - 100x
Neuron Simulation	http://www.evolvedmachines.com	100x
MRI Processing	http://bic-test.beckman.uiuc.edu	245x - 415x
Atmospheric Cloud Simulation	http://www.cs.clemson.edu/~jesteel/clouds.html	50x

http://www.nvidia.com/object/IO_43499.html

CUDA Thread Hierarchy and Memory Hierarchy

Some of these slides provided by Paul Gray, University of Northern Iowa

CPU vs GPU Layout



Source: NVIDIA CUDA Programming Guide

Buzzword: Kernel

In CUDA, a *kernel* is code (typically a function) that can be run inside the GPU.

Typically, the kernel code operates in lock-step on the stream processors inside the GPU.

Buzzword: Thread

- In CUDA, a *thread* is an execution of a kernel with a given index.
- Each thread uses its index to access a specific subset of the elements of a target array, such that the collection of all threads cooperatively processes the entire data set.
- So these are very much like threads in the OpenMP or pthreads sense they even have shared variables and private variables.

Buzzword: Block

In CUDA, a **block** is a group of threads.

- Just like OpenMP threads, these could execute concurrently or independently, and in no particular order.
- Threads can be coordinated somewhat, using the
 _syncthreads() function as a barrier, making all threads stop
 at a certain point in the kernel before moving on en mass.
 (This is like what happens at the end of an OpenMP loop.)

Buzzword: Grid

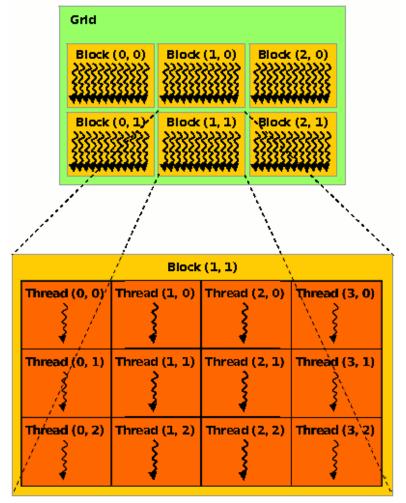
Parallel & Cluster: GPGPU Oklahoma Supercomputing Symposium 2010

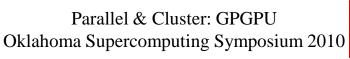
In CUDA, a *grid* is a group of (thread) blocks, with no synchronization at all among the blocks.

NVIDIA GPU Hierarchy

- *Grids* map to GPUs
- <u>Blocks</u> map to the MultiProcessors (MP)
 - Blocks are never split across
 MPs, but an MP can have
 multiple blocks
- Threads map to Stream Processors (SP)
- *Warps* are groups of (32) threads that execute simultaneously

Image Source: NVIDIA CUDA Programming Guide





CUDA Built-in Variables

- blockIdx.x, blockIdx.y, blockIdx.z are built-in variables that returns the block ID in the x-axis, y-axis and z-axis of the block that is executing the given block of code.
- threadIdx.x, threadIdx.y, threadidx.z are built-in variables that return the thread ID in the x-axis, y-axis and z-axis of the thread that is being executed by this stream processor in this particular block.

So, you can express your collection of blocks, and your collection of threads within a block, as a 1D array, a 2D array or a 3D array.

These can be helpful when thinking of your data as 2D or 3D.

__global__ Keyword

- In CUDA, if a function is declared with the **__global__** keyword, that means that it's intended to be executed inside the GPU.
- In CUDA, the term for the GPU is <u>device</u>, and the term for the x86 server is <u>host</u>.
- So, a kernel runs on a device, while the main function and so on run on the host.
- Note that a host can play host to multiple devices; for example, an S2050 server contains 4 C2050 GPU cards, and if a single host has two PCIe slots, then both of the PCIe plugs of the S2050 can be plugged into that same host.

Copying Data from Host to Device

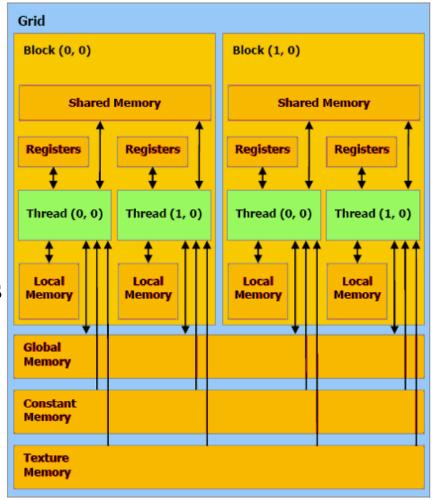
If data need to move from the host (where presumably the data are initially input or generated), then a copy has to exist in both places.

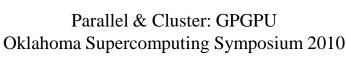
Typically, what's copied are arrays, though of course you can also copy a scalar (the address of which is treated as an array of length 1).

CUDA Memory Hierarchy #1

CUDA has a hierarchy of several kinds of memory:

- Host memory (x86 server)
- Device memory (GPU)
 - Global: visible to all threads in all blocks largest, slowest
 - Shared: visible to all threads in a particular block – medium size, medium speed
 - Local: visible only to a particular thread smallest, fastest

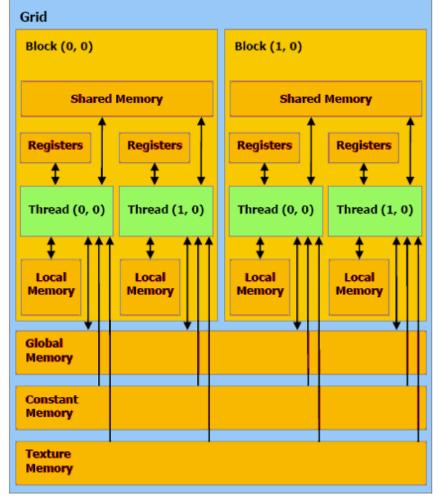


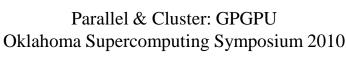


CUDA Memory Hierarchy #2

CUDA has a hierarchy of several kinds of memory:

- Host memory (x86 server)
- Device memory (GPU)
 - Constant: visible to all threads in all blocks; read only
 - <u>Texture</u>: visible to all threads in all blocks; read only





CUDA Example: Matrix-Matrix Multiply

Q

Matrix-Matrix Multiply Main Part 1

```
float* host A;
float* host_B;
float* host_B;
float* device A;
float* device B;
float* device C;
host A = (float*) malloc(mem size A);
host B = (float*) malloc(mem_size_B);
host C = (float*) malloc(mem size C);
cudaMalloc((void**) &device A, mem size A);
cudaMalloc((void**) &device B, mem size B);
cudamalloc((void**) &device C, mem size C);
// Set up the initial values of A and B here.
// Henry says: I've oversimplified this a bit from
// the original example code.
```


Matrix-Matrix Multiply Main Part 2

```
// copy host memory to device
cudaMemcpy(device_A, host_A, mem_size_A,
           cudaMemcpyHostToDevice);
cudaMemcpy(device_B, host_B, mem_size_B,
           cudaMemcpyHostToDevice);
// setup execution parameters
dim3 threads(BLOCK_SIZE, BLOCK_SIZE);
dim3 grid(WC / threads.x, HC / threads.y);
// execute the kernel
matrixMul<<< grid, threads >>>(device C,
                                device A, device B, WA, WB);
// copy result from device to host
cudaMemcpy(host_C, device_C, mem_size_C,
           cudaMemcpyDeviceToHost);
```


Matrix Multiply Kernel Part 1

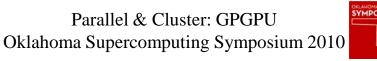
```
qlobal void matrixMul( float* C, float* A, float* B, int wA, int wB)
  // Block index
  int bx = blockIdx.x;
  int by = blockIdx.y;
  // Thread index
  int tx = threadIdx.x;
  int ty = threadIdx.y;
  // Index of the first sub-matrix of A processed by the block
  int aBegin = wA * BLOCK_SIZE * by;
  // Index of the last sub-matrix of A processed by the block
  int aEnd
             = aBegin + wA - 1;
  // Step size used to iterate through the sub-matrices of A
  int aStep = BLOCK SIZE;
  // Index of the first sub-matrix of B processed by the block
  int bBegin = BLOCK_SIZE * bx;
  // Step size used to iterate through the sub-matrices of B
  int bStep = BLOCK SIZE * wB;
  // Csub is used to store the element of the block sub-matrix
  // that is computed by the thread
  float Csub = 0;
```


Matrix Multiply Kernel Part 2

```
// Loop over all the sub-matrices of A and B
// required to compute the block sub-matrix
for (int a = aBegin, b = bBegin;
        a \le a End;
         a += aStep, b += bStep) {
    // Declaration of the shared memory array As used to
    // store the sub-matrix of A
    shared float As[BLOCK SIZE][BLOCK SIZE];
    // Declaration of the shared memory array Bs used to
    // store the sub-matrix of B
    shared float Bs[BLOCK SIZE][BLOCK SIZE];
    // Load the matrices from device memory
    // to shared memory; each thread loads
    // one element of each matrix
   AS(ty, tx) = A[a + wA * ty + tx];
   BS(ty, tx) = B[b + wB * ty + tx];
    // Synchronize to make sure the matrices are loaded
    syncthreads();
```


Matrix Multiply Kernel Part 3

```
// Multiply the two matrices together;
    // each thread computes one element
    // of the block sub-matrix
    for (int k = 0; k < BLOCK SIZE; ++k)
        Csub += AS(ty, k) * BS(k, tx);
    // Synchronize to make sure that the preceding
    // computation is done before loading two new
    // sub-matrices of A and B in the next iteration
    syncthreads();
// Write the block sub-matrix to device memory;
// each thread writes one element
int c = wB * BLOCK_SIZE * by + BLOCK SIZE * bx;
C[c + wB * ty + tx] = Csub;
```

Would We Really Do It This Way?

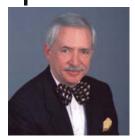
We wouldn't really do matrix-matrix multiply this way.

NVIDIA has developed a CUDA implementation of the BLAS libraries, which include a highly tuned matrix-matrix multiply routine.

(We'll learn about BLAS next time.)

There's also a CUDA FFT library, if your code needs Fast Fourier Transforms.

OK Supercomputing Symposium 2010



2003 Keynote: Peter Freeman **NSF** Computer & Information Science & Engineering **Assistant Director**

2004 Keynote: Sangtae Kim NSF Shared Cyberinfrastructure **Division Director**

2005 Keynote: Walt Brooks NASA Advanced Supercomputing **Division Director**

2006 Keynote: Dan Atkins Head of NSF's Office of Cyberinfrastructure Computing Center

2007 Keynote: Jay Boisseau Director Texas Advanced U. Texas Austin

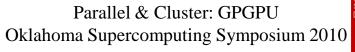
2008 Keynote: José Munoz Deputy Office Director/ Senior Scientific Advisor NSF Office of Cyberinfrastructure

2009 Keynote: **Douglass Post** Chief Scientist US Dept of Defense **HPC** Modernization Program

2010 Keynote **Horst Simon, Director National Energy Research Scientific Computing Center**

FREE! Wed Oct 6 2010 @ OU

http://symposium2010.oscer.ou.edu/



Thanks for your attention!

Questions?

www.oscer.ou.edu