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Introduction
Motivation

Experimental Data: Folding, stability & binding behavior of
biomolecules can be modulated by changes in salt concentration
Physical Model: Implicit solvent-based Poisson-Boltzmann model
can provide accurate predictions of salt dependent behavior of
biomolecules
Mathematical Model: Elliptic boundary-value problems

Specific Problems
Electrostatic free energy for linear case: only finite number of
electrostatic potential point values
Dependence of energy on geometry: needs accurate treatment
Singularities in solution: have to be taken into account
analytically
Behavior at infinity: must be exactly enforced
Functional dependence on salt concentration: needs accurate
estimate
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Introduction

Monte Carlo Methods: Properties
Monte Carlo methods for solving Poisson and linearized
Poisson-Boltzmann equations (PBEs)
Analytical treatment of geometry, singularities, behavior at infinity
Capability to compute point values of solution (energies) and its
spatial derivatives (forces)
New methods for the flux boundary conditions (exact integral
formulation)
Simultaneous correlated computation of values at different salt
concentrations
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Mathematical Model: Molecular Geometry

Figure: Biomolecule with dielectric εi and region region Gi is in solution with
dielectric εe and region Ge. On the boundary of the biomolecule, electrostatic
potential and normal component of dielectric displacement continue
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Electrostatic Potential and Energy
The Feynman-Kac Formula

Mathematical Model: Partial Differential Equations

Poisson equation for the electrostatic potential, Φi , and point
charges, Qm, inside a molecule (in CGS units):

εi∆Φi(x) + 4π
M∑

m=1

Qmδ(x − x (m)) = 0 , x ∈ Gi

For 1-1 salt (such as NaCl): linearized PBE outside:

∆Φe(x)− κ2Φe(x) = 0 , x ∈ Ge

For one-surface model: continuity condition on the dielectric
boundary

Φi = Φe , εi
∂Φi

∂n(y)
= εe

∂Φe

∂n(y)
, y ∈ Γ
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Mathematical Model: Debye-Hückle Parameter

Dependence on salt in the Debye-Hückle parameter:

κ2 =
8πNAe2Cs

εe1000kBT
, where

Cs – concentration of ions (in moles)
NA – Avogadro’s number
e – elementary protonic charge
kB – Boltzmann’s constant
εe – dielectric permittivity outside the molecule
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Electrostatic Potential and Energy

Point values of the potential: Φ(x) = Φrf (x) + Φc(x)
Here, singular part of Φ:

Φc(x) =
M∑

m=1

Qm

|x − x (m)|

Reaction field electrostatic free energy of a molecule is linear
combination of point values of the regular part of the electrostatic
potential:

Wrf =
1
2

M∑
m=1

Φrf (x (m))Qm ,

Electrostatic solvation free energy = difference between the
energy for a molecule in solvent with a given salt concentration
and the energy for the same molecule in vacuum:

∆Gelec
solv = Wrf (εi , εe, κ)−Wrf (εi , 1, 0)
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The Feynman-Kac Formula

Consider the Dirichlet problem for the Poisson equation in the
domain Ω ∈ Rd

−1
2

∆u(x) = g(x), x ∈ Ω, u(x) = f (x), x ∈ ∂Ω

If we assume g(x) = 0, then we have the Laplace equation, and
the solution at the point y ∈ Ω is given as the following Brownian
motion expectation:

u(y) = E[f (βy (τ∂Ω))],

where βy (·) is Brownian motion starting at the point y , and τ∂Ω is
the first-passage time of this Brownian motion,
i.e. τ∂Ω = inft{βy (t) ∈ Ω}
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The Feynman-Kac Formula

If we set f (x) = 0 and have g(x) 6= 0, the solution is

u(y) = E
[ ∫ τ∂Ω

0
g(βy (s)) ds

]
By linear superposition, the solution to Poisson equation is given
probabilistically as

u(y) = E
[ ∫ τ∂Ω

0
g(βy (s)) ds + f (βy (τ∂Ω))

]
The linearized Poisson-Boltzmann equation is given by

∆u(x)−κ2u(x) = 0, x ∈ Ω, u(x) = f (x), x ∈ ∂Ω, u → 0 as |x | → ∞

and has Wiener integral representation:

u(y) = E
[
f (βy (τ∂Ω))e−

R τ∂Ω
0 κ2 ds

]
Prof. Michael Mascagni Novel Stochastic Methods in Biochemical Electrostatics
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‘Walk-on-Spheres’ Algorithm

Walk-on-spheres (WOS) algorithm for general domains with regular
boundary:
Define a Markov chain {xi , i = 1, 2, . . .}
Set x0 = x (m) for some m.

xi = xi−1 + diωi , i = 1, 2, . . . .

di = d(xi−1) – distance from xi−1 to the boundary
{ωi} – sequence of independent unit isotropic vectors
xi – exit point from the ball, B(xi−1, d(xi−1)), for Brownian motion
starting at xi−1

Outside the molecule:
On every step, walk-on-spheres terminates with probability

1− q(κ, di), where q(κ, di) =
κdi

sinh(κdi)

Prof. Michael Mascagni Novel Stochastic Methods in Biochemical Electrostatics
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‘Walk-on-Spheres’ and ‘Walk-in-Subdomains’
For general domains:
Efficient way to simulate exit points – combination of ‘walk in
subdomains’ approach and ‘walk on spheres’ algorithm
The whole domain, Gi , is represented as a union of intersecting
subdomains:

Gi =
M⋃

m=1

Gm

Simulate exit point separately in every Gm

x0 = x , x1, . . . , xN – Markov chain, every xi+1 is an exit point from the
corresponding subdomain for Brownian motion starting at xi
For spherical subdomains, B(xm

i , Rm
i ), exit points are distributed in

accordance with the Poisson kernel

1
4πRm

i

|xi − xm
i |2 − (Rm

i )2

|xi − xi+1|3
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‘Walk-on-Spheres’ and ‘Walk-in-Subdomains’

Figure: Walk in subdomains example

Prof. Michael Mascagni Novel Stochastic Methods in Biochemical Electrostatics



Motivation
Mathematical Model

‘Walk-on-Spheres’ Algorithm
Monte Carlo Estimates

Conclusions and Future Work
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Monte Carlo Treatment of Boundary Conditions

Randomization of finite-difference approximation with step, h.
u(y) = Eu(x) + O(h2)

Exact treatment of boundary conditions (mean-value theorem)
for boundary point, y , in the ball B(y , a) with surface S(y , a):

u(y) =
εe

εe + εi

∫
Se(y,a)

1
2πa2

κa
sinh(κa)

ue

+
εi

εe + εi

∫
Si (y,a)

1
2πa2

κa
sinh(κa)

ui (1)

− εe − εi

εe + εi

∫
Γ
T

B(y,a)\{y}

cos ϕyx

2π|y − x |2
Qκ,au

+
εi

εe + εi

∫
Bi (y,a)

[−2κ2Φκ]ui
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Walk-in-Subdomains
Monte Carlo Treatment of Boundary Conditions

Monte Carlo Treatment of Boundary Conditions

Randomization of finite-difference approximation with step, h.
u(y) = Eu(x) + O(h2)

Exact treatment of boundary conditions (mean-value theorem)
for boundary point, y , in the ball B(y , a) with surface S(y , a):

u(y) =
εe

εe + εi

∫
Se(y,a)

1
2πa2

κa
sinh(κa)

ue

+
εi

εe + εi

∫
Si (y,a)

1
2πa2

κa
sinh(κa)

ui (1)

− εe − εi

εe + εi

∫
Γ
T

B(y,a)\{y}

cos ϕyx

2π|y − x |2
Qκ,au

+
εi

εe + εi

∫
Bi (y,a)

[−2κ2Φκ]ui
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Monte Carlo Estimates

Estimate for the reaction-field potential point value:

ξ[Φrf ](x (m)) = −Φc(x∗1 )

+

Nins∑
j=2

Fj(κ) (Φc(x ins
j )− Φc(x∗j,ins)) , (2)

where {x∗j,ins} is a sequence of such boundary hits, after which the
random walker jumps inside the domain, Gi , to a point, x ins

j .

Estimate for the reaction-field energy:

ξ[Wrf ] =
1
2

M∑
m=1

Qm ξ[Φrf ](x (m)) . (3)

Prof. Michael Mascagni Novel Stochastic Methods in Biochemical Electrostatics



Motivation
Mathematical Model

‘Walk-on-Spheres’ Algorithm
Monte Carlo Estimates

Conclusions and Future Work

A Picture: The Algorithm for a Single Spherical Atom
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The Algorithm in Pictures: Walk Inside
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The Algorithm in Pictures: Walk to ∞ in One Step

Figure: κ = 0, p∞ = 1− REnclosed/dist
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Monte Carlo Algorithm’s Computational Complexity
Cost of a single trajectory

Number of steps is random walk is not dependent on M, the
number of atoms
The cost of finding the nearest sphere is M log2(M) due to
optimizations
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Figure: The CPU time per atom per trajectory is plotted as function of number of atoms. For small
number of atoms the CPU time scales linearly and for large number of atoms it asymptotically
scales logarithmically
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Dependence on Salt Concentration

Dependence on salt

For κ used in simulations, Fj(κ) = 1.

For an arbitrary κ′ > κ:

Fj(κ
′) is multiplied by the ratio

q(κ′, d)

q(κ, d)
on every step of the WOS in

the exterior
The results obtained with the estimates (2) and (3) for different values
of κ are highly correlated.
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Correlated and Uncorrelated Sampling
Correlated sampling in Monte Carlo is essential to obtain

Smooth curves with a minimum of sampling
You need to difference your Monte Carlo results

With this correlated sampling sampling you can get a “smooth curve"
with three orders of magnitude less sampling, note: you still have
O(N−1/2) errors, just in “curve space," not point by point
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Figure: Electrostatic Solvation free Energy of 3icb calculated with three four conditions:
uncorrelated sampling with 500 number of trajectories per concentration, uncorrelated sampling
with 1500 number of trajectories per concentration, uncorrelated sampling with 4500 number of
iterations, and correlated sampling with 500 number of trajectories
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Computational Results: 3 Truncated Arginine-Rich
Peptides

Figure: PDB IDs: 1a4t, 1hji, 1qfq
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Computational Results

Computational Experiments

We take εi = 1, therefore
∆Gelec

solv = Wrf (εi , εe, κ)
(Results are obtained in one computation)

Other parameters: εe = 78.5, T = 298.15 K
Boundary Γ – van der Waals surface (defined by the overlapping
atomic spheres)

Parameters of Monte Carlo algorithm:
a = 0.03 Å, ε = 10−4 Å, which provided a 1% order of bias. The
number of simulated estimates, Ns was 104.
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Computational Results: 1a4t

Figure: Number of atoms = 351, APBS: 2253, 0.25 Å
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Conclusions and Future Work

We have developed a novel stochastic linear PBE solver that can
provide highly accurate salt-dependent electrostatic properties of
biomolecules in a single PBE calculation
Advantages of the stochastic linear PBE solver over the more
mature deterministic methods include: the subtle geometric
features of the biomolecule can be treated with higher precision,
the continuity and outer boundary conditions are accounted for
exactly, a singularity free scheme is employed and
straightforward implementation on parallel computer platform is
possible
We are currently benchmarking the stochastic linear PBE code
against various deterministic codes in an effort to better
understand the strengths and limitations of all existing numerical
methods. These results should be of interest to the general
biophysics community
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