Nanoparticle Synthesis and Assembly from Atomistic Simulation Studies

By Takumi Hawa

School of Aerospace \& Mechanical Engineering The UNIVERSITY of OKLAHOMA

Oklahoma Supercomputing Symposium 2008
October 7
Supported by NSF, ARL, \& NIST

Why Nenoparticle

Some 75\% of chemical manufacturing processes involve fine particles at some point.

- tires \& toners

- personal care \& cosmetics

- food

Proper manufacturing processes:

- improve cost
- minimize waste
- improve quality
- provide safety

Design \& handling of these fine particles makes the difference between success \& failure

Paricle Synthesis

- Liquid Phase

- Easier to control size
- Production rate is low
- Vapor Phase

- High production rate \checkmark
Inexpensive!
- Difficult to control size

Challenge: Control size in vapor phase!

Vapor phase synthesis of nanoparticles

Nucleation
of monomer
via chemical
or physical
gas to
particle
conversion

conversion

Rapid
particle
growth via
coagulation
Particle
number
decreases

Early stage
of veryfine
aggregate
formation

Collision \& Sintering Time

Vapor phase synthesis of nanoparticles

sintering faster than collisions

Particle growth and morphology are determined by the competition of collisions and sintering

Hydrogen Passivation Surface

H ${ }^{\prime}$

- Reactivity?
- Property?
- Sintering?

\downarrow

$\mathrm{t}_{\text {collision }}$ \& $\mathrm{t}_{\text {sintering }}$

Contents

- Size of nanoparticles
- Shape of nanoparticles
- Assembly of nanoparticles.

SILE

COIVIROL

Collision of H coatied particles (liquid \&: soliol)

(cross-section view)

6 nm particles

 at 600 \& 1500 K30ps

Contact Surface Area Analysis

$$
\begin{gathered}
\pi a_{0}^{2} \sim \mathbb{N}_{\text {atoms }}^{4 / 9} \\
\frac{3}{2} k T=\frac{1}{2} m v^{2} \\
K E_{a p p}=\frac{1}{3} \frac{m v^{2}}{k}
\end{gathered}
$$

Reactivity of the Coated Particles

Critical approach energy for reaction

$$
\frac{3}{2} k T=\frac{1}{2} m v^{2}
$$

$$
K E_{a p p}=\frac{1}{3} \frac{m v^{2}}{k}
$$

- size $\boldsymbol{\pi}$, harder to react
- T $\boldsymbol{\pi}$, easier to react
- No thermal reaction
$-t_{c o l} \rightarrow \infty$

Mathematical Model

Assumption

1) Viscous fluid
2) Maintain a spherical shape (made by Frenkel (1945))

Continuity

$$
\Delta S=4 \pi a^{2}\left[\Delta \theta(-\sin \theta)+O\left(\Delta \theta^{2}\right)\right] \quad S \text { : surface area }
$$

Energy balance

Energy dissipation due to viscosity, η

$$
=4 \pi a^{2} \sigma \gamma
$$

Work done by surface tension, σ
$\sigma=$ surface tension
η = viscosity
$\gamma=$ velocity gradient

Effective passivation surface area

$$
\xi=\frac{\text { Passivated surface }}{\text { Effective contact area }}=\frac{\pi a f_{c}}{\pi\left(a f_{c}+a^{2} \sin ^{2} \theta\right)}
$$

- $\xi=1$ (initially)

Most of the energy is consumed by relocation of the surface atoms

- $\xi=0$ towards the end

Mathematical Model

Solving the energy equation gives

$$
\begin{aligned}
& \beta=0 \text { (bare) } \\
& \beta>0 \text { (coated) }
\end{aligned}
$$

$$
t_{\text {Frenkel }}=\frac{2 \eta d}{3 \sigma} \quad \text { by Frenkel (1945) }
$$

Sintering (Bare vs. Coated)

(cross-section view)

6 nm droplets at 1500 K $\mathrm{KEapp}=110,000 \mathrm{~K}$

Dynamics of Sintering

$$
t=\frac{2}{3} \eta d \int_{0}^{\pi / 2} \frac{\sin \theta}{\sigma-\beta \xi(\theta)} d \theta
$$

$$
\begin{aligned}
& \eta=5.9 \text { centipose } \\
& \sigma=0.83 \mathrm{~J} / \mathrm{m}^{2}
\end{aligned}
$$

6 nm particles at 1500 K

- $(\sigma-\beta) / \sigma=3.25^{*} 10 \wedge(-6)$ Work done by relocation of surface atoms dominates the initial process
- $\sigma($ coated $) / \sigma($ bare $)=0.54$

$$
\mathrm{Mb} / \mathrm{Mc}=0.48
$$

After the initial process, the surface tension dominates the sintering process

40 particle chain aggregatie

$\mathrm{T}=1500 \mathrm{~K}$
 2.5 nm primary particles

Sintering Time for a Chain Aggregate

Number of Particles in a Chain

Universal relationship that only depends on chain length.

Sintering Time for a Chain Aggregate

Excellent agreement with MD.

Sintering Time for a Chain Aggregate

Depends on the number of particle connections in a chain.

Fractial Aggregate Sintering

Fractal Dimension, Df

$$
m \propto R^{D_{f}}
$$

$D_{f}=1.9$

$$
D_{f}=3
$$

J. Aerosol. Sci. 38, 793 (2007)

Frectal Aggregate ($\mathrm{Df}=1.9$)

66 particles
$\mathrm{T}=1500 \mathrm{~K}$
2.5 nm primary particles

Stinfering tinne for fractal aggregate

Fractal Dimension, Df
$m \propto R^{D_{f}}$
$D_{f}=1$: wire
D_{f} = 1.9: aerosol aggregates
Df = 3: compact

Monotonic increase w/ Np.
t decrease w/ Df.

$$
\begin{gathered}
t / d=\frac{2 \eta}{3 \sigma}(N-1)^{0.68} \\
t_{\text {Frenkel }}=\frac{2 \eta d}{3 \sigma}
\end{gathered}
$$

Sinfering tinne for fractal aggregate

Fractal Dimension, Df

$$
m \propto \boldsymbol{R}^{D_{f}} \quad \begin{aligned}
& \mathrm{Df}_{\mathrm{f}}=1: \text { wire } \\
& \mathrm{Df}_{\mathrm{f}}=1.9: \text { aerosol aggregates } \\
& \mathrm{Df}_{\mathrm{f}}=3: \text { compact }
\end{aligned}
$$

Monotonic increase w/ Np. t decrease w/ Df.

$$
\begin{gathered}
t / d=\frac{2 \eta}{3 \sigma}(N-1)^{0.68} \\
t_{\text {Frenkel }}=\frac{2 \eta d}{3 \sigma}
\end{gathered}
$$

Sintering time for fractal aggiegate

Fractal Dimension, Df

$$
m \propto R^{D_{f}}
$$

$$
\begin{aligned}
& D_{f}=1: \quad \text { wire } \\
& D_{f}=1.9: \text { aerosol aggregates } \\
& D_{f}=3: \quad \text { compact }
\end{aligned}
$$

Monotonic increase w/ Np. t decrease w/ Df.

$$
\begin{gathered}
t / d=\frac{2 \eta}{3 \sigma}(N-1)^{0.68^{D_{f}}} \\
t_{\text {Frenkel }}=\frac{2 \eta d}{3 \sigma}
\end{gathered}
$$

SFLAPE
 COIVIROL

Vapor phase synthesis of nanoparticles

Nanoparticles are described as being sphere

Plasma Synthesis

TEM images of cubic particles

Precursor - 5\% Silane $\left(\mathrm{SiH}_{4}\right)$ in Helium and Argon
Pressure - 2 torr
Power - 150 - 200 W
Frequency -13.56 MHz
Chamber diameter - 5 cm
Length of filamentary discharge -15 cm
Length of upstream uniform discharge -5 cm

High-intensity plasma instability. consists of filamentary plasma with individual plasma globules.

Distance between RF electrode and extraction orifice is $\mathbf{6}$ inch / 15 cm

Stability of Nanoparticles

Liquid
Minimum surface area

Solid

Crystal structure
Surface structure

Bare
surface to volume ratio

Transition from cube to truncated octahedron

2980 Si atoms
$4 \times 4 \times 4 \mathrm{~nm}$ cube

Stabiliy of Nanopanicles

Bare
surface to volume ratio

Coated

Additional H energies
surface to volume ratio
PE / Si atoms

Etching of Spherical Particles

Sasaki et al, Vacuum 51, 537 (1998)
Sasaki et al, Jap. J. Appl. Phys. 37, 402 (1998)

Experiment:

$$
\frac{R(100)}{R(111)} \approx 1.5
$$

MD simulation:

$$
\frac{R(100)}{R(111)} \approx 1.37
$$

> PMBIICLE ASCEIVIBLE

Nanoparticle Based Devices

- building blocks

Assembly is a biggest challenge in Nanotechnology based device development.

- Microelectronic, optoelectronic devices
- Sensors

Need to control the location of particles in deposition process

Electrostatic Directed/Assembly

- Charge patterns are unstable
- Stamp is easily damaged
- Non-insulated surface?
- We want to have:
- Stable charge patterns
- Stable structure
- Adjustable charge strength
- Available and reliable technology

Use P-N junction

Silicon doped n-type GaAs substrate
$1 \mu \mathrm{~m}$ Zinc doped p-type stripes and contacts are patterned by the photolithography plus ion implantation.

The Spacing between p-type stripes are $\mathbf{3 0 \mu m}$ in width

Monodisperse particles
$10^{6} / \mathrm{cm}^{-3}$ \& flow rate $=1 \mathrm{lpm}$
nozzle:
2 mm in diameter \& 1 cm above the substrate

Pardicles Depostion on PN

P-N Model \& Simulations

Experiment:

nozzle

Simulation:

P-N Model \& Simulations

We can summarize the factors involved In the deposition process:

1. External force, $F_{\text {ext }}$:

Electrostatic $\left(\mathrm{F}_{\mathrm{e}}\right)$, van der Waals ($\mathrm{F}_{\mathrm{vdw}}$) and image forces $\left(\mathrm{F}_{\mathrm{i}}\right)$

2. Convective flow (only in x-direction)
3. Diffusion force (Brownian motion): random, non-directional force

$$
F_{d i f f}=\left(\frac{6 \pi \mu d k T}{C_{c} \Delta t}\right)^{0.5} \quad C_{c}: \text { slip correction factor }
$$

4. Drag force, F_{D} : to resist the momentum change

$$
F_{D}=\frac{3 \pi \mu d v}{C_{c}} \quad v: \text { particle velocity }
$$

From Langevin Equation we can derive the particle trajectory: (in terms of velocity)

$\beta=1 /($ particle relaxation time)

$$
B_{1}= \pm\left[\frac{k T}{m_{p}}\left(1-e^{-2 \beta t}\right)\right]
$$

Effect of Eleciric Field

$$
\begin{aligned}
& \text { Coverage } \\
& \text { Selectivity }
\end{aligned}=\frac{C_{N}-C_{P}}{C_{N}} \times 100 \%
$$

Summary

QSize of Nanoparticles.

- Hydrogen passivation surface prevented particle growth.
- Slowed sintering process \& developed viscous flow model.

QShape of Nanoparticles.

- Hydrogen stabilizes Si crystals to be a cube.

QAssembly of nanoparticles.

- Used P-N junction.
- Developed a Dynamics Model \& Simulations.

QMechanics of nanoparticles.

- Sensitivity of morphology.

QAcknowledgement

- Prof. M. R. Zachariah (U of Maryland \& NIST)
- Dr. D. Tsai (Cabot Microelectronics)
- Prof. J. Zhu (U of Western Ontario, Canada)

