Parallel Programming

& Cluster Computing
!'_ Stupid Compiler Tricks
Henry Neeman, University of Oklahoma

Paul Gray, University of Northern lowa
SCO08 Education Program’s Workshop on Parallel & Cluster Computing
Oklahoma Supercomputing Symposium, Monday October 6 2008

' l'l INFORMATION
TECHNOLOGY

THE UNIVERSITY OF OKLAHOMA

Outline

= Dependency Analysis
= What is Dependency Analysis?
= Control Dependencies
= Data Dependencies

= Stupid Compiler Tricks
= Tricks the Compiler Plays
= Tricks You Play With the Compiler
= Profiling

l/&)i_EE}\ % ™ 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
KN lﬁt;:;a;ggg: Oklahoma Supercomputing Symposium, October 6 2008

g Dependency Analysis

j What Is Dependency Analysis?

Dependency analysis describes of how different parts of a
program affect one another, and how various parts require
other parts in order to operate correctly.

A control dependency governs how different sequences of
Instructions affect each other.

A data dependency governs how different pieces of data affect

each other.
Much of this discussion is from references [1] and [5].

|/(O&E;i\}\ % ™ 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
\x_// lit_}*é;%i’;ﬂ%_: Oklahoma Supercomputing Symposium, October 6 2008 ”,7?

Control Dependencies

Every program has a well-defined flow of control that moves
from Instruction to instruction to instruction.

This flow can be affected by several kinds of operations:
= Loops
= Branches (if, select case/switch)
= Function/subroutine calls
= 1/O (typically implemented as calls)

Dependencies affect parallelization!

SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
L neraney Oklahoma Supercomputing Symposium, October 6 2008 ”,,-;?

Branch Dependency

y =17

IF (x /= 0) THEN
y =1.0 / X

END IF

Note that (x /= 0) means “X not equal to zero.”

The value of y depends on what the condition (x /= 0)
evaluates to:

= If the condition (x /= 0) evaluatesto . TRUE., theny
Issetto 1.0 / X. (1 divided by Xx).

= Otherwise, y remains 7.

l/OSEEE}\I @ 6’4@’ SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks _
\E_:/ lg ooy Oklahoma Supercomputing Symposium, October 6 2008 5,;? 6

_oop Carried Dependency

2, length
= a(i-1) + b(n)

0 i =
a(n)
END DO

Here, each iteration of the loop depends on the previous:
iteration 1=3 depends on iteration 1=2,

iteration 1=4 depends on iteration 1=3,
iteration 1=5 depends on iteration 1=4, etc.

This 1s sometimes called a loop carried dependency.

There Is no way to execute iteration 1 until after iteration 1-1 has
completed, so this loop can’t be parallelized.

SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
Sheteer Oklahoma Supercomputing Symposium, October 6 2008 5,:3? 7

Why Do We Care?

L_oops are the favorite control structures of High Performance
Computing, because compilers know how to optimize their
performance using instruction-level parallelism:
superscalar, pipelining and vectorization can give excellent
speedup.

Loop carried dependencies affect whether a loop can be
parallelized, and how much.

/SéEE}\ @ ™ 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
- _:/ '|¢| II?I_I':_;?-I?";!?E%N{' Oklahoma Supercomputing Symposium, October 6 2008 5,;?

L

_oop or Branch Dependency?

Is this a loop carried dependency or a
branch dependency?

DO 1 = 1, length
IF (x(1) /= 0) THEN
y(r) = 1.0 /7 x(1)
END IF

END DO

SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks]
tomaioy Oklahoma Supercomputing Symposium, October 6 2008 S;E? 9

Call Dependency Example

X =95
y = myfunction(7)
z = 22

The flow of the program is interrupted by the call to
myfunction, which takes the execution to somewhere

else in the program.
It’s similar to a branch dependency.

\. % Y7 4 SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
7 '_I“;i_t&f;@g{ggl: Oklahoma Supercomputing Symposium, October 6 2008 S;Jf? 10

/O Dependency

X=a+b
PRINT *, X
Y=c+d

Typically, 1/0 is implemented by hidden subroutine calls, so
we can think of this as equivalent to a call dependency.

™ 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
]E_t;;;‘.;;*g,gg Oklahoma Supercomputing Symposium, October 6 2008 5’;? 11

Reductions Aren’t Dependencies

array_sum = 0
DO 1 = 1, length i
array_sum = array_sum + array(i)

END DO

A reduction is an operation that converts an array to a scalar.

Other kinds of reductions: product, .AND., .OR., minimum,
maximum, index of minimum, index of maximum, number of
occurrences of a particular value, etc.

Reductions are so common that hardware and compilers are
optimized to handle them.

Also, they aren’t really dependencies, because the order In
which the individual operations are performed doesn’t matter.

|/(O&ER\}\ @ Y™ 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
\\,/ 'I;Iit}:;ﬂ::;,{gg: Oklahoma Supercomputing Symposium, October 6 2008 ”’-;? 12

Data Dependencies

“A data dependence occurs when an instruction is dependent
on data from a previous instruction and therefore cannot be
moved before the earlier instruction [or executed In
parallel].” L6]

a=XxX+yYy + cos(z);

b =a* c;

The value of b depends on the value of a, so these two
statements must be executed in order.

|/(O&E;i\}\ % ™ 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
\x_// lit_}*é;%i’;ﬂ%_: Oklahoma Supercomputing Symposium, October 6 2008 ”,7? 13

Output Dependencies

a/ b;
X + 2;
X = d — e;

< X
I 1l

Notice that X Is assigned two different values, but

only one of them is retained after these statements
are done executing. In this context, the final value
of x Is the “output.”

Again, we are forced to execute in order.

/(O&ER} SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
t nrorsmion Oklahoma Supercomputing Symposium, October 6 2008 ”,7?

Why Does Order Matter?

= Dependencies can affect whether we can execute a
particular part of the program in parallel.

= |If we cannot execute that part of the program in parallel,
then it’ll be SLOW.

\. % Y™ 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
]gﬁ_t_;;g;gﬂ;gg: Oklahoma Supercomputing Symposium, October 6 2008 5;*’5? 15

_oop Dependency Example

IT ((dst == srcl) && (dst == src2)) {
for (index = 1; index < length; index++) {
dst[index] = dst[index-1] + dst[index];

+
else 1T (dst == srcl) {
for (index = 1; index < length; index++) {
dstJindex] = dst[index-1] + src2[index];

else 1T (dst == src2) {
for (index = 1; iIndex < length; index++) {
dstJindex] = srcl[index-1] + dst[index];

else 1T (srcl == src2) {
for (index = 1; index < length; index++) {
dst[index = srcl[index-1] + srcl[index];

else { _
for (index = 1; index < length; index++) {

dst[index] = srcl[index-1] + src2[index];

@Jf

w4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
it}*_é_f;?,ﬁ,’éiﬂ%? Oklahoma Supercomputing Symposium, October 6 2008

SCO8

F

16

_oop Dep Example (cont’d)

((dst == srcl) && (dst == src2)) {
for (index = 1; index < length; index++) {
dst[index] = dst[index-1] + dst[index];

}
else 1T (dst == srcl) {
for (index = 1; index < length; index++) {
dst[index] = dst[index-1] + src2[index];

else iIf (dst == src2) {
for (index = 1; index < length; index++) {
dst[index] = srcl[index-1] + dst[index];

else if (srcl == src2) {
for (index = 1; index < length; index++) {
dst[index] = srcl[index-1] + srcl[index];

else {
for (index = 1; index < length; index++) {
dst[index] = srcl[index-1] + src2[index];

}

The various versions of the loop either:
= do_ have loop carried dependencies, or

s don’t have loop carried dependencies.

h % % i") SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks)

DL ety Oklahoma Supercomputing Symposium, October 6 2008 y=

_oop Dependency Performance

Better

S RCOMPUTR o
n o
by =
n 5 i
St
NI

MFLOPs

Loop Carried Dependency Performance

B Pentium3 500 MHz
B POWER4

B Pentium4 2GHz

B EM64T 3.2 GHz

SCO8 -

@ X 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
l_ll__'__{;_f;:;;;;ggg Oklahoma Supercomputing Symposium, October 6 2008 y= 18

Stupid Compiler

g Tricks

Stupid Compiler Tricks

= Tricks Compilers Play
= Scalar Optimizations
= Loop Optimizations
= Inlining

= Tricks You Can Play with Compilers
= Profiling
= Hardware counters

™ 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
]E_t;;;‘.;;*g,gg Oklahoma Supercomputing Symposium, October 6 2008 5’;? 20

Compiler Design

The people who design compilers have a lot of experience
working with the languages commonly used in High
Performance Computing:

= Fortran: 45ish years
« C: 30ish years
= C++: 15ish years, plus C experience

So, they’ve come up with clever ways to make programs
run faster.

|/(O&E;i\}\ % ™ 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
Bt lit_}:_;a;g{gg_: Oklahoma Supercomputing Symposium, October 6 2008 ”,7? 21

g Tricks Compilers Play

Scalar Optimizations

= Copy Propagation

= Constant Folding

= Dead Code Removal

= Strength Reduction

= Common Subexpression Elimination
= Variable Renaming

= Loop Optimizations

Not every compiler does all of these, so it sometimes can be
worth doing these by hand.

Much of this discussion is from [2] and [5].

l/&)i_EE}\ % ™ 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
_—// lit.}'é_f;%?%iﬁ%? Oklahoma Supercomputing Symposium, October 6 2008 ”,7? 23

Copy Propagation

X:y
Before z =1+ X

Has data dependency

Compile

X =Yy

No data dependency

? SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
l meopaTion Oklahoma Supercomputing Symposium, October 6 2008

5

Constant Folding

Before After
add = 100 sum = 300
aug = 200

sum = add + aug

Notice that sum s actually the sum of two constants,

so the compiler can precalculate it, eliminating the
addition that otherwise would be performed at runtime.

l/OSEEE}\I @ 6’4@’ SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks _
\E_:/ lg ooy Oklahoma Supercomputing Symposium, October 6 2008 5,;? 25

Dead Code Removal

Before After
var =5 var = 5
E%ET . var PRINT *, var
PRINT *, var * 2 STOP

Since the last statement never executes, the
compiler can eliminate it.

£ % Y™ 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
&F,‘M % !t, conue Oklahoma Supercomputing Symposium, October 6 2008

2w

Strength Reduction

Before After
X =y * 2.0 X =y *vy

Raising one value to the power of another, or
dividing, Is more expensive than multiplying. If the
compiler can tell that the power Is a small integer, or
that the denominator is a constant, i1t’ll use
multiplication instead.

Note: In Fortran, “y ** 2_.0” means “y to the
power 2.”

/(O&ER} SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
t nrorsmion Oklahoma Supercomputing Symposium, October 6 2008 ”,7?

j Common Subexpression Elimination

Before After
d=c* (a/ b) adivb = a /Z b
e=(@/b) *2.0 d = ¢ * adivb

e = adivb * 2.0

The subexpression (a 7/ b) occurs in both
assignment statements, so there’s no point in
calculating it twice.

This is typically only worth doing if the common
subexpression Is expensive to calculate.

SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
52 Oklahoma Supercomputing Symposium, October 6 2008 5’;? 28

Variable Renaming

Before After
X =y >z X0 =y * z
q=r+Xx=2 q=1r+ x0 * 2
x=a+bh X =a+hb

The original code has an output dependency, while
the new code doesn’t — but the final value of X Is
still correct.

& o O™ 4 SCO8 Parallel & Cluster Computing: Stupid Compiler Tricks]
Nl lit_}g;g;g{ggg Oklahoma Supercomputing Symposium, October 6 2008 S;E? 29

LLoop Optimizations

Hoisting Loop Invariant Code

Unswitching
Iteration Peeling
Index Set Splitting
Loop Interchange
Unrolling

LLoop Fusion

LLoop Fission

Not every compiler does all of these, so it sometimes can be
worth doing some of these by hand.

Much of this discussion is from [3] and [5].

.@‘“ﬁ:_:_“' P 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
sk SCER} % QI puting p p

' ;:;amgs Oklahoma Supercomputing Symposium, October 6 2008 ”,7?

j Hoisting Loop Invariant Code

DO 1 =1, n
Code that i) = b(i
doesn’t Before +
change inside END DC
the loop Is
called loop
invariant. It temp = c * d
doesn’t need DO i =1, n
to be After a(i) = b(i) + temp
calculated END DO
over and over. e = g(n)

SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks]
tomeioay Oklahoma Supercomputing Symposium, October 6 2008 5;;5? 31

Unswitching

DO i =1, n The condition Is
PO 1 Et%'g - 0) THEN J-independent.
a(i,j) = a(i,j) * t(i) + b(Q)
ELSE 00
enpie? T O Before
END DO
END DO
DO i =1, n
IF_(tCi) > 0) THEN S0, |tdcanhm|g|rate
s = ’: * OUtSl et
B = adp) >t + b@) €3 100p.
06 j =2, n
ati,1)= 0.0 After
END IF
END DO

Sn @ SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks)
llt meopaTion Oklahoma Supercomputing Symposium, October 6 2008 S;E?

Iteration Peeling

DO 1 =1, n
IF ((i == 1) .OR. (i == n)) THEN
x(1) = y(i)
ELSE
Before x(i) = y@(i + 1) + y(@(i - 1)
END IF
END DO

We can eliminate the IF by peeling the weird iterations.

x(1) = y()
DO 1 =2, n -1
After x(i) = y@i + 1) + y@i - 1)
END DO
x(n) = y()

Ge X [4 SC08 Parallel & Cluster Computing: Stupid Compiler Tricks __
]_lt;;;g;&;,iggg Oklahoma Supercomputing Symposium, October 6 2008 S;E? 33

Index Set Splitting

T
1) + b(i - 10) Before

D After

Note that this is a generalization of peeling.

& o Y™ 4 SCO8 Parallel & Cluster Computing: Stupid Compiler Tricks]
Il,,it}:?%?@?? Oklahoma Supercomputing Symposium, October 6 2008 S;E? 34

Loop Interchange

Before After
DO i = 1, ni DO §J =1, nj
00§ =1, ni \, DO i = 1, ni
a(i,j) = b(i,j) a(i,j) = b(i,j)
END DO
o END DO
END DO

Array elements a(n,jJ) and a(i+1,J) are near
each other in memory, while a(r, J+1) may be
far, so it makes sense to make the 1 loop be the
iInner loop. (This is reversed in C, C++ and Java.)

loéEE}\ @ ™ 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
_:/ IJ fEomney - Oklahoma Supercomputing Symposium, October 6 2008 5,5}? 35

j Unrolling

Before

QD
A
o/

[

g_)u
A
o/

+

o(1)
a(i+1) = a(i+1)+b(i+1)

ATEr 4¢i+2) = a(i+2)+b(i+2)
a(i+3) = a(i+3)+b(i+3)

You generally shouldn’t unroll by hand.

“g‘ﬁ"w"’jﬁ??gl % Y™ 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
R 55]E_t;;g;mg Oklahoma Supercomputing Symposium, October 6 2008 5’;? 36

Why Do Compilers Unroll?

We saw last time that a loop with a lot of operations gets
better performance (up to some point), especially if there
are lots of arithmetic operations but few main memory
loads and stores.

Unrolling creates multiple operations that typically load from
the same, or adjacent, cache lines.

So, an unrolled loop has more operations without increasing
the memory accesses by much.

Also, unrolling decreases the number of comparisons on the
loop counter variable, and the number of branches to the
top of the loop.

l/(O&ER\}\ @ ™ 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
,/ lit}:;azgigg_: Oklahoma Supercomputing Symposium, October 6 2008 r‘“? 37

_oop Fusion

DO i =1, n
a(i) = b@i) + 1
END DO
DO i =1, n
ENB(B% -al sz
0 i =1 n Before
d(i) = 1 7/ c(i)
END DO
DO i = 1,bn
a(l) = 1) + 1
i) =aCi) /7 2
END DO

As with unrolling, this has fewer branches. It also has fewer
total memory references.

% ™ 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks _
A lit_}g;%;g{ggg Oklahoma Supercomputing Symposium, October 6 2008 5;3? 38

L_oop Fission

DO 1 = 1, n
aCi) = b(i) + 1
S 236G Before
END DO Il 1 = 1, n
DO 1 = 1, n
a(i) = b(i) + 1
END DO Il 1 = 1, n
DO 1 = 1, n
59 T {2
P 1 = , N
DO 1 = 1, n After
d(i) = 1 7 c(i)
END DO Il 1 = 1, n

Fission reduces the cache footprint and the number of
operations per iteration.

fenf

Oklahoma Supercomputing Symposium, October 6 2008

/ \ % % i’t@ SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
N g L R

T

To Fuse or to Fi1zz?

The question of when to perform fusion versus when to
perform fission, like many many optimization questions, Is
highly dependent on the application, the platform and a lot
of other issues that get very, very complicated.

Compilers don’t always make the right choices.

That’s why It’s important to examine the actual behavior of the
executable.

|/(O&ER\}\ @ Y™ 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
KN l?t}:_;aﬁg{gg: Oklahoma Supercomputing Symposium, October 6 2008 ”’-;? 40

Inlining

Before After
DO 1 =1, n - _
a(i) = func(i) DO ' " }’_n*
END DO a(1) =1 *3
END DO

REAL FUNCTION func (x)

func = X * 3
END FUNCTION func

When a function or subroutine is inlined, its contents
are transferred directly into the calling routine,
eliminating the overhead of making the call.

l/OSEEE}\' o o SCO8 Parallel & Cluster Computing: Stupid Compiler Tricks |
. IQ Tihaiesy Oklahoma Supercomputing Symposium, October 6 2008 5;}? 41

L
755

Tricks You Can Play

g with Compilers

The Joy of Compiler Options

Every compiler has a different set of options that you can set.

Among these are options that control single processor
optimization: superscalar, pipelining, vectorization, scalar
optimizations, loop optimizations, inlining and so on.

/_““\\ ™ 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
% SCER,}.I Q g) :
_:/ lp' TECoLoeY Oklahoma Supercomputing Symposium, October 6 2008 5,;? 43

L

i
(Ska
l=wm
\Xa

Example Compile Lines

= IBM XL
x1f90 -0 —gmaxmem=-1 —garch=auto

Intel —gtune=auto —qcache=auto —ghot
n nte
1fort —O —march=core2 —mtune=core2

= Portland Group f90
pgf90 —03 -fastsse —tp core2-64

= NAG f95
fO5 —04 —Ounsafe —i1eee=nonstd

ncnsoy Oklahoma Supercomputing Symposium, October 6 2008

& :“‘“\\ ™ 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
C %ICM)&:EE/Q;I QI lgt INFORMATION

AT

What Does the Compiler Do?

Example: NAG f95 compiler
95 —O<level> source.f90

Possible levels are =00, -01, -02, -03, -04:

-00 No optimisation.

-01 Minimal quick optimisation.
-02 Normal optimisation.

-03 Further optimisation.

-04 Maximal optimisation.

The man page is pretty cryptic.

.@‘“ﬁ:_:_“' P 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
sk SCER} % QI puting p p

' ;:;amgs Oklahoma Supercomputing Symposium, October 6 2008 ”,7?

Arithmetic Operation Speeds

“OMPUT i
RCOMPUTy R
e < £ -
£
(] o
= ™
=
a S t
fa
2y P _
¥ MOV

Ordered Arithmetic Operations

600
500 -
400
(72
~~
o
9300
LL
200 -
100"
0,
S 2 8 S S T ©T = =2 T £ o O O = =
gggéégégééggééégggéguﬁ

| Intel/Xeon m PGI/Xeon W NAG/Xeon M x/POWERA |

@ ™ 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks]
]_ll__";;_f;%:;;;;ggg Oklahoma Supercomputing Symposium, October 6 2008 V=1

F

46

Optimization Performance

\PUTT
AL OM ING
\\‘“ e
i
= =
=
%) & i
o
'tr“, Ty e gEAEERD .
B NOVAX

Performance

MFLOP/s

o) o) o = = > >
§ £ 2 2 ¢ 2 E BE g &
Operation

M Pentium3 NAG OO0 M Pentium3 NAG O4 B Pentium3 Vast no opt M Pentium3 Vast opt

%"'6'7 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks)
1.'.._._5??%?"313%# Oklahoma Supercomputing Symposium, October 6 2008 SC; q

47

More Optimized Performance

Performance
250
200
L
(al i
o 150
—
LL 100 -
>
50 -
0,
EE B 8 8 32 8 3 @ ¢ 8§ &
E £ E E = 2 £ © © & © ©
Operation

M Pentium3 NAG OO0 M Pentium3 NAG 04
B Pentium3 VAST no opt M Pentium3 VAST opt

R %-"5’7 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks ;
AR]_',______}T%E%?«@%”_ Oklahoma Supercomputing Symposium, October 6 2008 2

g Profiling

Profiling

Profiling means collecting data about how a program executes.
The two major kinds of profiling are:

= Subroutine profiling

= Hardware timing

/_""““\\ ™ 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
b SCER,}.I et : :
_:/ '|¢| ooy Oklahoma Supercomputing Symposium, October 6 2008 5,;’? 50

L

Subroutine Profiling

Subroutine profiling means finding out how much time is
spent in each routine.

The 90-10 Rule: Typically, a program spends 90% of its
runtime in 10% of the code.

Subroutine profiling tells you what parts of the program to
spend time optimizing and what parts you can ignore.

Specifically, at regular intervals (e.g., every millisecond), the
program takes note of what instruction it’s currently on.

& 7 4 SC08 Parallel & Cluster Computing: Stupid Compiler Tricks
lt nromeney Oklahoma Supercomputing Symposium, October 6 2008 r‘“? 51

Profiling Example

On IBM pSeries systems:
xIf90 -0 —g -pg
The —g -pg options tell the compiler to set the executable up
to collect profiling information.

Running the executable generates a file named gmon . out,
which contains the profiling information.

l/&)i_EE}\ % ™ 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
_—// lit.}'é_f;%?%iﬁ%? Oklahoma Supercomputing Symposium, October 6 2008 ”,7? 52

Profiling Example (cont’d)

When the run has completed, a file named gmon . out has
been generated.

Then:
gprof executable

produces a list of all of the routines and how much time was
spent in each.

Y™ 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
lﬁt}f;;a;g{ggl: Oklahoma Supercomputing Symposium, October 6 2008 5,:3? 53

Profiling Result

% cumulative self self total
time seconds seconds calls ms/call ms/call name
27 .6 52.72 52.72 480000 0.11 0.11 longwave_ [5]
24.3 99.06 46.35 897 51.67 51.67 mpdata3_ [8]
7.9 114.19 15.13 300 50.43 50.43 +turb_ [9]
7.2 127.94 13.75 299 45_.98 45.98 turb_scalar_ [10]
4.7 136.91 8.96 300 29.88 29.88 advect2_z_ [12]
4.1 144.79 7.88 300 26.27 31.52 cloud_ [11]
3.9 152.22 7.43 300 24.77 212.36 radiation_ [3]
2.3 156.65 4.43 897 4.94 56.61 smir_ [7]
2.2 160.77 4.12 300 13.73 24.39 tke_full_ [13]
1.7 163.97 3.20 300 10.66 10.66 shear_prod_ [15]
1.5 166.79 2.82 300 9.40 9.40 rhs_ [16]
1.4 169.53 2.74 300 9.13 9.13 advect2_xy_ [17]
1.3 172.00 2.47 300 8.23 15.33 poisson_ [14]
1.2 174.27 2.27 480000 0.00 0.12 1long_wave_ [4]
1.0 176.13 1.86 299 6.22 177.45 advect_scalar_ [6]
0.9 177.94 1.81 300 6.04 6.04 buoy_ [19]
& }\ % ™ 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
i lﬁt}:;am{gg: Oklahoma Supercomputing Symposium, October 6 2008 5,;? 54

To Learn More Supercomputing

SOMPUTT;
RCOMPUT/
\\‘“ ,(_/_r
n i
Shn BAT
=
o "y :
", &3
o %)
/5 e 0 T .
Wy a2

http://www.oscer.ou.edu/education.php

Qlfi'? SC08 Parallel & Cluster Computing: Stupid Compiler Tricks __

L reremey - Oklahoma Supercomputing Symposium, October 6 2008 y=14

55

http://www.oscer.ou.edu/education.php

Thanks for your

g attention!

Questions?

References

[1] Steve Behling et al, The POWER4 Processor Introduction and Tuning Guide, IBM, 2001.
[2] Intel® 64 and IA-32 Architectures Optimization Reference Manual, Order Number: 248966-015

May 2007
http://www. intel .com/design/processor/manuals/248966.pdf

[3] Kevin Dowd and Charles Severance, High Performance Computing,
2" ed. O’Reilly, 1998.

[4] Code courtesy of Dan Weber, 2001.

%---3’7 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks ;
JA'' I B 1.'.....5??%?«"_812;# Oklahoma Supercomputing Symposium, October 6 2008 s;’s?

S7

http://www.intel.com/design/processor/manuals/248966.pdf

	Parallel Programming & Cluster Computing�Stupid Compiler Tricks
	Outline
	Dependency Analysis
	What Is Dependency Analysis?
	Control Dependencies
	Branch Dependency
	Loop Carried Dependency
	Why Do We Care?
	Loop or Branch Dependency?
	Call Dependency Example
	I/O Dependency
	Reductions Aren’t Dependencies
	Data Dependencies
	Output Dependencies
	Why Does Order Matter?
	Loop Dependency Example
	Loop Dep Example (cont’d)
	Loop Dependency Performance
	Stupid Compiler Tricks
	Stupid Compiler Tricks
	Compiler Design
	Tricks Compilers Play
	Scalar Optimizations
	Copy Propagation
	Constant Folding
	Dead Code Removal
	Strength Reduction
	Common Subexpression Elimination
	Variable Renaming
	Loop Optimizations
	Hoisting Loop Invariant Code
	Unswitching
	Iteration Peeling
	Index Set Splitting
	Loop Interchange
	Unrolling
	Why Do Compilers Unroll?
	Loop Fusion
	Loop Fission
	To Fuse or to Fizz?
	Inlining
	Tricks You Can Play with Compilers
	The Joy of Compiler Options
	Example Compile Lines
	What Does the Compiler Do?
	Arithmetic Operation Speeds
	Optimization Performance
	More Optimized Performance
	Profiling
	Profiling
	Subroutine Profiling
	Profiling Example
	Profiling Example (cont’d)
	Profiling Result
	To Learn More Supercomputing
	Thanks for your attention!��Questions?
	References

