
Would'a, CUDA, Should'a.

CUDA:
Compute Unified Device

Architecture
OU Supercomputing Symposium

Highly-Threaded HPC

Jargon Alert

• This field is filled with jargon
– CUDA != GPGPU programming

• CUDA is a C-like language that facilitates getting your
code onto the GPU

• GPGPU programming is assembly/bit manipulation
right on the hardware.

– Big difference? You make the call.

History
• Mid 90's

– Stream Processors at Stanford: Imagine and
Merrimac

– SIMD style of processing
– Programming Language for Merrimac: Brook
– Adapted to GPUs

• http://graphics.stanford.edu/projects/brookgpu
• http://sourceforge.net/projects/brook

• Brook adopted by ATI as a programming language
for their GPUs

• NVIDIA: CUDA – some commonality with Brook

http://graphics.stanford.edu/projects/brookgpu
http://sourceforge.net/projects/brook

Speedup
• If you can figure out the right mapping,

speedups can be extraordinary

Example Applications URL Speedup
Seismic Database 66x – 100x

Mobile Phone Antenna Simulation 45x
Molecular Dynamics 21x – 100x
Neuron Simulation 100x

MRI Processing 245x – 415x
Atmospheric Cloud Simulation 50x

http://www.headwave.com
http://www.accelware.com

http://www.ks.uiuc.edu/Research/vmd
http://www.evolvedmachines.com
http://bic-test.beckman.uiuc.edu

http://www.cs.clemson.edu/~jesteel/clouds.html

Source: http://www.nvidia.com/object/IO_43499.html

CPU vs. GPU Layout

Source: Nvidia CUDA Programming Guide

Buzzwords
• Kernel

– Code that will be run in lock-step on the stream
processors of the GPU

• Thread
– An execution of a kernel with a given index.

Each thread uses its index to access elements in
array such that the collection of all threads
cooperatively processes the entire data set.

Buzzwords
• Block

– A group of threads.
• Just like those dastardly pthread'ed threads, these

could execute concurrently or independently and in no
particular order.

• Threads can be coordinated somewhat, using the
_syncthreads() function as a barrier, making all
threads stop at a certain point in the kernel before
moving on en mass.

Buzzwords
• Grid

– This is a group of (thread)blocks.

– There’s no synchronization at all between the
blocks.

Hierarchy

• Grids map to GPUs
• Blocks map to the

MultiProcessors (MP)
– Blocks are never split across

MPs, but MPs can have
multiple blocks

• Threads map to Stream
Processors (SP)

• Warps are groups of (32)
threads that execute
simultaneously

Image Source: Nvidia CUDA Programming Guide

Getting your feet wet

• In your home directory on LittleFe, there's a
subdirectory called “CUDA-Examples”

• Inside of this directory, pull up the file
movearrays.cu

• “.cu” is the convention for “CUDA”

• Source: Dr. Dobb's Journal, hpc-high-
performance-computing, 207200659

Getting your feet wet

• Looking at the code:
– Looks a lot like C,

• Yay!
• Boo!

– Notice the cudaNAME calls
• cudaMalloc,cudaMemcpy,cudaFree

– This code simply creates memory locally,
creates memory “remotely,” copies memory from
the host to the device, copies memory from the
device to the device, then copies memory back
from the device to the host

Compiling
• nvcc movearrays.cu -o movearrays
• Run it with ./movearrays
• Wow! Did you see that output!

• Look at movearrays2.cu
– Example showing data movement, and our first

look at arithmetic operations on the device
– Compare to arithmetic operations on host

Coding it up
• If you like C, you're golden at this point.

– Looking at the code, you see that the function call
that “does stuff” on the device,
incrementArrayOnDevice() is declared as
__global__ void

– Notice also the decomposition declarations with
blocksize and the number of blocks.

Coding it up
• blockIdx.x is a built-in variable in CUDA that

returns the blockId in the x axis of the block
that is executing this block of code

• threadIdx.x is another built-in variable in
CUDA that returns the threadId in the x axis
of the thread that is being executed by this
stream processor in this particular block

Coding it up
• How do you know where to break?

http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls

• Each multiprocessor has the ability to
actively process multiple blocks at one time

• How many depends on the number of
registers per thread and how much shared
memory per block is required by a given
kernel. E.g. “It depends!”

http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls

Coding it up
• Getting CUDA working:

– http://www.nvidia.com/cuda
• Visit the download area
• Download the CUDA driver
• Also download the CUDA toolkit

– Optionally want the CUDA SDK, meaning you really want the
CUDA SDK

– Installation of the driver is relatively
straightforward

• Windows XP/Vista
• Linux x86/x86_64

http://www.nvidia.com/cuda

Coding it up
• Getting CUDA working:

– Even if you don't have a supported NVidia card,
you can download the toolkit.

• Toolkit includes an NVidia emulator
• This means that you can use it in a classroom setting,

where students can have universal tools to develop
off-host.

– debug
– debug-emu
– release
– release-emu

Coding it up
• Getting CUDA working:

– More CUDA than you can shake a “fill out the
surveys” stick at:

• /opt/cuda-sdk/projects
• /opt/cuda-sdk/bin/linux/release

	Would'a, CUDA, Should'a.
	Jargon Alert
	History
	Speedup
	CPU vs. GPU Layout
	Buzzwords
	Buzzwords
	Buzzwords
	Hierarchy
	Getting your feet wet
	Getting your feet wet
	Compiling
	Coding it up
	Coding it up
	Coding it up
	Coding it up
	Coding it up
	Coding it up

