



# Galerkin Finite Element Solution of Free-Boundary Groundwater Contaminant Model

by

Robert Ferdinand East Central University, Ada, OK <u>rferdand@ecok.edu</u>

Page 1 of 12

# **OUTLINE**

- 1. Introduce free-boundary Groundwater Model tracking Contaminant Dynamics in Groundwater flowing through fissures (cracks) in rock matrix via schematic diagram.
- 2. Present coupled PDE (Partial Differential Equation) representing model.
- 3. Describe terms and parameters in PDE model.
- 4. Describe Galerkin finite element method to numerically estimate model solution.
- 5. Present graphical illustrations.
- 6. Discuss advantages of using OSCER Condor Pool and OSCER Sooner Supercomputing Facilities in obtaining numerical results, computationally.

## **SCHEMATIC DIAGRAM**



# PDE MODEL

$$\begin{cases} \partial_t C + \alpha^* \partial_z C = \beta^* \partial_z^2 C - \lambda^* C + I_R^* \Gamma(z) \\ \partial_t M = \gamma^* \left[ \partial_x^2 + \partial_z^2 \right] M - \lambda^* M + A_R^* C \Gamma(x) \\ C(0, z) = C^0(z) \\ M(0, x, z) = M^0(x, z) \end{cases}$$

where

$$(t, x, z) \in [0, T_{max}] \times [0, x_{max}] \times [0, z_{max}].$$

**PARAMETERS** 

$$\alpha^* = \frac{v}{1 + K_F/b}$$

$$\beta^* = \frac{D_W + \alpha_L v}{R_F}$$

$$\gamma^* = \frac{\theta D_W}{1 + \rho_b K_M / \theta}$$

Let

$$T = \frac{t}{T_{max}}, \ X = \frac{x}{x_{max}}, \ Z = \frac{z}{z_{max}}$$

to get

$$\begin{cases} \kappa_1 \partial_T C + \kappa_2 \alpha^* \partial_Z C = \kappa_2^2 \beta^* \partial_z^2 C - \lambda^* C + I_R^* \Gamma(Z) \\ \kappa_1 \partial_t M = \gamma^* \left[ \kappa_3^2 \partial_x^2 + \kappa_2^2 \partial_z^2 \right] M - \lambda^* M + A_R^* C \Gamma(X) \\ C(0, Z) = C^0(Z) \\ M(0, X, Z) = M^0(X, Z) \end{cases}$$

where

$$\kappa_1 = \frac{1}{T_{max}}, \ \kappa_2 = \frac{1}{z_{max}}, \ \kappa_3 = \frac{1}{x_{max}}$$

and

$$(t, x, z) \in [0, 1]^3.$$

#### **FINITE ELEMENT METHOD**

Define weak solution as follows:

$$\begin{cases} \langle \kappa_1 \partial_T C + \kappa_2 \alpha^* \partial_Z C = \kappa_2^2 \beta^* \partial_z^2 C - \lambda^* C + I_R^* \Gamma(Z), \phi \rangle \\ \langle \kappa_1 \partial_t M = \gamma^* \left[ \kappa_3^2 \partial_x^2 + \kappa_2^2 \partial_z^2 \right] M - \lambda^* M + A_R^* C \Gamma(X), \psi \rangle \end{cases}$$

together with initial conditions

$$\begin{cases} C(0,Z) = C^0(Z) \\ M(0,X,Z) = M^0(X,Z) \end{cases}$$

where

 $\phi$  piece-wise differentiable on [0, 1]

and

 $\psi$  piece-wise differentiable on  $[0, 1]^2$ 

#### **NON-UNIFORM FINITE ELEMENT GRID**

 $Z_0 = 0, Z_1 = \omega_Z$  $Z_j = Z_{j-1} + \rho_Z (Z_{j-1} - Z_{j-2}) \text{ for } j = 2, \cdots, ZDIM$ and

$$\begin{split} X_0 &= 0, \ X_1 = \omega_X \\ X_i &= X_{i-1} + \rho_X (X_{i-1} - X_{i-2}) \ \text{ for } i = 2, \cdots, XDIM \end{split}$$

#### **FINITE ELEMENT APPROXIMATION**

$$C(T, Z) = \sum_{i=0}^{ZDIM} \alpha_i(T) \, \varphi_i(Z)$$

and

$$M(T, X, Z) = \sum_{i=0}^{ZDIM} \sum_{j=0}^{XDIM} \beta_{ij}(T)\varphi_i(Z)\omega_j(X)$$

where  $\{\varphi_i\}_{i=0}^{ZDIM}$  and  $\{\omega_j\}_{j=0}^{XDIM}$  represent linear spline functions acting as approximating elements on [0, 1].

#### **COMPUTATIONAL PROBLEM**

$$\begin{cases} (\vec{\alpha}) = F(T, \vec{\alpha}) \\ \vec{\alpha}(0) = \overrightarrow{(\alpha_0)} \end{cases}$$

and

$$\begin{cases} (\vec{\beta}) = G(T, \vec{\beta}) \\ \vec{\beta}(0) = \overline{(\beta_0)} \end{cases}$$

Solved using *CVODE* from SUNDIALS from Lawrence Livermore National Laboratories (LLNL) with following values:

| T <sub>max</sub> | x <sub>max</sub> | Z <sub>max</sub> | XDIM | ZDIM |
|------------------|------------------|------------------|------|------|
| 1, 2, 3, months  | 10 meters        | 10 meters        | 14   | 14   |

| ρχ   | $\rho_Z$ | $\omega_X$ | $\omega_Z$ |
|------|----------|------------|------------|
| 0.95 | 0.95     | 0.1        | 0.1        |

### **GRAPHICAL ILLUSTRATIONS**



Figure 2: t versus Total C - no decay



Page 9 of 12





### **COMPARISON OF COMPUTATION TIME**

| ECU UNIX | <b>OSCER CONDOR</b> | <b>OSCER SOONER</b> |
|----------|---------------------|---------------------|
| 5 min    | 2 sec               | 2 sec               |
| 10 hours | 3 hours             | 32 min              |

# **SUPERCOMPUTING IS AMAZING!!**

#### **REFERENCES**

[1] E. A. Sudicky & E. O. Frind, *Contaminant Transport in Fractured Porous Media: Analytic Solutions For a System of Parallel Fractures,* Water Resources Research **18(6)**, 1982.

[2] R. L. Drake & J. Chen, *Contaminant Transport in Parallel Fractured Media: Sudicky and Frind Revisited*, Submitted for Publication, 2003.

### **ACKNOWLEDGMENTS**

1. OSCER CONFERENCE 2009

2. CONDOR CLUSTER POOL

3. SOONER CLUSTER

4. OSCER SUPPORT STAFF AT OU

5. ECU UNIX FACILITY

6. LAWRENCE LIVERMORE NATIONAL LABORATORIES (LLNL) FOR CVODE