Department of Defense

High Performance Computing Modernization Program

The Promise and Challenges of Computational Science and Engineering

Douglass Post, Chief Scientist, DoD HPCMP

University of Oklahoma

7 October 2009 <u>www.hpcmo.hpc.mil</u>, post@hpcmo.hpc.mil

Overview

- High Performance Computing for Science and Engineering
 - The Progress and The Promise
 - The Challenges and The Opportunities
- Some examples
 - Goodyear
 - CREATE

Computational Science And Engineering Is Becoming an Essential Tool for Theoretical Science And Engineering

Accelerator Design Aircraft Design Archaeology Armor Design Astrophysics Atomic And Molecular Physics Automobile Design **Bioengineering And Biophysics Bioinfomatics** Chemistry **Civil Engineering Climate Prediction** Computational Biology **Computational Fluid Dynamics** Cosmology Cryptography Data Mining Drug discovery Earthquakes Economics Engineering Design And Analysis Finance Fluid Mechanics Forces Modeling And Simulation Fracture Analysis General Relativity Theory Genetics Geophysics

Groundwater And Contaminant Flow **High Energy Physics Research** Hydrology Image Processing **Inertial Confinement Fusion** Integrated Circuit Chip Design Magnetic Fusion Energy Manufacturing Materials Science Medicine Microtomography Nanotechnology And Nanoscience Nuclear Reactor Design And Safety Nuclear Weapons **Ocean Systems** Petroleum Field Analysis And Prediction **Optics and Optical Design Political Science Protein Folding** Radar signature and antenna analysis Radiation Damage Satellite Image Processing Scientific Databases Search Engines Shock Hydrodynamics Signal Processing Space Weather Volcanoes Weather Prediction Wild Fire Analysis

Computational Tools Are Becoming "Tools of the Trade" In Science And Engineering

	Past	Present	Future
Theory	Pencils, paper; slide rules	New: symbolic math; computational solutions	New: Almost all computional
Experiments	Physical hardware; notebooks; chart recorders; polariod film,	New: computerized data collection & analysis; little V&V of computations; simple simulations & experimental design	New: Extensive V&V of computations; simulations are a part of experimental methodology
Eng. Design	Pencils, paper; slide rules	New: CAD-CAM; computational design analysis	New: Computational design & optimization

DoD HPC Modernization Program

Resource Centers Comparable capability at several other government agencies

DoD Supercomputing

Networking Defense Research & Engineering Network

SMDC

NRL

AFRL-RY

Army HPCMP Participation ARL & ERDC DSRCs 1,343 Users/24 Organizations/ 108 Projects 50 DREN Sites 15 Challenge Projects/2 DHPIs 5 Institutes

Navy HPCMP Participation Navy DSRC 942 Users/16 Organizations/ 197 Projects 40 DREN Sites 13 Challenge Projects/2 DHPIs 1 Institute

Air Force HPCMP Participation AFRL & MHPCC DSRCs 1,330 Users/25 Organizations/ 199 Projects 21 DREN Sites 11 Challenge Projects/3 DHPIs 3 Institutes

Defense Agencies Participation DARPA, DTRA, JNIC, JFCOM, MDA, PA&E & OTE 537 Users/4 Organizations/ 25 Projects 28 DREN Sites 2 Challenge Projects/2 DHPIs

Other ARSC DSRC 56 DREN Sites

Resource Management Requirements & Allocations

Solving the hard problems

Next Generation Computers Offer Society Unparalleled Power to Address Important Problems

- Next generation computers (2020) will enable us to develop and deploy codes that are much more powerful than present tools:
 - Utilize accurate solution methods
 - Include all the effects we know to be important
 - Model a complete system
 - Complete parameter surveys in hours rather than days to weeks to months
- In ~ 10 years, workstations will be as powerful as today's supercomputers
- Greatest opportunities for 2020 (and 2010) include large-scale codes that integrate many multi-scale effects to model a complete system

Physics-based Computational Engineering has great opportunities!

- Computational Science won't grow exponentially
 - Everyone involved in theoretical physics, theoretical chemistry, theoretical material science, etc. already use supercomputers
- Physics-based Computation Based Engineering— New frontier
 - Only a small fraction of engineers now use
 Computation Based Engineering (CE)
- Replace physical design-build-test iterations with computational "Design Through Analysis", i.e. CADmesh-analyze iterations validated with a final physical test

Design-build-test describes many product cycles

- Requires many lengthy and expensive design/build/test iteration loops
- Process converges slowly, if at all
- Design flaws discovered late in process
- \rightarrow Long time to market

Replace physical design-build-test with computational design-build-test

 Reduced time to market from 3 years to 9 months

 Increased new products delivery from 1 every 3 years to 5 per year

• Saved the company

Camber

EAR

<u>G949 RSA</u> Regional Hwy &City

Industry Beginning to Replace Physical Designbuild-test With Computational Design Through Analysis: "CAD→Mesh→Analyze"

- Boeing-New 747, 20% improvement lift/drag, 787 better, quieter
- Whirlpool designs washers, stoves, refrigerators,....
- Proctor and Gamble uses CE extensively
- Ping Golf
- Auto industry.....

Physics-based Computational Engineering helped the US build nuclear weapons and win the cold war.

• Nuclear weapons are complex, expensive, and hard to test

~ 5 to 10 tests per system
DOE NNSA uses computational tools for:

 Design development, optimization, & analysis.

• DOE NNSA labs own the biggest supercomputers

CSE and **CE** are very different, and **CE** has different challenges

Computational Science and Engineering (CSE) is challenging:

• Develop a complex code, apply it to study a scientific research problem, and publish the findings.

Physics-Based Computational Engineering (CE)has different challenges:

• Develop a complex code, and support its use by other groups

It Takes A Village!

- Sponsors \rightarrow Provide mission, resources and support
 - Designers—End-users
 - \rightarrow Engineers to use the tools to design products
 - » Codes
 - \rightarrow Takes a good team ~ 10 years and ~ \$100M to develop a complex code
 - » V&V
 - \rightarrow Dedicated experiments and tests
 - » Computers
 - \rightarrow Capability to develop codes and run the problems quickly and conveniently

What are the challenges? What can we do about them?

At Least Four Challenges arise from Complexity \rightarrow Cope with it.

- I. Complex physics and engineering
 - Integrated modules, scalable algorithms, best practices, V&V
- Complex computers and computer architectures
 Multidisciplinary teams; good tools, design, practices, V&V
- Complex customer organizations and culture
 Connect with stakeholders, deliver products early and continually during life of program, design for whole life cycle
- Complex Development Organizations → "Code development will no be longer a cottage industry!"—Brendan Godfrey, AFOSR
 - Big codes require explicit funding for code development→ large funding brings lots of management attention, oversight, reporting and guidance, whether it helps or not!

Computational Engineering Code Developer's World – Six Major Challenges

validation experiments

Developing a Large, Multi-scale, Multi-physics CE Code Takes a Large Team a Long Time

Workshop on Software Engineering for High Performance Computing, International Conference on Software Engineering, May 15, 2005, St. Louis, Missouri.

-D. E. Post, R. P. Kendall, Large-Scale Computational Scientific and Engineering Project Development and Production Workflows, CTWatch (2006), vol.2-4B,pp68-76.

Computational Engineering Code Development is Risky!

Code Project Schedule For Six Large-scale Physics-based CBE Codes

Another Perspective---Three Challenges Performance, Programming and Prediction

- I. Performance Challenge Computers power increasing through growing complexity
 - Massive parallelization, multi-core & heterogeneous (CELL, FPGA, GPU...) processors, complex memory hierarchies.....
- 2. Programming Challenge Program Massively Parallel Computers
 - Rapid code development of codes with good performance
- 3. Prediction Challenge Developing predictive codes with complex scientific models Programming Prediction
 - Develop accurate predictive codes
 - Verification
 - Validation
 - Code Project Management
- Train wreck coming between the last two

Better software development and production tools are desperately needed for us to take full advantage of computers

Multi-Disciplinary Optimization Challenge → Integrate Many Multi-Scale Physics Effects

Many different physics elements govern aircraft behavior

Computational Research and Engineering Acquisition Tools and Environments (CREATE)

- CREATE goal is to enable major improvements in the DoD acquisition process
 - Replace design paradigm based on historical data and experimental testing with physicsbased computational design validated with experimental testing
 - Detect and fix design flaws early in the design process
 - Develop optimized designs for new concepts
 - Begin system integration earlier in the acquisition process
 - Increase acquisition program flexibility and agility to respond to rapidly changing requirements
 - Enhance the productivity of the DoD engineering workforce
 - Establish DoD capability to develop and Deploy these tools

Acquisition Challenge Examples Fighters- Vertical Tail Size; Ships-Capsize Stability

- F-100, F102, F-105, F7U, F11F, F-16, F117
- All Needed to increase tail fin size between 25% to 50% after initial design

Defense News 04/02/07 "Is New U.S. Destroyer Unstable?"

- Lesson Learned: Can't base radically new designs on historical experience, it's not a good guide
- Need physics-based design tools to extrapolate

Computational Research and Engineering Acquisition Tools and Environments

- \$360M I2-year program to develop & deploy 3 computational engineering tool sets for acquisition engineers
- Air Vehicle design tools: Aerodynamics, air frame, propulsion, control, early rapid design
- Ship design tools: Early-stage design, shock damage and hydrodynamics performance
- * **RF Antenna** design tools: **RF Antenna** performance and integration with platforms
 - + Geometry and Mesh Generation

C4ISR and sensing antennas in Network Centric Warfare / Battlespace

CREATE Air Vehicles Projects address major aircraft design challenges

Proposed Computational Engineering Software Products and Activity

Technical & Development

Transition & V&V

- DaVinci: Conceptual Design, next generation software to enable CSE insertion into early phase acquisition, advanced conceptual design, and virtual prototyping
 - KESTREL: Next generation high-fidelity multi-physics simulation for FIXED-WING air vehicles
- HELIOS: Next generation high-fidelity multi-physics simulation for ROTARY-WING air vehicles
- Firebolt: Next generation software to enable high-fidelity analysis of AIRFRAME/PROPULSION INTEGRATION
- SHADOW-OPS: Primary mechanism to validate AV CSE software products and process changes to targeted acquisition workflows; transition CREATE-AV technology into acquisition workforce; and to build bridges between AV CSE software development teams and targeted acquisition organizations.

CREATE-Ships Goal: Develop Optimized Total Warship Designs

Develop computational tools for:

- I. Rapid Design Capability and Design Synthesis
 - Rapid development, assessment, and integration of candidate ship designs to avoid cost versus capability mismatches

2. Ship Hydrodynamics

- Accelerate and improve all stages of ship hydrodynamic design
- 3. Ship Shock & Damage
 - Provide analysis of shock and damage effects and reduce need for tests to assess ship shock and damage effects

CREATE-RF Tool Vision

Mesh and Geometry Generation (MG) Project being launched

- Problem Generation takes up to 90% of the calendar time
- Every project needs geometry and mesh generation
- Modeling and Geometry Interactive (MG) will provide the geometry and meshing tools needed by all the projects

Systems Engineering and Acquisition Approach: Begin With Prototype Codes and Replace Them With Next Generation Codes

CREATE Status

- Project Teams formed
- Requirements developed and validated
- Initial plans developed and development started
- First deliverables planned for this summer and fall (upgraded legacy codes)
- Software Engineering Practices and Plans being formed
- Six version 1.0 releases this calendar year

Our Community is Beginning to Work Out How to Develop Software Software Engineering Practices

- Goal is maintainable, extensible, portable and reliable software products
- I. Requirements Management and Stakeholder Engagement
- 2. Software Quality Attributes
- 3. Design and Implementation
- 4. Software Configuration Management
- 5. Verification and Validation of CREATE Products
- 6. Software Release
- 7. Customer Support

Documents: Manuals: Technical, Developers, Users

Plans: Test, V&V, Risk, Development (EVMS), Financial, Management

You have an exciting future!!!!

- Computational Science is revolutionizing scientific discovery
- Physics-based Computationally engineering will revolutionize the way we design and build machines
- You are coming in on the ground floor!!!!
- Your generation has the computer skills and cultural orientation
- You need only to acquire the subject matter skills, be fanatic about Verification and Validation and customer focus,
 - and the world is yours