
A Scalable
Framework for
Offline Parallel

Debugging

{klindeku,
anthony.d,
dstanzi}

@asu.edu

Challenges

GDBase

Implementation
Interface

Agents

Segmentation Fault

Deadlock

AllgatherV

Agent Development

Results

Future Work

Conclusions

1/33

A Scalable Framework
for Offline Parallel Debugging

Karl Lindekugel, Anthony DiGirolamo,
and Dan Stanzione

{klindeku, anthony.d, dstanzi}@asu.edu

Fulton High Performance Computing,
Arizona State University

October 7, 2008

A Scalable
Framework for
Offline Parallel

Debugging

{klindeku,
anthony.d,
dstanzi}

@asu.edu

Challenges

GDBase

Implementation
Interface

Agents

Segmentation Fault

Deadlock

AllgatherV

Agent Development

Results

Future Work

Conclusions

2/33

High Performance Computing systems continue to
grow in size and complexity

◮ The recent advent of multi- and many- core chips
has only accelerated this trend

◮ Large scale applications require 10,000-100,000s of
threads to achieve maximum performance

Debugging technology has remained fairly constant

◮ Most effort is still focused on interactive debugging
schemes

◮ It is not clear that large scale interactive debugging is
compatible with the way large systems are operated

In this talk we will look at how debugging parallel
applications in an offline manner solves these issues.

A Scalable
Framework for
Offline Parallel

Debugging

{klindeku,
anthony.d,
dstanzi}

@asu.edu

Challenges

GDBase

Implementation
Interface

Agents

Segmentation Fault

Deadlock

AllgatherV

Agent Development

Results

Future Work

Conclusions

3/33

Large Scale Debugging
◮ The volume of data generated by debugging and

monitoring tools requires an efficient infrastructure
for collection and organization.

◮ Visual representation of data may be untenable for
applications and systems executing at very large
scales.

A Scalable
Framework for
Offline Parallel

Debugging

{klindeku,
anthony.d,
dstanzi}

@asu.edu

Challenges

GDBase

Implementation
Interface

Agents

Segmentation Fault

Deadlock

AllgatherV

Agent Development

Results

Future Work

Conclusions

4/33

Correctness and Performance Debugging

◮ Applications can be faulty without producing an error.
Performance can be degraded by:

◮ Calculation mistakes
◮ Large amount of I/O
◮ Poor communication patterns

◮ Inefficiency wastes expensive computational cycles
◮ Finding errors of this kind can be very difficult
◮ Future debugging systems must combine

application performance and correctness data,
including data across multiple runs, to find
application efficiency errors.

A Scalable
Framework for
Offline Parallel

Debugging

{klindeku,
anthony.d,
dstanzi}

@asu.edu

Challenges

GDBase

Implementation
Interface

Agents

Segmentation Fault

Deadlock

AllgatherV

Agent Development

Results

Future Work

Conclusions

5/33

Reliability

◮ As systems grow, hardware failures occur more often
◮ As applications utilize more cores, hardware failures

may be a part of many jobs.
◮ It will not be immediately clear if errors are software

or hardware related
◮ Future debugging systems must be able to

monitor system performance across jobs in
order to detect hardware related errors.

A Scalable
Framework for
Offline Parallel

Debugging

{klindeku,
anthony.d,
dstanzi}

@asu.edu

Challenges

GDBase

Implementation
Interface

Agents

Segmentation Fault

Deadlock

AllgatherV

Agent Development

Results

Future Work

Conclusions

6/33

Production Environments

◮ Most sites use batch systems in order to maintain
high utilization

◮ Interactive debugging complicates batch operation
◮ Sites often limit the scale at which interactive

debuggers can run
◮ Future debugging systems must be able to

operate properly inside of existing batch queuing
systems so they may run at the largest scales.

A Scalable
Framework for
Offline Parallel

Debugging

{klindeku,
anthony.d,
dstanzi}

@asu.edu

Challenges

GDBase

Implementation
Interface

Agents

Segmentation Fault

Deadlock

AllgatherV

Agent Development

Results

Future Work

Conclusions

7/33

Challenges

To summarize, future debugging systems must be able to:

◮ Operate within batch queue systems
◮ Detect hardware related errors
◮ Combine performance and correctness debugging

information across multiple runs
◮ Provide different methods of presenting information
◮ Scale to next generation systems

A Scalable
Framework for
Offline Parallel

Debugging

{klindeku,
anthony.d,
dstanzi}

@asu.edu

Challenges

GDBase

Implementation
Interface

Agents

Segmentation Fault

Deadlock

AllgatherV

Agent Development

Results

Future Work

Conclusions

8/33

GDBase

In response to these challenges we have built GDBase, a
framework for offline parallel debugging.

GDBase Provides

◮ scalable offline debugging
◮ the functionality of GDB
◮ operation within batch queuing systems

GDBase Functionality

◮ GDBase gathers runtime information from a GDB
instance

◮ Collects this information to a distributed event
database

◮ Provides a mechanism for analysis of this data

A Scalable
Framework for
Offline Parallel

Debugging

{klindeku,
anthony.d,
dstanzi}

@asu.edu

Challenges

GDBase

Implementation
Interface

Agents

Segmentation Fault

Deadlock

AllgatherV

Agent Development

Results

Future Work

Conclusions

9/33

Workflow

1. Specify debugger behavior
◮ Multiple interfaces are available to users (or agents)

for controlling debugger behavior

2. Run your application under debugger control
◮ Debugging messages are collected local to each

task or to shared storage

3. Collect debugging messages
◮ After execution, events from debugging tasks are

moved to a central location for analysis

4. Use analysis agents on collected information
◮ Agents provide a simple way for users to detect

common problems

A Scalable
Framework for
Offline Parallel

Debugging

{klindeku,
anthony.d,
dstanzi}

@asu.edu

Challenges

GDBase

Implementation
Interface

Agents

Segmentation Fault

Deadlock

AllgatherV

Agent Development

Results

Future Work

Conclusions

10/33

Design

A Scalable
Framework for
Offline Parallel

Debugging

{klindeku,
anthony.d,
dstanzi}

@asu.edu

Challenges

GDBase

Implementation
Interface

Agents

Segmentation Fault

Deadlock

AllgatherV

Agent Development

Results

Future Work

Conclusions

11/33

Runtime

◮ MPI Application is launched under GDB control
◮ Events are logged to a local disk or shared storage
◮ Behavior may be controlled via interfaces

A Scalable
Framework for
Offline Parallel

Debugging

{klindeku,
anthony.d,
dstanzi}

@asu.edu

Challenges

GDBase

Implementation
Interface

Agents

Segmentation Fault

Deadlock

AllgatherV

Agent Development

Results

Future Work

Conclusions

12/33

Data Collection

◮ Events from multiple jobs collected and stored in a
relational database

◮ Analysis tools can compare data between runs

A Scalable
Framework for
Offline Parallel

Debugging

{klindeku,
anthony.d,
dstanzi}

@asu.edu

Challenges

GDBase

Implementation
Interface

Agents

Segmentation Fault

Deadlock

AllgatherV

Agent Development

Results

Future Work

Conclusions

13/33

Offline Analysis

◮ Each analysis agent is designed to search for a
specific type of error

◮ A few example agents are provided

A Scalable
Framework for
Offline Parallel

Debugging

{klindeku,
anthony.d,
dstanzi}

@asu.edu

Challenges

GDBase

Implementation
Interface

Agents

Segmentation Fault

Deadlock

AllgatherV

Agent Development

Results

Future Work

Conclusions

14/33

Interface

Debugging Specification

◮ Multiple interfaces are available:
simple and advanced

◮ Debugging specification files allow setting of
breakpoints, watchpoints and variable logging

◮ Aids users in the transition from interactive to offline

@bp functionName
variable1
variable2

@bp myapp.c:231
variable3

@watch myapp.c:10 variable4

A Scalable
Framework for
Offline Parallel

Debugging

{klindeku,
anthony.d,
dstanzi}

@asu.edu

Challenges

GDBase

Implementation
Interface

Agents

Segmentation Fault

Deadlock

AllgatherV

Agent Development

Results

Future Work

Conclusions

15/33

Interface

Advanced Scripting

◮ If you need more control, use a debugging script
◮ Debugging scripts are written in TCL
◮ Provides fine grained control over GDB
◮ Intended for agent development

proc user_setup {} {
gdb_setBreakpoint "main" "myMethod"
db_logMessage "user.break" [gdb_lastOutput]

}

◮ Messages are stored in the database as a key-value
pair using the db_logMessage command.

A Scalable
Framework for
Offline Parallel

Debugging

{klindeku,
anthony.d,
dstanzi}

@asu.edu

Challenges

GDBase

Implementation
Interface

Agents

Segmentation Fault

Deadlock

AllgatherV

Agent Development

Results

Future Work

Conclusions

16/33

Interface

Advanced Scripting

proc myMethod {} {
gdb_getStackFrames
db_logMessage "stack" [gdb_lastOutput]

gdb_listLocals
db_logMessage "locals" [gdb_lastOutput]

set \$result [gdb_evalExpr "var % 2"]
if { \$result == "1" } {

db_logMessage "var" "even"
}

gdb_continue
}

A Scalable
Framework for
Offline Parallel

Debugging

{klindeku,
anthony.d,
dstanzi}

@asu.edu

Challenges

GDBase

Implementation
Interface

Agents

Segmentation Fault

Deadlock

AllgatherV

Agent Development

Results

Future Work

Conclusions

17/33

Agents

Agents mine the collected event data to find and locate
faults or problems in code. It’s a simple way for users to
detect common problems in their parallel applications.
Agents can produce reports text or graphical.

Sample Agents Constructed

◮ Segmentation Fault
◮ Deadlock
◮ AllgatherV

A Scalable
Framework for
Offline Parallel

Debugging

{klindeku,
anthony.d,
dstanzi}

@asu.edu

Challenges

GDBase

Implementation
Interface

Agents

Segmentation Fault

Deadlock

AllgatherV

Agent Development

Results

Future Work

Conclusions

18/33

Segmentation Fault Agent
Segmentation Fault Agent detects a Segmentation Fault
in the event database and produces a report of:

◮ Task Affected
◮ Code Location
◮ Current Stack
◮ Local Variables

Job Exection

baseexec ./myprogram

A Scalable
Framework for
Offline Parallel

Debugging

{klindeku,
anthony.d,
dstanzi}

@asu.edu

Challenges

GDBase

Implementation
Interface

Agents

Segmentation Fault

Deadlock

AllgatherV

Agent Development

Results

Future Work

Conclusions

19/33

Segmentation Fault Agent

Output

PBS JOBID: 198325.moab.local
DatabaseID: 206

elapsed: 00:00:51
ncpus: 64
Messages: 964

Detector Results:
Job crashed on rank: 16
At: main in fdtd.c:385
With stack:
0 main in fdtd.c:385
With locals:
int * p = (int *) 0x4
int i = 132
int t = 4250209
int n = 68

A Scalable
Framework for
Offline Parallel

Debugging

{klindeku,
anthony.d,
dstanzi}

@asu.edu

Challenges

GDBase

Implementation
Interface

Agents

Segmentation Fault

Deadlock

AllgatherV

Agent Development

Results

Future Work

Conclusions

20/33

Deadlock Agent

The Deadlock Agent identifies tasks involved in a
communication pattern that cannot continue. The tasks
are then organized according to number of
dependencies. A report is produced containing:

◮ Outstanding communications
◮ Location in code for each task
◮ Stack for each Task

This Agent was motivated by user problems in an
asynchronously communicating code. A race condition
existed causing the program to randomly deadlock during
execution.

A Scalable
Framework for
Offline Parallel

Debugging

{klindeku,
anthony.d,
dstanzi}

@asu.edu

Challenges

GDBase

Implementation
Interface

Agents

Segmentation Fault

Deadlock

AllgatherV

Agent Development

Results

Future Work

Conclusions

21/33

Deadlock Agent Usage

Job Exection

baseexec --agent deadlock -t 600 ./myprogram

◮ Deadlock catches each Send and Recv from an
application and logs their parameters, start, and end
to the database.

◮ The -t option tells the program to time out if it has not
received an event from the program in x seconds.

A Scalable
Framework for
Offline Parallel

Debugging

{klindeku,
anthony.d,
dstanzi}

@asu.edu

Challenges

GDBase

Implementation
Interface

Agents

Segmentation Fault

Deadlock

AllgatherV

Agent Development

Results

Future Work

Conclusions

22/33

Deadlock Agent Usage

Analysis

gdbase --agent deadlock --jobid 1234.moab

Example Output

Incomplete Communication
Send : 12 ---> 13
Send : 11 ---> 12
Send : 10 ---> 11
Send : 9 ---> 10
Send : 8 ---> 9
Final Stack for Rank 13
Stack:
Level Function File:Line
11 main in deadtest.c:37
10 PMPI_Barrier in pbarrier.c:52

A Scalable
Framework for
Offline Parallel

Debugging

{klindeku,
anthony.d,
dstanzi}

@asu.edu

Challenges

GDBase

Implementation
Interface

Agents

Segmentation Fault

Deadlock

AllgatherV

Agent Development

Results

Future Work

Conclusions

23/33

AllgatherV Agent
An AllgatherV collects variable amounts of data from
each task and puts the resulting array on every task.

The AllgatherV Agent analyzes each AllgatherV call
across tasks to:

◮ Identify improper item counts
◮ Identify improper offset values

The Agent then produces a report with the affected Task,
Location in Code, etc.

A Scalable
Framework for
Offline Parallel

Debugging

{klindeku,
anthony.d,
dstanzi}

@asu.edu

Challenges

GDBase

Implementation
Interface

Agents

Segmentation Fault

Deadlock

AllgatherV

Agent Development

Results

Future Work

Conclusions

24/33

AllgatherV Agent Usage

Job Execution

baseexec --agent allgatherv ./myapp myargs

Analysis

gdbase --agent allgatherv --jobid 1234.moab

Example output

Error at element 4 in Recvcount array on
task 7 was 64 but should be 63
Stack:
Depth Function Location
0 main in mpi-nbody-allg.c:270
1 PMPI_Allgatherv in pallgatherv.c:39

A Scalable
Framework for
Offline Parallel

Debugging

{klindeku,
anthony.d,
dstanzi}

@asu.edu

Challenges

GDBase

Implementation
Interface

Agents

Segmentation Fault

Deadlock

AllgatherV

Agent Development

Results

Future Work

Conclusions

25/33

Agent Development

◮ Python API for accessing database
(anything that can query a SQL database will work)

◮ Provides an abstraction for reading messages
◮ Provides helper methods for parsing gdb output

from gdbase import *

##connect to database
db = GDBase()
db.connect()

obtains job id to read from environment
J = db.getJob()

Look for messages starting with ’opd.SEGFAULT’
M = J.getMessages()
M.setKey(’opd.SEGFAULT’)

A Scalable
Framework for
Offline Parallel

Debugging

{klindeku,
anthony.d,
dstanzi}

@asu.edu

Challenges

GDBase

Implementation
Interface

Agents

Segmentation Fault

Deadlock

AllgatherV

Agent Development

Results

Future Work

Conclusions

26/33

Results

GDBase

◮ Can launch with mpiexec or mpirun
◮ Tested with the Torque batch queue system
◮ Tested with OpenMPI and MVAPICH

Impact of GDBase on Application Run Time with -g

Execution Type Time (s) Percent Extra
No GDBase 39.00 -
Segfault Only 40.04 2.67%
Ten breakpoints 40.65 4.23%
40 breakpoints 45.50 16.66%

A Scalable
Framework for
Offline Parallel

Debugging

{klindeku,
anthony.d,
dstanzi}

@asu.edu

Challenges

GDBase

Implementation
Interface

Agents

Segmentation Fault

Deadlock

AllgatherV

Agent Development

Results

Future Work

Conclusions

27/33

User Experience

GDBase was used to find several bugs in a user Finite
Difference Time Domain (FDTD) code using the
Segmentation Fault Agent and its generated report.
Three bugs were found:

◮ Swapped loop indexes on nested loops
◮ Incorrect ghost row boundries on another loop
◮ Incorrect initialization on another loop

Each of these bugs caused the application to crash at
sizes about 1024 tasks.

A Scalable
Framework for
Offline Parallel

Debugging

{klindeku,
anthony.d,
dstanzi}

@asu.edu

Challenges

GDBase

Implementation
Interface

Agents

Segmentation Fault

Deadlock

AllgatherV

Agent Development

Results

Future Work

Conclusions

28/33

Test Environment

Clusters

◮ Saguaro — ASU, 240 Dual socket, Quad Core Linux
computers with Infiniband interconnect. Used for
runs up to 1024 tasks.

◮ Ranger — TACC, 3,963 Quad socket, Quad Core
Linux computers with Infiniband interconnect. Used
for runs up to 4096 tasks.

Debuggers

◮ Gnu Debugger (GDB) — Freely available, launches a
debugger instance for each task.

◮ Intel Debugger (IDB) — Commercial Product, uses a
tree to manage communication with each task.

A Scalable
Framework for
Offline Parallel

Debugging

{klindeku,
anthony.d,
dstanzi}

@asu.edu

Challenges

GDBase

Implementation
Interface

Agents

Segmentation Fault

Deadlock

AllgatherV

Agent Development

Results

Future Work

Conclusions

29/33

Segmentation Fault
Segfault predictably after 89 iterations

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 8 16 32 64 128 256 512 1024 2048 4096

O
ve

rh
ea

d
(R

un
tim

e
M

ul
tip

lie
r)

Number of Tasks

GNU Debugger

Intel Parallel Debugger

GDBase

A Scalable
Framework for
Offline Parallel

Debugging

{klindeku,
anthony.d,
dstanzi}

@asu.edu

Challenges

GDBase

Implementation
Interface

Agents

Segmentation Fault

Deadlock

AllgatherV

Agent Development

Results

Future Work

Conclusions

30/33

Break & Collect
Breakpoint set on each iteration, 10 iterations

 0

 5

 10

 15

 20

 25

 30

 8 16 32 64 128 256 512 1024 2048 4096

O
ve

rh
ea

d
(R

un
tim

e
M

ul
tip

lie
r)

Number of Tasks

GNU Debugger

Intel Parallel Debugger

GDBase

A Scalable
Framework for
Offline Parallel

Debugging

{klindeku,
anthony.d,
dstanzi}

@asu.edu

Challenges

GDBase

Implementation
Interface

Agents

Segmentation Fault

Deadlock

AllgatherV

Agent Development

Results

Future Work

Conclusions

31/33

Future Work

Continued development of the GDBase will focus on:
◮ Test scalability at 50,000 tasks
◮ Comprehensive user interface (web or graphical)
◮ Enhancing the facilities provided through the

interfaces
◮ Developing additional analysis agents, including

ones that compare data between runs
◮ Adding support for other tools besides GDB, such as

performance and profiling tools (Tau, DPCL)

A Scalable
Framework for
Offline Parallel

Debugging

{klindeku,
anthony.d,
dstanzi}

@asu.edu

Challenges

GDBase

Implementation
Interface

Agents

Segmentation Fault

Deadlock

AllgatherV

Agent Development

Results

Future Work

Conclusions

32/33

Conclusions

◮ Offline debugging shows a lot of promise
◮ More scalable than interactive debugging
◮ The framework may provide a viable alternative for

debugging at the petascale level

A Scalable
Framework for
Offline Parallel

Debugging

{klindeku,
anthony.d,
dstanzi}

@asu.edu

Challenges

GDBase

Implementation
Interface

Agents

Segmentation Fault

Deadlock

AllgatherV

Agent Development

Results

Future Work

Conclusions

33/33

Thank you!

	Challenges
	GDBase
	Implementation
	Interface
	Agents
	Segmentation Fault
	Deadlock
	AllgatherV
	Agent Development

	Results
	Future Work
	Conclusions

