Using the LEAD Portal for Customized Weather Forecasts on the TeraGrid

Keith Brewster
Center for Analysis and Prediction of Storms, Univ. of Oklahoma

Dan Weber, Suresh Marru, Kevin Thomas,
Dennis Gannon, Kelvin Droegemeier, Jay Alameda, and Steve Weiss

OSCER Supercomputing Symposium
Norman, OK October 7, 2008
Relocatable On-Demand Forecasts

Future Vision

• Numerical Weather Prediction (NWP) forecasts should *adapt* to the weather and user needs.

• Detailed NWP forecasts run in region of concern:
 – **Storm Prediction Center:** before issuing a severe thunderstorm or tornado watch
 – **Local Weather Forecaster:** anticipating local event
 – **Community Emergency Manager:** fire or disaster need

• Data mining of large-scale forecasts could identify areas of *expected risk* or *higher uncertainty* where additional forecasts would be most useful.
 – Higher resolution
 – Using more recent data
 – Using customized physics packages
LEAD

- Linked Environments for Atmospheric Discovery
- NSF Large Information Technology Research Project
- Goals
 - Democratization of high performance computing
 - Provide seamless integration of data access, analysis, and numerical weather forecasting models
 - Ease data exploration and mining
 - Support research and education
- Collaboration among Computer Scientists and Meteorologists
- 9 Research Partners
 - Univ of Oklahoma, Univ of Indiana, Univ of Illinois, Millersville Univ., Howard Univ., Univ of North Carolina, Univ of Alabama, Univ of Michigan, UNIDATA Program
WRF and TeraGrid

• WRF
 – Open source community Numerical Weather Prediction model.
 – Complex to install and implement on a workstation.
 – Even more difficult to set up on a supercomputer.
 – Further complexity to link to real-time or archived data.

• TeraGrid
 – NSF-sponsored supercomputing centers
 – Large facilities to handle BIG projects.

LEAD: Lets make it EASY to run WRF on TeraGrid!
LEAD Workflow

- Build experiment (Xbaya Workflow Builder/Monitor)
- Orchestrate components (BPEL Based with WSDL files)
- Pre-built workflows allow fast submit
ADAS & WRF
NWP Workflow

- Accept interactive user input
- Build terrain
- Build land surface features
- Find and access LEAD-10km gridded weather analysis including radar data
- Interpolate initial conditions
- Interpolate boundary conditions
- Build job script
- Obtain TeraGrid authorization token
- Transfer files to TeraGrid Supercomputing Center
 2007: Tungsten at NCSA
 2008: BigRed at Indiana University, NCSA as back-up
- Submit job to queue
- Transfer result files back using GLOBUS GRID-FTP
- Display and annotate files in user workspace
- Copy output files to OU for post-processing
- Optionally catalog results for sharing results, data mining.
Interactive Location Selection

<table>
<thead>
<tr>
<th>Region Type Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Regional 1000Km X 1000Km X 61 Domain with 30 Km Grid Spacing</td>
</tr>
<tr>
<td>☑ Regional 1000Km X 1000Km X 51 Domain with 5 Km Grid Spacing</td>
</tr>
<tr>
<td>☑ CONUS (552Km X 352Km X 51) Domain with 20 Km Grid Spacing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Forecast Start Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dates and times in Greenwich Mean Time (GMT)</td>
</tr>
<tr>
<td>☑ Now (in other words, run a forecast using the most recent data available)</td>
</tr>
<tr>
<td>Please specify:</td>
</tr>
<tr>
<td>Start Date: 2008/01/16</td>
</tr>
<tr>
<td>Current Time: 2008/01/16 06:16Z</td>
</tr>
<tr>
<td>Start Hour: 02</td>
</tr>
</tbody>
</table>

| Forecast Duration: 6 hours |

Using your mouse, drag and drop the center of the model domain grid to position it as desired on the map.

Forecast Domain:
- Center Latitude: 32.3812
- Center Longitude: -108.8738
- Drag the balloon () to move the region.

Embedded Google Map with atmospheric discovery data.
Storm Prediction Center

• NOAA/SPC produces
 – Severe Thunderstorm and Tornado Watches
 – Mesoscale weather discussions
 – 1-8 day outlooks for severe and hazardous weather

• Located in the National Weather Center at the Univ. of Oklahoma
SPC Spring Program in the Hazardous Weather Testbed

• Testing and calibration of new forecasting methods in a simulated operational setting

• Collaboration among
 – NOAA units
 – Universities
 – Private sector

• Testbed located between the NOAA Storm Prediction Center and Norman National Weather Service Forecast Office
2007 SPC Spring Experiment
LEAD On-Demand WRF

• High resolution forecast location of forecast based on morning data and severe weather outlook
• Weather Research and Forecasting (WRF) model
• ~1000x1000 km domain
• Start WRF using
 – Interpolation from operational NWP model (NAM) and/or
 – Interpolation from 10-km ADAS analysis
• Submit using LEAD web portal, selecting
 – Initial time
 – Domain center
2007-2008 Spring Experiments

- Observations
- Analysis and Data Assimilation
- Product generation, display, dissemination 20-30 min
- On-Demand Prediction Model <2-3 hrs
- Total Time required: < 4-5 hrs
- Forecaster discussions <1 hour

Linked Environments for Atmospheric Discovery
leadproject.org
Interactive Forecast Runs

Domain Centers

Spring 2007

Spring 2008

Linked Environments for Atmospheric Discovery

leadproject.org
Results - Technology

- Workflow service for *submitting* runs flawless and efficient
- Robustness of end-to-end system was *A Tale of Two Seasons*
 - 2007: Difficulties with robustness
 - 2008: Largely successful

April 28-June 3 2008

62 Forecasts Submitted

87% of end-to-end workflows successful
A Caveat

Flash Flooding at IU on June 4th

June 4-6th, 2008
Flooding at IU caused power and hardware problems bringing down Big Red and data capacitor
5 of 6 workflows lost in this period
Results – Sample Case 7-June-2007

- WRF ARW 1-km grid spacing
- 1000 x 1000 km domain
- Domain centered in SW Wisconsin
- Submitted two on-demand WRF runs
 1. Initialized with 3h forecast 12 UTC NAM
 2. Initialized with 15 UTC ADAS analysis
L\textit{inked} Environments for \textit{A}tmospheric \textit{D}iscovery leadproject.org

00 UTC 8-June-2007

Composite Refl

LEAD 9-h WRF (NAM)

NMM 24-h 4km WRF

LEAD 9-h WRF (ADAS)
From 2008: Forecasting Storm Initiation in Oklahoma

Forecast, 01-02 May 2008

Additional Cases
http://www.caps.ou.edu/wx/spc/
Computed Cloud

Linked Environments for Atmospheric Discovery
Results – NWP Forecasts

Subjective Scoring Scheme

<table>
<thead>
<tr>
<th>Parameter/Points</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very Good</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fair</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Initiation Timing (hr) | < 1 | 1-2 | 2-3 | 3-4 | >4 |

Location (km) | < 30 | 30-60 | 60-90 | 90-120 | >120 |

Speed Error (km/hr) | < 9 | 9-18 | 18-27 | 27-36 | >36 |

Direction Error (+/- Degrees) | <5 | 5-15 | 15-25 | 25-35 | >35 |

Reflectivity Intensity (max dBZ) | < 5 | 5-10 | 10-15 | 15-20 | >20 |

Mode Accuracy (% matching coverage) | >75 | 60-75 | 40-60 | 25-40 | <25 |

Preliminary Results

14 forecast cases evaluated to date

Mean Score Sum: 14.1 (2.8 avg element)
Mean LEAD ADAS: 14.8 (2.3 avg element)
Mean LEAD NAM: 13.0 (2.0 avg element)

Highest scores; direction of movement
Lowest scores: location of initiation
Future Plans

• Science
 – Complete subjective scoring of results for 2007 & 2008
 – Use 1-km NOAA Quantitative Precipitation gridded radar data (QP2) to objectively score forecasts

• Technology
 – Continue to work on improving robustness and repeatable turn-around time
 – Improve graphics for additional thunderstorm-specific diagnostic variables
 – Resume work with SPRUCE for urgent computing
LEAD on the Web

LEAD site
www.leadproject.org

Me:
kbrewster@ou.edu