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Types of random numbers and Monte Carlo Methods

What are Random Numbers Used For?

@ Random numbers are used extensively in simulation,
statistics, and in Monte Carlo computations
e Simulation: use random numbers to “randomly pick" event
outcomes based on statistical or experiential data
e Statistics: use random numbers to generate data with a
particular distribution to calculate statistical properties
(when analytic techniques fail)
© There are many Monte Carlo applications of great interest
e Numerical quadrature “all Monte Carlo is integration”
e Quantum mechanics: Solving Schrédinger’s equation with
Green’s function Monte Carlo via random walks
e Mathematics: Using the Feynman-Kac/path integral
methods to solve partial differential equations with random
walks
e Defense: neutronics, nuclear weapons design
e Finance: options, mortgage-backed securities
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Types of random numbers and Monte Carlo Methods

What are Random Numbers Used For?

© There are many types of random numbers
e “Real" random numbers: uses a ‘physical source’ of
randomness
e Pseudorandom numbers: deterministic sequence that
passes tests of randomness
@ Quasirandom numbers: well distributed (low discrepancy)
points

Independence Unpredictability

Pseudorandom
numbers

Cryptographic
numbers

Quasirandom
numbers

Uniformity
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Types of random numbers and Monte Carlo Methods

Why Monte Carlo?

@ Rules of thumb for Monte Carlo methods

e Good for computing linear functionals of solution (linear

algebra, PDEs, integral equations)

e No discretization error but sampling error is O(N~1/2)
High dimensionality is favorable, breaks the “curse of
dimensionality"
e Appropriate where high accuracy is not necessary
e Often algorithms are “naturally” parallel

© Exceptions

Complicated geometries often easy to deal with
Randomized geometries tractable

Some applications are insensitive to singularities in solution
Sometimes is the fastest high-accuracy algorithm (rare)
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Pseudorandom Numbers

Pseudorandom numbers mimic the properties of ‘real’
random numbers

Pass statistical tests

Reduce error is O(N‘%) in Monte Carlo

Some common pseudorandom number generators (RNG):
Linear congruential: x, = ax,_1 + ¢ (mod m)

Implicit inversive congruential: x, = ax,_y + ¢ (mod p)
Explicit inversive congruential: x, = an+ ¢ (mod p)
Shift register: y, = yn—s+ ¥Yn—r (Mod 2), r > s
Additive lagged-Fibonacci: z, = z,—s + zn—¢

(mod 2K), r > s

Combined: w, =y, + 2z, (mod p)

Multiplicative lagged-Fibonacci: x, = Xp—s X Xn—r

(mod 2X), r > s
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Pseudorandom Numbers

@ Some properties of pseudorandom number generators,
integers: {x,} from modulo m recursion, and
u[o,1],z, = %=

A. Should be a purely periodic sequence (e.g.: DES and

IDEA are not provably periodic)

Period length: Per(x,) should be large

. Cost per bit should be moderate (not cryptography)

D. Should be based on theoretically solid and empirically
tested recursions

E. Should be a totally reproducible sequence

o w
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Pseudorandom Numbers

@ Some common facts (rules of thumb) about pseudorandom

number generators:

@ Recursions modulo a power-of-two are cheap, but have
simple structure

© Recursions modulo a prime are more costly, but have

higher quality: use Mersenne primes: 2° — 1, where p is

prime, too

Shift-registers (Mersenne Twisters) are efficient and have

good quality

Lagged-Fibonacci generators are efficient, but have some

structural flaws

Combining generators is ‘provably good’

Modular inversion is very costly

All linear recursions “fall in the planes’

Inversive (nonlinear) recursions ‘fall on hyperbolas’
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Periods of Pseudorandom Number Generators

@ Linear congruential: x, = ax,_1 + ¢ (mod m),
Per(x,) = m— 1, m prime, with m a power-of-two,
Per(x,) = 2%, or Per(x,) = 2k-2if ¢ =0

@ Implicit inversive congruential: x, = ax,_1 + ¢ (mod p),

Per(xn) = p
© Explicit inversive congruential: x, = an+ ¢ (mod p),
Per(xn) = p

O Shift register: y, = ¥Yn_s+ Yn—r (mod 2), r > s,
Per(yn) =2" —1

©@ Additive lagged-Fibonacci: z, = z,_s + z5_r
(mod 2K), r > s, Per(z,) = (2" — 1)2k-"

© Combined: w, = y, + z, (mod p),
Per(wp) = lcm(Per(yn), Per(zy))

@ Multiplicative lagged-Fibonacci: x, = Xp_s X Xp_r
(mod 2K), r > s, Per(x,) = (27 — 1)2k=3
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Combining RNGs

@ There are many methods to combine two streams of
random numbers, {x,} and {yn}, where the x, are integers
modulo my, and y,'s modulo my:

Addition modulo one: z, = 72 + ;& (mod 1)

Addition modulo either my or my,
Multiplication and reduction modulo either my or m,
Exclusive “or-ing"

©00 O

@ Rigorously provable that linear combinations produce
combined streams that are “no worse" than the worst

@ Tony Warnock: all the above methods seem to do about
the same
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Splitting RNGs for Use In Parallel

@ We consider splitting a single PRNG:
e Assume {x,} has Per(x;,)
e Has the fast-leap ahead property: leaping L ahead costs no
more than generating O(log,(L)) numbers
@ Then we associate a single block of length L to each
parallel subsequence:
@ Blocking:
e First block: {xo, X1,...,X—1}
e Second : {Xi, X(1,...,Xo1—1}
o jth block: {X(,‘_1)L, X(,'_1)/_+1 . ,X,‘/__1}
© The Leap Frog Technique: define the leap ahead of
/= LPe[(x,-)J :

o First block: {xo, X¢, X2, - -, X(L—1)¢}
e Second block: {x1, X11¢, X112¢, - -+, X1 4(L—1)¢}
o jth block: {X,‘7 Xjte, Xjiz20, -« - ,X,'+([__1)g}
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Splitting RNGs for Use In Parallel

© The Lehmer Tree, designed for splitting LCGs:

Define a right and left generator: R(x) and L(x)

The right generator is used within a process

The left generator is used to spawn a new PRNG stream

Note: L(x) = RY(x) for some W for all x for an LCG

Thus, spawning is just jumping a fixed, W, amount in the

sequence

© Recursive Halving Leap-Ahead, use fixed points or fixed
leap aheads:

e First split leap ahead: L%J

o ith split leap ahead: {P%X’)

e This permits effective user of all remaining numbers in {x,}
without the need for a priori bounds on the stream
length L
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Generic Problems with Splitting RNGs for Use In
Parallel

@ Splitting for parallelization is not scalable:

e [t usually costs O(log,(Per(x;))) bit operations to generate
a random number

e For parallel use, a given computation that requires L
random numbers per process with P processes must have
Per(x;) = O((LP)®)

o Rule of thumb: never use more than /Per(x;) of a
sequence — e =2

e Thus cost per random number is not constant with number
of processors!!
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Generic Problems with Splitting RNGs for Use In
Parallel

© Correlations within sequences are generic!!
e Certain offsets within any modular recursion will lead to
extremely high correlations
e Splitting in any way converts auto-correlations to
cross-correlations between sequences
e Therefore, splitting generically leads to interprocessor
correlations in PRNGs
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New Results in Parallel RNGs: Using Distinct
Parameterized Streams in Parallel

@ Default generator: additive lagged-Fibonacci,
Xn = Xn_s + Xn_r (mod 2K), r > s
o Very efficient: 1 add & pointer update/number
o Good empirical quality
e Very easy to produce distinct parallel streams

@ Alternative generator #1: prime modulus LCG,
Xp = aXp_1 + ¢ (mod m)

Choice: Prime modulus (quality considerations)

Parameterize the multiplier

Less efficient than lagged-Fibonacci

Provably good quality

Multiprecise arithmetic in initialization
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New Results in Parallel RNGs: Using Distinct
Parameterized Streams in Parallel

© Alternative generator #2: power-of-two modulus LCG,
Xp = axp_1 + ¢ (mod 2K)
Choice: Power-of-two modulus (efficiency considerations)
Parameterize the prime additive constant
Less efficient than lagged-Fibonacci
Provably good quality
Must compute as many primes as streams
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Parameterization Based on Seeding

@ Consider the Lagged-Fibonacci generator:
Xn = Xn_s + Xp_17 (mod 232) or in general:

Xn = Xn_s + Xn_r (mOd 2k), r>=Ss

@ The seed is 17 32-bit integers; 544 bits, longest possible
period for this linear generator is 217%32 — 1 = 2544 _ 4

@ Maximal period is Per(x,) = (2'7 — 1) x 231

@ Period is maximal <= at least one of the 17 32-bit
integers is odd

@ This seeding failure results in only even “random numbers’

@ Are (2'7 — 1) x 231x17 geeds with full period

@ Thus there are the following number of full-period
equivalence classes (ECs):

E— (217 — 1) x 28717 _ 231x16 _ 5496
(217 _ 1) x 231
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The Equivalence Class Structure

With the “standard” I.s.b., by: or a special by (adjoining 1’s):

m.s.b. l.s.b. m.s.b. l.s.b.

b1 b2 by | by b1 by_2 by bo
0J OJ 0 0 Xr—1 OJ 0 0J b0n71 Xr_1
0 O O 0 Xr—2 O O O b0n72 Xr_2
O 0 O Xq O O O bo1 Xq
O O O 1 Xo 0 0 0 bog Xo
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Parameterization of Prime Modulus LCGs

@ Consider only x, = ax,_4 (mod m), with m prime has
maximal period when ais a primitive root modulo m

@ If « and a are primitive roots modulo m then
J/st. ged(,m—1)=1and a =4 (mod m)

@ If m= 22" 4+ 1 (Fermat prime) then all odd powers of « are
primitive elements also

@ If m=2qg+ 1 with g also prime (Sophie-Germain prime)
then all odd powers (save the gth) of « are primitive
elements
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Parameterization of Prime Modulus LCGs

@ Consider x, = ax,_y (mod m) and y, = a'y,_y (mod m)
and define the full-period exponential-sum
cross-correlation between then as:

m—1 )
C(j, 1) = Z e’ (Xn—yn-)
n=0

then the Riemann hypothesis over finite-fields implies

ICU NI < (I=1)vm
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Parameterization of Prime Modulus LCGs

@ Mersenne modulus: relatively easy to do modular
multiplication

@ With Mersenne prime modulus, m = 2P — 1 must compute

;,11 (k), the kth number relatively prime to m — 1

@ Can compute ¢,_1(x) with a variant of the
Meissel-Lehmer algorithm fairly quickly:
e Use partial sieve functions to trade off memory for more
than 2/ operations, j = # of factors of m— 1
e Have fast implementation for p = 31, 61, 127, 521, 607
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Parameterization of Power-of-Two Modulus LCGs

@ X, = ax,_1 + ¢; (mod 2k), here the ¢;’s are distinct primes

@ Can prove (Percus and Kalos) that streams have good
spectral test properties among themselves

@ Best to choose ¢; ~ V2K = 2k/2

@ Must enumerate the primes, uniquely, not necessarily
exhaustively to get a unique parameterization

. . o m : . .
@ Note: in 0 < i< mthere are = Tog, m Primes via the prime

number theorem, thus if m ~ 2K streams are required, then
must exhaust all the primes modulo
~ 2k+log k — 2Kk — mlog, m

@ Must compute distinct primes on the fly either with table or
something like Meissel-Lehmer algorithm
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Quality Issues in Serial and Parallel PRNGs

@ Empirical tests (more later)
@ Provable measures of quality:

@ Full- and partial-period discrepancy (Niederreiter) test
equidistribution of overlapping k-tuples

@ Also full- (k = Per(x,)) and partial-period exponential
sums:

x

,1 '
C(j.k) = e tn=xn-)

3>
Il
o
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Quality Issues in Serial and Parallel PRNGs

@ For LCGs and SRGs full-period and partial-period results
are similar

>|C(-, Per(xn))| < O(+/Per(xn))
>|C(-,j)| < O(v/Per(xp))
@ Additive lagged-Fibonacci generators have poor provable

results, yet empirical evidence suggests
|C(-, Per(xn))| < O(+/Per(xn))
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Parallel Neutronics: A Difficult Example

@ The structure of parallel neutronics
e Use a parallel queue to hold unfinished work
e Each processor follows a distinct neutron
e Fission event places a new neutron(s) in queue with initial
conditions
© Problems and solutions
e Reproducibility: each neutron is queued with a new
generator (and with the next generator)
e Using the binary tree mapping prevents generator reuse,
even with extensive branching
o A global seed reorders the generators to obtain a
statistically significant new but reproducible result
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Many Parameterized Streams Facilitate
Implementation/Use

@ Advantages of using parameterized generators

e Each unique parameter value gives an “independent”
stream

e Each stream is uniquely numbered

e Numbering allows for absolute reproducibility, even with
MIMD queuing

o Effective serial implementation + enumeration yield a
portable scalable implementation

e Provides theoretical testing basis
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Many Parameterized Streams Facilitate
Implementation/Use

© Implementation details
o Generators mapped canonically to a binary tree
e Extended seed data structure contains current seed and
next generator
@ Spawning uses new next generator as starting point:
assures no reuse of generators

© All these ideas in the Scalable Parallel Random Number
Generators (SPRNG) library: http://www.sprng.org
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Many Different Generators and A Unified Interface

@ Advantages of having more than one generator

e An application exists that stumbles on a given generator

e Generators based on different recursions allow comparison

to rule out spurious results

e Makes the generators real experimental tools
© Two interfaces to the SPRNG library: simple and default

e Initialization returns a pointer to the generator state:
init_SPRNG ()
Single call for new random number: SPRNG ()
Generator type chosen with parameters in init_SPRNG ()
Makes changing generator very easy
Can use more than one generator type in code
Parallel structure is extensible to new generators through
dummy routines
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Quasirandom Numbers

@ Many problems require uniformity, not randomness:
“gquasirandom" numbers are highly uniform deterministic
sequences with small star discrepancy

@ Definition: The star discrepancy Dy, of x, ..., xn:

Dy =Dn(x1, - -, XN)

N
1
= sup NZX[O’U)(Xn) —uj,
n=1

o<u<i

where x is the characteristic function
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Quasirandom Numbers

@ Theorem (Koksma, 1942): if f(x) has bounded variation
V(f)on[0,1] and xq, ..., xy € [0, 1] with star discrepancy
Dy, then:

< V(f)Dy;

1Y 1
N;f(xn)— /O (x) dx

this is the Koksma-Hlawka inequality
@ Note: Many different types of discrepancies are definable
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Discrepancy Facts

@ Real random numbers have (the law of the iterated
logarithm):

Dj, = O(N~"/2(loglog N)~1/2)
@ Klaus F. Roth (Fields medalist in 1958) proved the following

lower bound in 1954 for the star discrepancy of N points in
s dimensions:

D, > O(N~'(log N)°z")

@ Sequences (indefinite length) and point sets have different
"best discrepancies” at present
e Sequence: Dy, < O(N~'(log N)s—T)
e Point set: Dy, < O(N~"(log N)s—2)
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Some Types of Quasirandom Numbers

@ Must choose point sets (finite #) or sequences (infinite #)
with small Dy,

@ Often used is the van der Corput sequence in base b:
Xp=®p(n—1),n=1,2,...,whereforbe Z,b > 2:

by Z a,-b’ = Z a,-b‘/‘1 with
/=0 /=0
a;<{0,1,....,b—1}
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Some Types of Quasirandom Numbers

@ For the van der Corput sequence

NDj, < —2—
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Some Types of Quasirandom Numbers

@ Other small Dy, points sets and sequences:

@ Halton sequence: x, = (®p,(n—1),...,Pp(n—1)),
n=1,2,..., Dy = O (N~ "(log N)®) if by,..., bs pairwise
relatively prime

© Hammersley point set:

Xn= (%, ®p,(n—1),...,0p,_,(n—1)),n=1,2,... N,
D, = O(N~'(log N)S~") if by,. .., bs_1 are pairwise
relatively prime
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Some Types of Quasirandom Numbers

© Ergodic dynamics: x, = {na}, where a = (o, ..., as) is
irrational and a4, ..., ag are linearly independent over the
rationals then for almost all o € RS,
Y = O(N~"(log N)s*+1+<) for all e > 0

© Other methods of generation
e Method of good lattice points (Sloan and Joe)
Sobol sequences
Faure sequences
Niederreiter sequences
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Some Types of Quasirandom Numbers

@ Another interpretation of the v.d. Corput sequence:
e Define the ith ¢-bit “direction number” as: v; = 2 (think of
this as a bit vector)
e Represent n — 1 via its base-2 representation
n—1=bg,1bg,2...b1bo -
i=
e Thus we have (1) @ ’
; i=0, b=
© The Sobol sequence works the same!!
e Use recursions with a primitive binary polynomial define the
(dense) v;

e The Sobol sequence is defined a[s 1
i=

o For speed of implementation, we use Gray-code
ordering
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Some Types of Quasirandom Numbers

@ (t,m, s)-nets and (t, s)-sequences and generalized
Niederreiter sequences

@ Letb>2,s>1and0 <t < me Zthen a b-ary box,
J C [0,1)%, is given by

a a+1
J= H[bclz" Ibd

where d; > 0 and the a; are b-ary digits, note that
|J| = b~ XL d
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Some Types of Quasirandom Numbers

@ A setof b points is a (t, m, s)-net if each b-ary box of
volume b= has exactly b! points in it

© Such (t, m, s)-nets can be obtained via Generalized
Niederreiter sequences, in dimension j of s:

yl.(j)(n) = CU)a;(n), where n has the b-ary representation

n=>%qaknb" and x,.(j)(n) =Y, y,&j)(n)q*k
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A Picture is Worth a 1000 Words: 4K Pseudorandom
Pairs

SPRNG Sequence
4096 Points of SPRNG Sequence
s o
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o
o
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x(0)
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A Picture is Worth a 1000 Words: 4K Quasirandom
Pairs

2-D Projection of Sobol’ Sequence

4096 Points of Sobol Sequence
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Conclusions

Future Work on Random Numbers

@ sPRNG and pseudorandom number generation work
o New generators: Well, Mersenne Twister
e Spawn-intensive/small-memory footprint generators:
MLFGs
o C++ implementation
Grid-based tools
e More comprehensive testing suite; improved theoretical
tests
e New version incorporating the completed work
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Future Work on Random Numbers

@ Quasirandom number work

Scrambling (parameterization) for parallelization
Optimal scramblings

Grid-based tools

Application-based comparision/testing suite
Comparison to sparse grids

“OPRNG"

© Commercialization of SPRNG

FSU-supported startup company

Commercial licenses and SPRNG consulting
Funds will support continued development and support
SPRNG will continue to be free to academic and
government researchers
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