
Parallel Programming Parallel Programming
& Cluster Computing& Cluster Computing

Transport Codes and ShiftingTransport Codes and Shifting
Henry Neeman, University of Oklahoma
Paul Gray, University of Northern Iowa

SC08 Education Program’s Workshop on Parallel & Cluster computing
Oklahoma Supercomputing Symposium, Monday October 6 2008

SC08 Parallel & Cluster Computing: Transport
Oklahoma Supercomputing Symposium, October 6 2008 2

What is a Simulation?
All physical science ultimately is expressed as calculus (e.g.,

differential equations).
Except in the simplest (uninteresting) cases, equations based

on calculus can’t be directly solved on a computer.
Therefore, all physical science on computers has to be

approximated.

SC08 Parallel & Cluster Computing: Transport
Oklahoma Supercomputing Symposium, October 6 2008 3

I Want the Area Under This Curve!

How can I get the area under this curve?

SC08 Parallel & Cluster Computing: Transport
Oklahoma Supercomputing Symposium, October 6 2008 4

A Riemann Sum

Δx

{

yi

∑
=

Δ
n

i
i xy

1

C’est n’est un area under the curve: it’s approximate

Area under the curve ≈

!

SC08 Parallel & Cluster Computing: Transport
Oklahoma Supercomputing Symposium, October 6 2008 5

A Better Riemann Sum

Δx

{

yi

∑
=

Δ
n

i
i xy

1
Area under the curve ≈

More, smaller rectangles produce a better approximation.

SC08 Parallel & Cluster Computing: Transport
Oklahoma Supercomputing Symposium, October 6 2008 6

The Best Riemann Sum

Area under the curve =∑ ∫
∞

=

≡
1i

i ydxdxy

Infinitely many infinitesimally small rectangles produce
the area.

SC08 Parallel & Cluster Computing: Transport
Oklahoma Supercomputing Symposium, October 6 2008 7

Differential Equations
A differential equation is an equation in which differentials

(e.g., dx) appear as variables.
Most physics is best expressed as differential equations.
Very simple differential equations can be solved in “closed

form,” meaning that a bit of algebraic manipulation gets the
exact answer.

Interesting differential equations, like the ones governing
interesting physics, can’t be solved in close form.

Solution: approximate!

SC08 Parallel & Cluster Computing: Transport
Oklahoma Supercomputing Symposium, October 6 2008 8

A Discrete Mesh of Data

Data
live

here!

SC08 Parallel & Cluster Computing: Transport
Oklahoma Supercomputing Symposium, October 6 2008 9

A Discrete Mesh of Data

Data
live

here!

SC08 Parallel & Cluster Computing: Transport
Oklahoma Supercomputing Symposium, October 6 2008 10

Finite Difference
A typical (though not the only) way of approximating the

solution of a differential equation is through finite
differencing: convert each dx (infinitely thin) into a Δx (has
finite width).

SC08 Parallel & Cluster Computing: Transport
Oklahoma Supercomputing Symposium, October 6 2008 11

Navier-Stokes Equation

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅∇+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂
∂

∂
∂

= uij
i

j

j

i

j

i

x
u

x
u

xV
F λδη

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅∇+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

Δ

Δ
+

Δ
Δ

Δ
Δ

= uij
i

j

j

i

j

i

x
u

x
u

xV
F λδη

Finite Difference Equation

Differential Equation

The Navier-Stokes equations governs the
movement of fluids (water, air, etc).

SC08 Parallel & Cluster Computing: Transport
Oklahoma Supercomputing Symposium, October 6 2008 12

Cartesian Coordinates

x

y

SC08 Parallel & Cluster Computing: Transport
Oklahoma Supercomputing Symposium, October 6 2008 13

Structured Mesh
A structured mesh is like the mesh on the previous slide. It’s

nice and regular and rectangular, and can be stored in a
standard Fortran or C or C++ array of the appropriate
dimension and shape.

SC08 Parallel & Cluster Computing: Transport
Oklahoma Supercomputing Symposium, October 6 2008 14

Flow in Structured Meshes
When calculating flow in a structured mesh, you typically use

a finite difference equation, like so:
unewi,j =

F(Δt, uoldi,j,
uoldi-1,j, uoldi+1,j, uoldi,j-1, uoldi,j+1)

for some function F, where uoldi,j is at time t and unewi,j is at
time t + Δt.

In other words, you calculate the new value of ui,j, based on its
old value as well as the old values of its immediate
neighbors.

Actually, it may use neighbors a few farther away.

SC08 Parallel & Cluster Computing: Transport
Oklahoma Supercomputing Symposium, October 6 2008 15

Ghost Boundary Zones

SC08 Parallel & Cluster Computing: Transport
Oklahoma Supercomputing Symposium, October 6 2008 16

Ghost Boundary Zones
We want to calculate values in the part of the mesh that we

care about, but to do that, we need values on the boundaries.
For example, to calculate unew1,1, you need uold0,1 and uold1,0.
Ghost boundary zones are mesh zones that aren’t really part of

the problem domain that we care about, but that hold
boundary data for calculating the parts that we do care
about.

SC08 Parallel & Cluster Computing: Transport
Oklahoma Supercomputing Symposium, October 6 2008 17

Using Ghost Boundary Zones

A good basic algorithm for flow that uses ghost boundary
zones is:

DO timestep = 1, number_of_timesteps
CALL fill_ghost_boundary(…)
CALL advance_to_new_from_old(…)

END DO
This approach generally works great on a serial code.

SC08 Parallel & Cluster Computing: Transport
Oklahoma Supercomputing Symposium, October 6 2008 18

Ghost Boundary Zones in MPI
What if you want to parallelize a Cartesian flow code in MPI?
You’ll need to:

decompose the mesh into submeshes;
figure out how each submesh talks to its neighbors.

SC08 Parallel & Cluster Computing: Transport
Oklahoma Supercomputing Symposium, October 6 2008 19

Data Decomposition

SC08 Parallel & Cluster Computing: Transport
Oklahoma Supercomputing Symposium, October 6 2008 20

Data Decomposition
We want to split the data into chunks of equal size, and give

each chunk to a processor to work on.
Then, each processor can work independently of all of the

others, except when it’s exchanging boundary data with its
neighbors.

SC08 Parallel & Cluster Computing: Transport
Oklahoma Supercomputing Symposium, October 6 2008 21

MPI_Cart_*

MPI supports exactly this kind of calculation, with a set of
functions MPI_Cart_*:
MPI_Cart_create
MPI_Cart_coords
MPI_Cart_shift

These routines create and describe a new communicator, one
that replaces MPI_COMM_WORLD in your code.

SC08 Parallel & Cluster Computing: Transport
Oklahoma Supercomputing Symposium, October 6 2008 22

MPI_Sendrecv
MPI_Sendrecv is just like an MPI_Send followed by an
MPI_Recv, except that it’s much better than that.

With MPI_Send and MPI_Recv, these are your choices:
Everyone calls MPI_Recv, and then everyone calls
MPI_Send.

Everyone calls MPI_Send, and then everyone calls
MPI_Recv.

Some call MPI_Send while others call MPI_Recv, and then
they swap roles.

SC08 Parallel & Cluster Computing: Transport
Oklahoma Supercomputing Symposium, October 6 2008 23

Why not Recv then Send?
Suppose that everyone calls MPI_Recv, and then everyone

calls MPI_Send.
MPI_Recv(incoming_data, ...);
MPI_Send(outgoing_data, ...);

Well, these routines are blocking, meaning that the
communication has to complete before the process can
continue on farther into the program.

That means that, when everyone calls MPI_Recv, they’re
waiting for someone else to call MPI_Send.

We call this deadlock.
Officially, the MPI standard forbids this approach.

SC08 Parallel & Cluster Computing: Transport
Oklahoma Supercomputing Symposium, October 6 2008 24

Why not Send then Recv?
Suppose that everyone calls MPI_Send, and then everyone

calls MPI_Recv:
MPI_Send(outgoing_data, ...);
MPI_Recv(incoming_data, ...);

Well, this will only work if there’s enough buffer space
available to hold everyone’s messages until after everyone
is done sending.

Sometimes, there isn’t enough buffer space.
Officially, the MPI standard allows MPI implementers to

support this, but it’s not part of the official MPI standard;
that is, a particular MPI implementation doesn’t have to
allow it.

SC08 Parallel & Cluster Computing: Transport
Oklahoma Supercomputing Symposium, October 6 2008 25

Alternate Send and Recv?
Suppose that some processors call MPI_Send while others

call MPI_Recv, and then they swap roles:
if ((my_rank % 2) == 0) {
MPI_Send(outgoing_data, ...);
MPI_Recv(incoming_data, ...);

}
else {
MPI_Recv(incoming_data, ...);
MPI_Send(outgoing_data, ...);

}
This will work, and is sometimes used, but it can be painful to

manage – especially if you have an odd number of
processors.

SC08 Parallel & Cluster Computing: Transport
Oklahoma Supercomputing Symposium, October 6 2008 26

MPI_Sendrecv
MPI_Sendrecv allows each processor to simultaneously

send to one processor and receive from another.
For example, P1 could send to P0 while simultaneously

receiving from P2 .
This is exactly what we need in Cartesian flow: we want the

boundary data to come in from the east while we send
boundary data out to the west, and then vice versa.

These are called shifts.

SC08 Parallel & Cluster Computing: Transport
Oklahoma Supercomputing Symposium, October 6 2008 27

MPI_Sendrecv
MPI_Sendrecv(

westward_send_buffer,
westward_send_size, MPI_REAL,
west_neighbor_process, westward_tag,
westward_recv_buffer,
westward_recv_size, MPI_REAL,
east_neighbor_process, westward_tag,
cartesian_communicator, mpi_status);

This call sends to west_neighbor_process the data in
westward_send_buffer, and at the same time
receives from east_neighbor_process a bunch of
data that end up in westward_recv_buffer.

SC08 Parallel & Cluster Computing: Transport
Oklahoma Supercomputing Symposium, October 6 2008 28

Why MPI_Sendrecv?
The advantage of MPI_Sendrecv is that it allows us the

luxury of no longer having to worry about who should send
when and who should receive when.

This is exactly what we need in Cartesian flow: we want the
boundary information to come in from the east while we
send boundary information out to the west – without us
having to worry about deciding who should do what to who
when.

SC08 Parallel & Cluster Computing: Transport
Oklahoma Supercomputing Symposium, October 6 2008 29

MPI_Sendrecv

Concept
in Principle

Concept
in practice

SC08 Parallel & Cluster Computing: Transport
Oklahoma Supercomputing Symposium, October 6 2008 30

MPI_Sendrecv

Concept
in practice

westward_send_buffer westward_recv_buffer

Actual
Implementation

SC08 Parallel & Cluster Computing: Transport
Oklahoma Supercomputing Symposium, October 6 2008 31

To Learn More

http://www.oscer.ou.edu/

http://www.oscer.ou.edu/

Thanks for your
attention!

Questions?

	Parallel Programming & Cluster Computing�Transport Codes and Shifting
	What is a Simulation?
	I Want the Area Under This Curve!
	A Riemann Sum
	A Better Riemann Sum
	The Best Riemann Sum
	Differential Equations
	A Discrete Mesh of Data
	A Discrete Mesh of Data
	Finite Difference
	Navier-Stokes Equation
	Cartesian Coordinates
	Structured Mesh
	Flow in Structured Meshes
	Ghost Boundary Zones
	Ghost Boundary Zones
	Using Ghost Boundary Zones
	Ghost Boundary Zones in MPI
	Data Decomposition
	Data Decomposition
	MPI_Cart_*
	MPI_Sendrecv
	Why not Recv then Send?
	Why not Send then Recv?
	Alternate Send and Recv?
	MPI_Sendrecv
	MPI_Sendrecv
	Why MPI_Sendrecv?
	MPI_Sendrecv
	MPI_Sendrecv
	To Learn More
	Thanks for your attention!��Questions?

