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What is a Simulation?
All physical science ultimately is expressed as calculus (e.g., 

differential equations).
Except in the simplest (uninteresting) cases, equations based 

on calculus can’t be directly solved on a computer.
Therefore, all physical science on computers has to be 

approximated.
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I Want the Area Under This Curve!

How can I get the area under this curve?
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A Riemann Sum

Δx

{

yi

∑
=

Δ
n

i
i xy

1

C’est n’est un area under the curve: it’s approximate

Area under the curve  ≈

!
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A Better Riemann Sum
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Area under the curve  ≈

More, smaller rectangles produce a better approximation.
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The Best Riemann Sum
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Infinitely many infinitesimally small rectangles produce 
the area.
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Differential Equations
A differential equation is an equation in which differentials 

(e.g., dx) appear as variables.
Most physics is best expressed as differential equations.
Very simple differential equations can be solved in “closed 

form,” meaning that a bit of algebraic manipulation gets the 
exact answer.

Interesting differential equations, like the ones governing 
interesting physics, can’t be solved in close form.

Solution: approximate!
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A Discrete Mesh of Data

Data 
live 

here!
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A Discrete Mesh of Data

Data 
live 

here!
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Finite Difference
A typical (though not the only) way of approximating the 

solution of a differential equation is through finite 
differencing: convert each dx (infinitely thin) into a Δx (has 
finite width).
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Navier-Stokes Equation
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Finite Difference Equation

Differential Equation

The Navier-Stokes equations governs the 
movement of fluids (water, air, etc).
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Cartesian Coordinates

x
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Structured Mesh
A structured mesh is like the mesh on the previous slide. It’s 

nice and regular and rectangular, and can be stored in a 
standard Fortran or C or C++ array of the appropriate 
dimension and shape.
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Flow in Structured Meshes
When calculating flow in a structured mesh, you typically use 

a finite difference equation, like so:
unewi,j =

F(Δt, uoldi,j,
uoldi-1,j, uoldi+1,j, uoldi,j-1, uoldi,j+1)

for some function F, where uoldi,j is at time t and unewi,j is at 
time t + Δt.

In other words, you calculate the new value of ui,j, based on its 
old value as well as the old values of its immediate 
neighbors.

Actually, it may use neighbors a few farther away.
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Ghost Boundary Zones
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Ghost Boundary Zones
We want to calculate values in the part of the mesh that we 

care about, but to do that, we need values on the boundaries.
For example, to calculate unew1,1, you need uold0,1 and uold1,0.
Ghost boundary zones are mesh zones that aren’t really part of 

the problem domain that we care about, but that hold 
boundary data for calculating the parts that we do care 
about.
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Using Ghost Boundary Zones

A good basic algorithm for flow that uses ghost boundary 
zones is:

DO timestep = 1, number_of_timesteps
CALL fill_ghost_boundary(…)
CALL advance_to_new_from_old(…)

END DO
This approach generally works great on a serial code.
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Ghost Boundary Zones in MPI
What if you want to parallelize a Cartesian flow code in MPI?
You’ll need to:

decompose the mesh into submeshes;
figure out how each submesh talks to its neighbors.
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Data Decomposition
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Data Decomposition
We want to split the data into chunks of equal size, and give 

each chunk to a processor to work on.
Then, each processor can work independently of all of the 

others, except when it’s exchanging boundary data with its 
neighbors.
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MPI_Cart_*

MPI supports exactly this kind of calculation, with a set of 
functions MPI_Cart_*:
MPI_Cart_create
MPI_Cart_coords
MPI_Cart_shift

These routines create and describe a new communicator, one 
that replaces MPI_COMM_WORLD in your code.
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MPI_Sendrecv
MPI_Sendrecv is just like an MPI_Send followed by an 
MPI_Recv, except that it’s much better than that.

With MPI_Send and MPI_Recv, these are your choices:
Everyone calls MPI_Recv, and then everyone calls 
MPI_Send.

Everyone calls MPI_Send, and then everyone calls 
MPI_Recv.

Some call MPI_Send while others call MPI_Recv, and then 
they swap roles.
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Why not Recv then Send?
Suppose that everyone calls MPI_Recv, and then everyone 

calls MPI_Send.
MPI_Recv(incoming_data, ...);
MPI_Send(outgoing_data, ...);

Well, these routines are blocking, meaning that the 
communication has to complete before the process can 
continue on farther into the program.

That means that, when everyone calls MPI_Recv, they’re 
waiting for someone else to call MPI_Send.

We call this deadlock.
Officially, the MPI standard forbids this approach.
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Why not Send then Recv?
Suppose that everyone calls MPI_Send, and then everyone 

calls MPI_Recv:
MPI_Send(outgoing_data, ...);
MPI_Recv(incoming_data, ...);

Well, this will only work if there’s enough buffer space
available to hold everyone’s messages until after everyone 
is done sending.

Sometimes, there isn’t enough buffer space.
Officially, the MPI standard allows MPI implementers to 

support this, but it’s not part of the official MPI standard; 
that is, a particular MPI implementation doesn’t have to 
allow it.
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Alternate Send and Recv?
Suppose that some processors call MPI_Send while others 

call MPI_Recv, and then they swap roles:
if ((my_rank % 2) == 0) {
MPI_Send(outgoing_data, ...);
MPI_Recv(incoming_data, ...);

}
else {
MPI_Recv(incoming_data, ...);
MPI_Send(outgoing_data, ...);

}
This will work, and is sometimes used, but it can be painful to 

manage – especially if you have an odd number of 
processors.
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MPI_Sendrecv
MPI_Sendrecv allows each processor to simultaneously 

send to one processor and receive from another.
For example, P1 could send to P0 while simultaneously 

receiving from P2 .
This is exactly what we need in Cartesian flow: we want the 

boundary data to come in from the east while we send 
boundary data out to the west, and then vice versa.

These are called shifts.
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MPI_Sendrecv
MPI_Sendrecv(

westward_send_buffer,
westward_send_size, MPI_REAL,
west_neighbor_process, westward_tag,
westward_recv_buffer,
westward_recv_size, MPI_REAL,
east_neighbor_process, westward_tag,
cartesian_communicator, mpi_status);

This call sends to west_neighbor_process the data in 
westward_send_buffer, and     at the same time 
receives from east_neighbor_process a bunch of 
data that end up in westward_recv_buffer.
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Why MPI_Sendrecv?
The advantage of MPI_Sendrecv is that it allows us the 

luxury of no longer having to worry about who should send 
when and who should receive when.

This is exactly what we need in Cartesian flow: we want the 
boundary information to come in from the east while we 
send boundary information out to the west – without us 
having to worry about deciding who should do what to who 
when.
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MPI_Sendrecv

Concept
in Principle

Concept
in practice
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MPI_Sendrecv

Concept
in practice

westward_send_buffer westward_recv_buffer

Actual
Implementation
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To Learn More

http://www.oscer.ou.edu/

http://www.oscer.ou.edu/


Thanks for your 
attention!

Questions?
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