Collective Operations with MPI

Henry Neeman, Josh Alexander, Andrew Fitz Gibbon and
Charlie Peck

OU Supercomputing Symposium Workshop

SC Education Program
October, 2009

#include "fancy logos and distracting graphics"



How Did We Get Here?

Point—to—point communications are the fundemental
building—blocks of distributed memory parallel programs,
however there are other more powerful constructs available
which can make the design and implementation of parallel

programs easier.

Those constructs are generally known as collective operations
since they involve communication between groups of processes
rather than a pair of individual ones.



Overview of the Collective Operations

All—To—One

— MPI Gather (), MPI Gatherv(), MPI Reduce()

One—To—All

— MPI Bcast(), MPI Scatter(), MPI Scatterv()

All—To—All

— MPI_Allgather(), MPI_Allgatherv(), MPI_Allreduce()

Other

— MPI Barrier ()



All—To—One

e MPI Gather() - Collect the same amount of data from each
process in a communicator (including the root).

int MPI Gather(void *sendbuf, int sendcount, MPI Datatype
sendtype, void *recvbuf, int recvcount, MPI Datatype

recvtype, int root, MPI Comm comm)

e MPI Gatherv() - Collect a varying amount of data from each
process in a communicator (including the root).

int MPI Gatherv(void *sendbuf, int sendcount, MPI Datatype
sendtype, void *recvbuf, int *recvcounts, int *displs,

MPI Datatype recvtype, int root, MPI Comm comm)



e MPI Reduce() - Combines the elements provided in the input
buffer of each process in the group, using the operation op,

and returns the combined value in the output buffer of the
process with rank root.

int MPI Reduce(void *sendbuf, void *recvbuf, int count,

MPI Datatype datatype, MPI Op op, int root, MPI Comm comm)



One—To—All

e MPI Bcast() - Broadcasts a message from the process with
rank root to all processes of the group, itself included. It is
called by all members of group using the same arguments
for comm and root.

int MPI Bcast(void *buffer, int count, MPI Datatype
datatype, int root, MPI Comm comm)

e MPI Scatter() - MPI Scatter is the inverse operation to
MPI_Gather, it sends data from one task to all tasks in a
group.

int MPI Scatter(void *sendbuf, int sendcount, MPI Datatype
sendtype, void *recvbuf, int recvcount, MPI Datatype

recvtype, int root, MPI Comm comm)



e MPI Scatterv() - MPI Scatterv is the inverse operation to
MPI_Gatherv, it extends the functionality of MPI_Scatter by

allowing a varying count of data to be sent to each process,
since sendcounts is now an array.

int MPI Scatterv(void *sendbuf, int *sendcounts, int
*displs, MPI Datatype sendtype, void *recvbuf, int

recvcount, MPI Datatype recvtype, int root, MPI Comm comm)



All—To—All

e MPI Allgather() - MPI_Allgather is similar to MPI_Gather,
except that all processes receive the result, instead of just
the root. In other words, all processes contribute to the
result, and all processes receive the result.

int MPI Allgather(void *sendbuf, int sendcount,
MPI Datatype sendtype, void *recvbuf, int recvcount,

MPI Datatype recvtype, MPI Comm comm)



e MPI Allgatherv() - MPI_Allgatherv is similar to
MPI_Allgather in that all processes gather data from all
other processes, except that each process can send a
different amount of data. The block of data sent from the
jth process is received by every process and placed in the
jth block of the buffer recvbuf.

int MPI Allgatherv(void *sendbuf, int sendcount,
MPI Datatype sendtype, void *recvbuf, int *recvcount, int
*displs, MPI Datatype recvtype, MPI Comm comm)

e MPI Allreduce() - Combines the elements provided in the
input buffer of each process in the group, using the
operation op, and returns the combined value in the output
buffer of all processes.

int MPI Allreduce(void *sendbuf, void *recvbuf, int count,
MPI Datatype datatype, MPI Op op, MPI Comm comm)



Other

e MPI Barrier() - Blocks the caller until all group members
have called it; the call returns at any process only after all
group members have entered the call.

int MPI Barrier (MPI Comm comm)



Questions?



Lab — Using MPI’'s Collective Operations



