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Overview
• The (past) world of reconfigurable 

computing
• The (past) world of multi-core
• The (emerging) world of reconfigurable 

multi-core architectures 
• Illustrative analysis
• Conclusions
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Drivers for reconfigurable 
computing

• Near performance of custom ASIC
• Near cost of commodity processor
• More flexible than custom ASIC
• “Programming” tools improving steadily
• Often used in embedded applications 

having high computational throughput 
requirements and strict SWAP constraints



SAR processing on a UAV

“Predator”

Jeffrey T. Muehring, “Optimal Configuration of a Parallel Embedded System for Synthetic Aperture 
Radar Processing,” MS Thesis, Texas Tech University, Dec. 1997.
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A prototype hybrid system
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Minimum Power Configurations
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Jeffrey T. Muehring, “Optimal Configuration of a Parallel Embedded System for Synthetic Aperture 
Radar Processing,” MS Thesis, Texas Tech University, Dec. 1997.



Minimum Power

Jeffrey T. Muehring, “Optimal Configuration of a Parallel Embedded System for Synthetic Aperture 
Radar Processing,” MS Thesis, Texas Tech University, Dec. 1997.
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Overview
• The (past) world of reconfigurable 

computing
• The (past) world of multi-core
• The (emerging) world of reconfigurable 

multi-core architectures 
• Illustrative analysis
• Conclusions
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Drivers for multi-core technology 
path

• Single-core path leading to increased cost, 
heat, and power consumption

• Single-core path widens the 
pocessor/memory speed gap

• Multi-core path transparent to many 
application domain developers

• Multi-core path can improve performance 
of threaded software
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Typical multi-core architecture*

Dual Core Chip

L2 Cache

Core Core

Memory

Dual Core Chip

L2 Cache

Core Core

*L. Chai, Q. Gao, D.K. Panda, “Understanding the Impact of Multi-Core Architecture in Cluster
Computing: A Case Study with Intel Dual-Core System,” Seventh Int'l Symposium on Cluster 
Computing and the Grid (CCGrid), Rio de Janeiro - Brazil, May 2007.
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Emerging drivers and requirements 
for multi-core architectures

• Scale to support massively data parallel 
(SPMD) applications

• Match coupling among cores with 
application granularity

• Power is a major challenge for large data 
centers and supercomputing facilities



Computer Science, University of Oklahoma 14

Hybrid architectural framework
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Shared everything configuration
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Shared nothing configuration
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Hybrid configuration
Multi-core Chip

Core Core

L2
Cache

L2
Cache

MU

Core Core

L2
Cache

L2
Cache

Core

L2
Cache

Core

L2
Cache

MU MU MU MU MU

Co-Proc Co-Proc Co-Proc Co-Proc Co-Proc Co-Proc

Interconnection Network

Reconfigurable logic



Computer Science, University of Oklahoma 18

Features of hybrid architecture

• Match core coupling and core processing 
capacity with application granularity
– Fixed multiprocessor architecture not well 

matched with all application granularities
– Proposed reconfigurable multi-core architecture 

can be configured to match core coupling with 
application granularity
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Mismatched SPMD execution 
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core 1
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core 3

core 4 

core c

Matched SPMD execution 

time

Core coupling tightened to match application granularity
Communication time Computation time
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Overview
• The (past) world of reconfigurable 

computing
• The (past) world of multi-core
• The (emerging) world of reconfigurable 

multi-core architectures 
• Illustrative analysis
• Conclusions
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Illustrative Analysis
• Notation

– Number of cores: c
– Problem size: n
– Sequential time complexity: 
– Parallel time complexity:

– Computational complexity:
– Communication complexity: 
– Core coupling ratio: 

),(),(),( ncgLncfKncTP ×+×=

),( ncf
),( ncg

LK /

)(nTS
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Example

Sequential Time:

Parallel Time:

Speedup:  

The value of K: related to core processing capacity

The value of L: related to interconnection among cores

nnTS =)(

cLcnKncTP log)/(),( ×+×=

cLcnK
nS

log)/( ×+×
=
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K = 1.0, L = 1.0

Number of cores, c
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K = 1.5, L = 0.5

Number of cores, c
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K = 0.5, L = 1.5

Number of cores, c
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n = 1024

Number of cores, c
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Conclusions
• Current multi-core approaches may not 

scale to support massive parallelism
• Hybrid reconfigurable multi-core approach 

enables trades between core coupling and 
core processing capacity

• More research needed in reconfigurable 
micro-architecture to support hybrid 
architectures
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