Reconfigurable Versus Fixed Versus Hybrid Architectures

John K. Antonio

Oklahoma Supercomputing Symposium 2008

Norman, Oklahoma October 6, 2008

Computer Science, University of Oklahoma

Overview

- The (past) world of reconfigurable computing
- The (past) world of multi-core
- The (emerging) world of reconfigurable multi-core architectures
- Illustrative analysis
- Conclusions

Drivers for reconfigurable computing

- Near performance of custom ASIC
- Near cost of commodity processor
- More flexible than custom ASIC
- "Programming" tools improving steadily
- Often used in embedded applications having high computational throughput requirements and strict SWAP constraints

SAR processing on a UAV

Jeffrey T. Muehring, "Optimal Configuration of a Parallel Embedded System for Synthetic Aperture Radar Processing," MS Thesis, Texas Tech University, Dec. 1997.

A prototype hybrid system

A prototype hybrid system

Minimum Power Configurations

Jeffrey T. Muehring, "Optimal Configuration of a Parallel Embedded System for Synthetic Aperture Radar Processing," MS Thesis, Texas Tech University, Dec. 1997.

Minimum Power

Jeffrey T. Muehring, "Optimal Configuration of a Parallel Embedded System for Synthetic Aperture Radar Processing," MS Thesis, Texas Tech University, Dec. 1997.

Overview

- The (past) world of reconfigurable computing
- The (past) world of multi-core
- The (emerging) world of reconfigurable multi-core architectures
- Illustrative analysis
- Conclusions

Drivers for multi-core technology path

- Single-core path leading to increased cost, heat, and power consumption
- Single-core path widens the pocessor/memory speed gap
- Multi-core path transparent to many application domain developers
- Multi-core path can improve performance
 of threaded software

Typical multi-core architecture*

*L. Chai, Q. Gao, D.K. Panda, "Understanding the Impact of Multi-Core Architecture in Cluster Computing: A Case Study with Intel Dual-Core System," *Seventh Int'l Symposium on Cluster Computing and the Grid (CCGrid)*, Rio de Janeiro - Brazil, May 2007.

Overview

- The (past) world of reconfigurable computing
- The (past) world of multi-core
- The (emerging) world of reconfigurable multi-core architectures
- Illustrative analysis
- Conclusions

Emerging drivers and requirements for multi-core architectures

- Scale to support massively data parallel (SPMD) applications
- Match coupling among cores with application granularity
- Power is a major challenge for large data centers and supercomputing facilities

Hybrid architectural framework

Computer Science, University of Oklahoma

Shared everything configuration

Computer Science, University of Oklahoma

Reconfigurable logic

Shared nothing configuration

Reconfigurable logic

Computer Science, University of Oklahoma

Hybrid configuration

Reconfigurable logic

Computer Science, University of Oklahoma

Features of hybrid architecture

- Match core coupling and core processing capacity with application granularity
 - Fixed multiprocessor architecture not well matched with all application granularities
 - Proposed reconfigurable multi-core architecture can be configured to match core coupling with application granularity

Overview

- The (past) world of reconfigurable computing
- The (past) world of multi-core
- The (emerging) world of reconfigurable multi-core architectures
- Illustrative analysis
- Conclusions

Illustrative Analysis

Notation

- Number of cores: c
- Problem size: n
- Sequential time complexity: $T_s(n)$
- Parallel time complexity:

$$T_P(c,n) = K \times f(c,n) + L \times g(c,n)$$

- Computational complexity: f(c, n)
- Communication complexity: g(c, n)
- Core coupling ratio: K / L

Example

Sequential Time: $T_s(n) = n$

Parallel Time: $T_P(c,n) = K \times (n/c) + L \times \log c$ Speedup: $S = \frac{n}{K \times (n/c) + L \times \log c}$

The value of *K*: related to core processing capacity

The value of *L*: related to interconnection among cores

Computer Science, University of Oklahoma

K = 1.0, L = 1.0

Computer Science, University of Oklahoma

K = 1.5, L = 0.5

Computer Science, University of Oklahoma

K = 0.5, L = 1.5

Computer Science, University of Oklahoma

Computer Science, University of Oklahoma

Overview

- The (past) world of reconfigurable computing
- The (past) world of multi-core
- The (emerging) world of reconfigurable multi-core architectures
- Illustrative analysis
- Conclusions

Conclusions

- Current multi-core approaches may not scale to support massive parallelism
- Hybrid reconfigurable multi-core approach enables trades between core coupling and core processing capacity
- More research needed in reconfigurable micro-architecture to support hybrid architectures

