
Parallel Programming Parallel Programming 
& Cluster Computing& Cluster Computing

Instruction Level ParallelismInstruction Level Parallelism
Henry Neeman, University of Oklahoma
Paul Gray, University of Northern Iowa

SC08 Education Program’s Workshop on Parallel & Cluster Computing
Oklahoma Supercomputing Symposium, Monday October 6 2008



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 2

Outline
What is Instruction-Level Parallelism?
Scalar Operation
Loops
Pipelining
Loop Performance
Superpipelining
Vectors
A Real Example



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 3

Parallelism

Less fish …

More fish!

Parallelism means 
doing multiple things at 
the same time: You can 
get more work done in 
the same time.



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 4

What Is ILP?
Instruction-Level Parallelism (ILP) is a set of techniques for 

executing multiple instructions at the same time within 
the same CPU core.

(Note that ILP has nothing to do with multicore.)
The problem:  The CPU has lots of circuitry, and at any given 

time, most of it is idle, which is wasteful.
The solution:  Have different parts of the CPU work on 

different operations at the same time – if the CPU has the 
ability to work on 10 operations at a time, then the program 
can, in principle, run as much as 10 times as fast (although in 
practice, not quite so much).



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 5

DON’T
PANIC!



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 6

Why You Shouldn’t Panic
In general, the compiler and the CPU will do most of the heavy 

lifting for instruction-level parallelism.

BUT:
You need to be aware of ILP, because
how your code is structured affects
how much ILP the compiler and the
CPU can give you.



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 7

Kinds of ILP
Superscalar: Perform multiple operations at the same time 
(e.g., simultaneously perform an add, a multiply and a load).
Pipeline: Start performing an operation on one piece of data 
while finishing the same operation on another piece of data –
perform different stages of the same operation on different 
sets of operands at the same time (like an assembly line).
Superpipeline: A combination of superscalar and pipelining 
– perform multiple pipelined operations at the same time.
Vector: Load multiple pieces of data into special registers and 
perform the same operation on all of them at the same time.



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 8

What’s an Instruction?
Memory: e.g., load a value from a specific address in main 
memory into a specific register, or store a value from a 
specific register into a specific address in main memory.
Arithmetic: e.g., add two specific registers together and put 
their sum in a specific register – or subtract, multiply, 
divide, square root, etc.
Logical: e.g., determine whether two registers both contain 
nonzero values (“AND”).
Branch: Jump from one sequence of instructions to another 
(e.g., function call).
… and so on ….



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 9

What’s a Cycle?
You’ve heard people talk about having a 2 GHz processor or a 3 

GHz processor or whatever.  (For example, Henry’s laptop 
has a 1.83 GHz Pentium4 Centrino Duo.)

Inside every CPU is a little clock that ticks with a fixed 
frequency.  We call each tick of the CPU clock a clock cycle
or a cycle.

So a 2 GHz processor has 2 billion clock cycles per second.
Typically, a primitive operation (e.g., add, multiply, divide) 

takes a fixed number of cycles to execute (assuming no 
pipelining).



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 10

What’s the Relevance of Cycles?
Typically, a primitive operation (e.g., add, multiply, divide) 

takes a fixed number of cycles to execute (assuming no 
pipelining).
IBM POWER4 [1]

Multiply or add:  6 cycles (64 bit floating point)
Load:                   4 cycles from L1 cache

14 cycles from L2 cache
Intel Pentium4 EM64T (Core) [2]

Multiply:                       7 cycles (64 bit floating point)
Add, subtract:               5 cycles (64 bit floating point)
Divide:                        38 cycles (64 bit floating point)
Square root:                39 cycles (64 bit floating point)
Tangent:            240-300 cycles (64 bit floating point)



Scalar Operation



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 12

DON’T
PANIC!



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 13

Scalar Operation

1. Load a into register R0
2. Load b into R1
3. Multiply R2 = R0 * R1
4. Load c into R3
5. Load d into R4
6. Multiply R5 = R3 * R4
7. Add R6 = R2 + R5
8. Store R6 into z

z = a * b + c * d;
How would this statement be executed?



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 14

Does Order Matter?

1. Load a into R0
2. Load b into R1
3. Multiply                            

R2 = R0 * R1
4. Load c into R3
5. Load d into R4
6. Multiply

R5 = R3 * R4
7. Add R6 = R2 + R5
8. Store R6 into z

z = a * b + c * d;

In the cases where order doesn’t matter, we say that
the operations are independent of one another.

1. Load d into R0
2. Load c into R1
3. Multiply                            

R2 = R0 * R1
4. Load b into R3
5. Load a into R4
6. Multiply

R5 = R3 * R4
7. Add R6 = R2 + R5
8. Store R6 into z



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 15

Superscalar Operation

1. Load a into R0 AND
load b into R1

2. Multiply R2 = R0 * R1 AND
load c into R3 AND
load d into R4

3. Multiply R5 = R3 * R4
4. Add R6 = R2 + R5
5. Store R6 into z

z = a * b + c * d;

If order doesn’t matter,
then things can happen simultaneously.
So, we go from 8 operations down to 5.
(Note: there are lots of simplifying assumptions here.)



Loops



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 17

Loops Are Good
Most compilers are very good at optimizing loops, and not 

very good at optimizing other constructs.
Why?

DO index = 1, length
dst(index) = src1(index) + src2(index)

END DO

for (index = 0; index < length; index++) {
dst[index] = src1[index] + src2[index];

}



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 18

Why Loops Are Good
Loops are very common in many programs.
Also, it’s easier to optimize loops than more arbitrary 
sequences of instructions: when a program does the same 
thing over and over,    it’s easier to predict what’s likely 
to happen next.

So, hardware vendors have designed their products to be able 
to execute loops quickly.



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 19

DON’T
PANIC!



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 20

Superscalar Loops
DO i = 1, n

z(i) = a(i) * b(i) + c(i) * d(i)
END DO

Each of the iterations is completely independent of all 
of the other iterations; e.g.,

z(1) = a(1)*b(1) + c(1)*d(1)
has nothing to do with

z(2) = a(2)*b(2) + c(2)*d(2)
Operations that are independent of each other can be 
performed in parallel.



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 21

Superscalar Loops
for (i = 0; i < n; i++) {
z[i] = a[i] * b[i] + c[i] * d[i];

}

1. Load a[i] into R0 AND load b[i] into R1
2. Multiply R2 = R0 * R1 AND load c[i] into

R3 AND load d[i] into R4
3. Multiply R5 = R3 * R4 AND

load a[i+1] into R0 AND load b[i+1] into R1
4. Add R6 = R2 + R5 AND load c[i+1] into R3

AND load d[i+1] into R4
5. Store R6 into z[i] AND multiply R2 = R0 * R1
6. etc etc etc
Once this loop is “in flight,” each iteration adds only 

2 operations to the total, not 8.



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 22

Example: IBM POWER4
8-way Superscalar: can execute up to 8 operations at the same 

time[1]

2 integer arithmetic or logical operations, and
2 floating point arithmetic operations, and
2 memory access (load or store) operations, and
1 branch operation, and
1 conditional operation



Pipelining



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 24

Pipelining
Pipelining is like an assembly line or a bucket brigade.

An operation consists of multiple stages.
After a particular set of operands
z(i) = a(i) * b(i) + c(i) * d(i)
completes a particular stage, they move into the next stage.
Then, another set of operands
z(i+1) = a(i+1) * b(i+1) + c(i+1) * d(i+1)
can move into the stage that was just abandoned by the previous 
set.



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 25

DON’T
PANIC!



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 26

Pipelining Example

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Instruction
Execution

Result
Writeback

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Instruction
Execution

Result
Writeback

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Instruction
Execution

Result
Writeback

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Instruction
Execution

Result
Writeback

i = 1

i = 2

i = 3

i = 4

Computation time
If each stage takes, say, one CPU cycle, then once the 
loop gets going, each iteration of the loop increases the 
total time by only one cycle.  So a loop of length 1000 
takes only 1004 cycles. [3]

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

DON’T PANIC!

DON’T PANIC!



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 27

Pipelines: Example
IBM POWER4: pipeline length ≅ 15 stages [1]



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 28

Some Simple Loops
DO index = 1, length
dst(index) = src1(index) + src2(index)

END DO

DO index = 1, length
dst(index) = src1(index) - src2(index)

END DO 

DO index = 1, length
dst(index) = src1(index) * src2(index)

END DO 

DO index = 1, length
dst(index) = src1(index) / src2(index)

END DO 

DO index = 1, length
sum = sum + src(index)

END DO 

Reduction: convert
array to scalar



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 29

Slightly Less Simple Loops
DO index = 1, length
dst(index) = src1(index) ** src2(index) !! src1 ^ src2

END DO 

DO index = 1, length
dst(index) = MOD(src1(index), src2(index))

END DO 

DO index = 1, length
dst(index) = SQRT(src(index))

END DO 

DO index = 1, length
dst(index) = COS(src(index))

END DO 

DO index = 1, length
dst(index) = EXP(src(index))

END DO 
DO index = 1, length
dst(index) = LOG(src(index))

END DO 



Loop Performance



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 31

Performance Characteristics
Different operations take different amounts of time.
Different processor types have different performance 
characteristics, but there are some characteristics that many 
platforms have in common.
Different compilers, even on the same hardware, perform 
differently.
On some processors, floating point and integer speeds are 
similar, while on others they differ.



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 32

Arithmetic Operation Speeds
Arithmetic Performance on Pentium4 EM64T 

(Irwindale 3.2 GHz)

0

500

1000

1500

2000

2500

3000
ra

dd

ia
dd

rs
um is
um rs
ub is
ub

rm
ul

im
ul

rm
am

im
am

rm
ad

im
ad

rd
iv

id
iv

rp
ow

im
od

rs
qr

t

rc
os

re
xp rlo

g

rd
ot

re
uc

rlo
t0

8

rlo
t1

0

rlo
t1

2

rlo
t1

6

rlo
t2

0

lo
t2

4r i2
r

r2
i

M
FL

O
Ps

ifort -O0 pgf90 -O0 nagf95 -O0 gfortran -O0 ifort -O2 pgf90 -O3 gfortran -O2 nagf95 -O4

Better



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 33

Fast and Slow Operations
Fast: sum, add, subtract, multiply
Medium: divide, mod (i.e., remainder)
Slow: transcendental functions (sqrt, sin, exp)
Incredibly slow: power xy for real x and y

On most platforms, divide, mod and transcendental functions 
are not pipelined, so a code will run faster if most of it is 
just adds, subtracts and multiplies.

For example, solving an N x N system of linear equations by 
LU decomposition uses on the order of N3 additions and 
multiplications, but only on the order of N divisions.



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 34

What Can Prevent Pipelining?
Certain events make it very hard (maybe even impossible) for 

compilers to pipeline a loop, such as:
array elements accessed in random order
loop body too complicated
if statements inside the loop (on some platforms)
premature loop exits
function/subroutine calls
I/O



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 35

How Do They Kill Pipelining?
Random access order: Ordered array access is common, so 
pipelining hardware and compilers tend to be designed under 
the assumption that most loops will be ordered.  Also, the 
pipeline will constantly stall because data will come from 
main memory, not cache.
Complicated loop body:  The compiler gets too 
overwhelmed and can’t figure out how to schedule the 
instructions.



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 36

How Do They Kill Pipelining?
if statements in the loop:  On some platforms (but not all), 
the pipelines need to perform exactly the same operations 
over and over; if statements make that impossible.

However, many CPUs can now perform speculative execution:  
both branches of the if statement are executed while the 
condition is being evaluated, but only one of the results is 
retained (the one associated with the condition’s value).

Also, many CPUs can now perform branch prediction to head 
down the most likely compute path. 



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 37

How Do They Kill Pipelining?
Function/subroutine calls interrupt the flow of the 
program even more than if statements.  They can take 
execution to a completely different part of the program, and 
pipelines aren’t set up to handle that.
Loop exits are similar. Most compilers can’t pipeline loops 
with premature or unpredictable exits.
I/O:  Typically, I/O is handled in subroutines (above).  
Also, I/O instructions can take control of the program away 
from the CPU (they can give control to I/O devices).



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 38

What If No Pipelining?

SLOW!

(on most platforms)



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 39

Randomly Permuted Loops
Arithmetic Performance: Ordered vs Random 

(Irwindale 3.2 GHz)

0

500

1000

1500

2000

2500

3000
ra

dd

ia
dd

rs
um is
um rs
ub is
ub

rm
ul

im
ul

rm
am

im
am

rm
ad

im
ad

rd
iv

id
iv

rp
ow

im
od

rs
qr

t

rc
os

re
xp rlo

g

rd
ot

re
uc

rlo
t0

8

rlo
t1

0

rlo
t1

2

rlo
t1

6

rlo
t2

0

lo
t2

4r i2
r

r2
i

M
FL

O
Ps

ifort -O2 permuted

Better



Superpipelining



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 41

Superpipelining
Superpipelining is a combination of superscalar and 

pipelining.
So, a superpipeline is a collection of multiple pipelines that 

can operate simultaneously.
In other words, several different operations can execute 

simultaneously, and each of these operations can be broken 
into stages, each of which is filled all the time.

So you can get multiple operations per CPU cycle.
For example, a IBM Power4 can have over 200 different 

operations “in flight” at the same time.[1]



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 42

More Operations At a Time
If you put more operations into the code for a loop, you’ll 
get better performance:

more operations can execute at a time (use more 
pipelines), and
you get better register/cache reuse.

On most platforms, there’s a limit to how many operations 
you can put in a loop to increase performance, but that limit 
varies among platforms, and can be quite large.



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 43

Some Complicated Loops
DO index = 1, length
dst(index) = src1(index) + 5.0 * src2(index)

END DO 

dot = 0
DO index = 1, length
dot = dot + src1(index) * src2(index)

END DO 

DO index = 1, length
dst(index) = src1(index) * src2(index) + &

&             src3(index) * src4(index)
END DO 

DO index = 1, length
diff12 = src1(index) - src2(index)
diff34 = src3(index) - src4(index)
dst(index) = SQRT(diff12 * diff12 + diff34 * diff34)

END DO 

madd (or FMA):
mult then add

(2 ops)

Euclidean distance
(6 ops)

dot product
(2 ops)

from our
example
(3 ops)



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 44

A Very Complicated Loop
lot = 0.0
DO index = 1, length

lot = lot +                       &
&    src1(index) * src2(index) +     &
&    src3(index) * src4(index) +     &
&    (src1(index) + src2(index)) *   &
&    (src3(index) + src4(index)) *   &
&    (src1(index) - src2(index)) *   &
&    (src3(index) - src4(index)) *   &
&    (src1(index) - src3(index) +    &
&     src2(index) - src4(index)) *   &
&    (src1(index) + src3(index) - &
&     src2(index) + src4(index)) +   &
&    (src1(index) * src3(index)) +   &
&    (src2(index) * src4(index))
END DO 

24 arithmetic ops per iteration
4 memory/cache loads per iteration



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 45

Multiple Ops Per Iteration
Arithmetic Performance: Multiple Operations 

(Irwindale 3.2 GHz)

0

500

1000

1500

2000

2500

3000

radd iadd rmam imam rmad imad rdot reuc rlot08 rlot10 rlot12 rlot16 rlot20 rlot24

M
FL

O
Ps ifort -O2

pgf90 -O3
nagf95 -O4
gfortran -O2



Vectors



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 47

What Is a Vector?
A vector is a giant register that behaves like a collection of 

regular registers, except these registers all simultaneously 
perform the same operation on multiple sets of operands, 
producing multiple results.

In a sense, vectors are like operation-specific cache.
A vector register is a register that’s actually made up of many 

individual registers.
A vector instruction is an instruction that performs the same 

operation simultaneously on all of the individual registers of a
vector register.



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 48

Vector Register

v0 v1 v2

v2 = v0 + v1



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 49

Vectors Are Expensive
Vectors were very popular in the 1980s, because they’re very 

fast, often faster than pipelines.
In the 1990s, though, they weren’t very popular. Why?
Well, vectors aren’t used by most commercial codes (e.g., MS 

Word).  So most chip makers don’t bother with vectors.
So, if you wanted vectors, you had to pay a lot of extra money

for them.
However, with the Pentium III Intel reintroduced very small 

vectors (2 operations at a time), for integer operations only. 
The Pentium4 added floating point vector operations, also of 
size 2. Now, the Pentium4 EM64T has doubled the vector 
size to 4.



A Real Example



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 51

A Real Example[4]

DO k=2,nz-1
DO j=2,ny-1

DO i=2,nx-1
tem1(i,j,k) = u(i,j,k,2)*(u(i+1,j,k,2)-u(i-1,j,k,2))*dxinv2
tem2(i,j,k) = v(i,j,k,2)*(u(i,j+1,k,2)-u(i,j-1,k,2))*dyinv2
tem3(i,j,k) = w(i,j,k,2)*(u(i,j,k+1,2)-u(i,j,k-1,2))*dzinv2

END DO
END DO

END DO
DO k=2,nz-1
DO j=2,ny-1

DO i=2,nx-1
u(i,j,k,3) = u(i,j,k,1) - &

&                 dtbig2*(tem1(i,j,k)+tem2(i,j,k)+tem3(i,j,k))
END DO

END DO
END DO

. . .



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 52

Real Example Performance

Performance By Method

0
10
20
30
40
50
60
70
80

10 loops 5 loops 1 loop 2 loops 2 loops unrolled
Method

M
FL

O
PS

Pentium3 NAG Pentium3 Vast



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 53

DON’T
PANIC!



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 54

Why You Shouldn’t Panic
In general, the compiler and the CPU will do most of the heavy 

lifting for instruction-level parallelism.

BUT:
You need to be aware of ILP, because
how your code is structured affects
how much ILP the compiler and the
CPU can give you.



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 55

To Learn More Supercomputing
http://www.oscer.ou.edu/education.php

http://www.oscer.ou.edu/education.php


Thanks for your 
attention!

Questions?



SC08 Parallel & Cluster Computing: Instruction Level Parallelism
Oklahoma Supercomputing Symposium, October 6 2008 57

References
[1] Steve Behling et al, The POWER4 Processor Introduction and Tuning Guide, IBM, 2001.
[2] Intel® 64 and IA-32 Architectures Optimization Reference Manual, Order Number: 248966-015
May 2007
http://www.intel.com/design/processor/manuals/248966.pdf
[3] Kevin Dowd and Charles Severance, High Performance Computing,

2nd ed. O’Reilly, 1998.
[4] Code courtesy of Dan Weber, 2001.

http://www.intel.com/design/processor/manuals/248966.pdf

	Parallel Programming & Cluster Computing�Instruction Level Parallelism
	Outline
	Parallelism
	What Is ILP?
	Why You Shouldn’t Panic
	Kinds of ILP
	What’s an Instruction?
	What’s a Cycle?
	What’s the Relevance of Cycles?
	Scalar Operation
	Scalar Operation
	Does Order Matter?
	Superscalar Operation
	Loops
	Loops Are Good
	Why Loops Are Good
	Superscalar Loops
	Superscalar Loops
	Example: IBM POWER4
	Pipelining
	Pipelining
	Pipelining Example
	Pipelines: Example
	Some Simple Loops
	Slightly Less Simple Loops
	Loop Performance
	Performance Characteristics
	Arithmetic Operation Speeds
	Fast and Slow Operations
	What Can Prevent Pipelining?
	How Do They Kill Pipelining?
	How Do They Kill Pipelining?
	How Do They Kill Pipelining?
	What If No Pipelining?
	Randomly Permuted Loops
	Superpipelining
	Superpipelining
	More Operations At a Time
	Some Complicated Loops
	A Very Complicated Loop
	Multiple Ops Per Iteration
	Vectors
	What Is a Vector?
	Vector Register
	Vectors Are Expensive
	A Real Example
	A Real Example[4]
	Real Example Performance
	Why You Shouldn’t Panic
	To Learn More Supercomputing
	Thanks for your attention!��Questions?
	References

