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g Dependency Analysis



j What Is Dependency Analysis?

Dependency analysis describes of how different parts of a
program affect one another, and how various parts require
other parts in order to operate correctly.

A control dependency governs how different sequences of
Instructions affect each other.

A data dependency governs how different pieces of data affect

each other.
Much of this discussion is from references [1] and [5].
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Control Dependencies

Every program has a well-defined flow of control that moves
from Instruction to instruction to instruction.

This flow can be affected by several kinds of operations:
= Loops
= Branches (if, select case/switch)
= Function/subroutine calls
= 1/O (typically implemented as calls)

Dependencies affect parallelization!
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Branch Dependency

y =17

IF (x /= 0) THEN
y =1.0 / X

END IF

Note that (x /= 0) means “X not equal to zero.”

The value of y depends on what the condition (x /= 0)
evaluates to:

= If the condition (x /= 0) evaluatesto . TRUE., theny
Issetto 1.0 / X. (1 divided by Xx).

= Otherwise, y remains 7.
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_oop Carried Dependency

2, length
= a(i-1) + b(n)

0 i =
a(n)
END DO

Here, each iteration of the loop depends on the previous:
iteration 1=3 depends on iteration 1=2,

iteration 1=4 depends on iteration 1=3,
iteration 1=5 depends on iteration 1=4, etc.

This 1s sometimes called a loop carried dependency.

There Is no way to execute iteration 1 until after iteration 1-1 has
completed, so this loop can’t be parallelized.
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Why Do We Care?

L_oops are the favorite control structures of High Performance
Computing, because compilers know how to optimize their
performance using instruction-level parallelism:
superscalar, pipelining and vectorization can give excellent
speedup.

Loop carried dependencies affect whether a loop can be
parallelized, and how much.
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_oop or Branch Dependency?

Is this a loop carried dependency or a
branch dependency?

DO 1 = 1, length
IF (x(1) /= 0) THEN
y(r) = 1.0 /7 x(1)
END IF

END DO
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Call Dependency Example

X =95
y = myfunction(7)
z = 22

The flow of the program is interrupted by the call to
myfunction, which takes the execution to somewhere

else in the program.
It’s similar to a branch dependency.
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/O Dependency

X=a+b
PRINT *, X
Y=c+d

Typically, 1/0 is implemented by hidden subroutine calls, so
we can think of this as equivalent to a call dependency.

™ 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
]E_t;;;‘.;;*g,gg Oklahoma Supercomputing Symposium, October 6 2008 5’;? 11




Reductions Aren’t Dependencies

array_sum = 0
DO 1 = 1, length i
array_sum = array_sum + array(i)

END DO

A reduction is an operation that converts an array to a scalar.

Other kinds of reductions: product, .AND., .OR., minimum,
maximum, index of minimum, index of maximum, number of
occurrences of a particular value, etc.

Reductions are so common that hardware and compilers are
optimized to handle them.

Also, they aren’t really dependencies, because the order In
which the individual operations are performed doesn’t matter.
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Data Dependencies

“A data dependence occurs when an instruction is dependent
on data from a previous instruction and therefore cannot be
moved before the earlier instruction [or executed In
parallel].” L6]

a=XxX+yYy + cos(z);

b =a* c;

The value of b depends on the value of a, so these two
statements must be executed in order.
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Output Dependencies

a/ b;
X + 2;
X = d — e;

< X
I 1l

Notice that X Is assigned two different values, but

only one of them is retained after these statements
are done executing. In this context, the final value
of x Is the “output.”

Again, we are forced to execute in order.
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Why Does Order Matter?

= Dependencies can affect whether we can execute a
particular part of the program in parallel.

= |If we cannot execute that part of the program in parallel,
then it’ll be SLOW.
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_oop Dependency Example

IT ((dst == srcl) && (dst == src2)) {
for (index = 1; index < length; index++) {
dst[index] = dst[index-1] + dst[index];

+
else 1T (dst == srcl) {
for (index = 1; index < length; index++) {
dstJindex] = dst[index-1] + src2[index];

else 1T (dst == src2) {
for (index = 1; iIndex < length; index++) {
dstJindex] = srcl[index-1] + dst[index];

else 1T (srcl == src2) {
for (index = 1; index < length; index++) {
dst[index = srcl[index-1] + srcl[index];

else { _
for (index = 1; index < length; index++) {

dst[index] = srcl[index-1] + src2[index];

@Jf
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_oop Dep Example (cont’d)

((dst == srcl) && (dst == src2)) {
for (index = 1; index < length; index++) {
dst[index] = dst[index-1] + dst[index];

}
else 1T (dst == srcl) {
for (index = 1; index < length; index++) {
dst[index] = dst[index-1] + src2[index];

else iIf (dst == src2) {
for (index = 1; index < length; index++) {
dst[index] = srcl[index-1] + dst[index];

else if (srcl == src2) {
for (index = 1; index < length; index++) {
dst[index] = srcl[index-1] + srcl[index];

else {
for (index = 1; index < length; index++) {
dst[index] = srcl[index-1] + src2[index];

}

The various versions of the loop either:
= do_ have loop carried dependencies, or

s don’t have loop carried dependencies.
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_oop Dependency Performance
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Stupid Compiler Tricks

= Tricks Compilers Play
= Scalar Optimizations
= Loop Optimizations
= Inlining

= Tricks You Can Play with Compilers
= Profiling
= Hardware counters
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Compiler Design

The people who design compilers have a lot of experience
working with the languages commonly used in High
Performance Computing:

= Fortran: 45ish years
« C: 30ish years
= C++: 15ish years, plus C experience

So, they’ve come up with clever ways to make programs
run faster.
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g Tricks Compilers Play



Scalar Optimizations

= Copy Propagation

= Constant Folding

= Dead Code Removal

= Strength Reduction

= Common Subexpression Elimination
= Variable Renaming

= Loop Optimizations

Not every compiler does all of these, so it sometimes can be
worth doing these by hand.

Much of this discussion is from [2] and [5].
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Copy Propagation

X:y
Before z =1+ X

Has data dependency

Compile

X =Yy

No data dependency

? SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
l meopaTion  Oklahoma Supercomputing Symposium, October 6 2008

5



Constant Folding

Before After
add = 100 sum = 300
aug = 200

sum = add + aug

Notice that sum s actually the sum of two constants,

so the compiler can precalculate it, eliminating the
addition that otherwise would be performed at runtime.
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Dead Code Removal

Before After
var =5 var = 5
E%ET . var PRINT *, var
PRINT *, var * 2 STOP

Since the last statement never executes, the
compiler can eliminate it.
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Strength Reduction

Before After
X =y * 2.0 X =y *vy

Raising one value to the power of another, or
dividing, Is more expensive than multiplying. If the
compiler can tell that the power Is a small integer, or
that the denominator is a constant, i1t’ll use
multiplication instead.

Note: In Fortran, “y ** 2_.0” means “y to the
power 2.”
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j Common Subexpression Elimination

Before After
d=c* (a/ b) adivb = a /Z b
e=(@/b) *2.0 d = ¢ * adivb

e = adivb * 2.0

The subexpression (a 7/ b) occurs in both
assignment statements, so there’s no point in
calculating it twice.

This is typically only worth doing if the common
subexpression Is expensive to calculate.
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Variable Renaming

Before After
X =y >z X0 =y * z
q=r+Xx=2 q=1r+ x0 * 2
x=a+bh X =a+hb

The original code has an output dependency, while
the new code doesn’t — but the final value of X Is
still correct.
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LLoop Optimizations

Hoisting Loop Invariant Code

Unswitching
Iteration Peeling
Index Set Splitting
Loop Interchange
Unrolling

LLoop Fusion

LLoop Fission

Not every compiler does all of these, so it sometimes can be
worth doing some of these by hand.

Much of this discussion is from [3] and [5].
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j Hoisting Loop Invariant Code

DO 1 =1, n
Code that i) = b(i
doesn’t Before +
change inside END DC
the loop Is
called loop
invariant. It temp = c * d
doesn’t need DO i =1, n
to be After a(i) = b(i) + temp
calculated END DO
over and over. e = g(n)
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Unswitching

DO i =1, n The condition Is
PO 1 Et%'g - 0) THEN J-independent.
a(i,j) = a(i,j) * t(i) + b(Q)
ELSE 00
enpie? T O Before
END DO
END DO
DO i =1, n
IF_(tCi) > 0) THEN S0, |tdcanhm|g|rate
s = ’: * OUtSl et
B = adp) >t + b@) €3 100p.
06 j =2, n
ati,1)= 0.0 After
END IF
END DO
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Iteration Peeling

DO 1 =1, n
IF ((i == 1) .OR. (i == n)) THEN
x(1) = y(i)
ELSE
Before x(i) = y@(i + 1) + y(@(i - 1)
END IF
END DO

We can eliminate the IF by peeling the weird iterations.

x(1) = y()
DO 1 =2, n -1
After x(i) = y@i + 1) + y@i - 1)
END DO
x(n) = y()

Ge X [ 4 SC08 Parallel & Cluster Computing: Stupid Compiler Tricks __
]_lt;;;g;&;,iggg Oklahoma Supercomputing Symposium, October 6 2008 S;E? 33




Index Set Splitting

T
1) + b(i - 10) Before

D After

Note that this is a generalization of peeling.
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Loop Interchange

Before After
DO i = 1, ni DO §J =1, nj
00§ =1, ni \, DO i = 1, ni
a(i,j) = b(i,j) a(i,j) = b(i,j)
END DO
o END DO
END DO

Array elements a(n,jJ) and a(i+1,J) are near
each other in memory, while a(r, J+1) may be
far, so it makes sense to make the 1 loop be the
iInner loop. (This is reversed in C, C++ and Java.)
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j Unrolling

Before

QD
A
o/

[

g_)u
A
o/

+

o(1)
a(i+1) = a(i+1)+b(i+1)

ATEr  4¢i+2) = a(i+2)+b(i+2)
a(i+3) = a(i+3)+b(i+3)

You generally shouldn’t unroll by hand.
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Why Do Compilers Unroll?

We saw last time that a loop with a lot of operations gets
better performance (up to some point), especially if there
are lots of arithmetic operations but few main memory
loads and stores.

Unrolling creates multiple operations that typically load from
the same, or adjacent, cache lines.

So, an unrolled loop has more operations without increasing
the memory accesses by much.

Also, unrolling decreases the number of comparisons on the
loop counter variable, and the number of branches to the
top of the loop.
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_oop Fusion

DO i =1, n
a(i) = b@i) + 1
END DO
DO i =1, n
ENB(B% -al sz
0 i =1 n Before
d(i) = 1 7/ c(i)
END DO
DO i = 1,bn
a(l) = 1) + 1
i) =aCi) /7 2
END DO

As with unrolling, this has fewer branches. It also has fewer
total memory references.
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L_oop Fission

DO 1 = 1, n
aCi) = b(i) + 1
S 236G Before
END DO Il 1 = 1, n
DO 1 = 1, n
a(i) = b(i) + 1
END DO Il 1 = 1, n
DO 1 = 1, n
59 T {2
P 1 = , N
DO 1 = 1, n After
d(i) = 1 7 c(i)
END DO Il 1 = 1, n

Fission reduces the cache footprint and the number of
operations per iteration.

fenf
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To Fuse or to Fi1zz?

The question of when to perform fusion versus when to
perform fission, like many many optimization questions, Is
highly dependent on the application, the platform and a lot
of other issues that get very, very complicated.

Compilers don’t always make the right choices.

That’s why It’s important to examine the actual behavior of the
executable.
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Inlining

Before After
DO 1 =1, n - _
a(i) = func(i) DO ' " }’_n*
END DO a(1) =1 *3
END DO

REAL FUNCTION func (x)

func = X * 3
END FUNCTION func

When a function or subroutine is inlined, its contents
are transferred directly into the calling routine,
eliminating the overhead of making the call.

l/OSEEE}\' o o SCO8 Parallel & Cluster Computing: Stupid Compiler Tricks |
. IQ Tihaiesy  Oklahoma Supercomputing Symposium, October 6 2008 5;}? 41

L
755



Tricks You Can Play

g with Compilers



The Joy of Compiler Options

Every compiler has a different set of options that you can set.

Among these are options that control single processor
optimization: superscalar, pipelining, vectorization, scalar
optimizations, loop optimizations, inlining and so on.
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Example Compile Lines

= IBM XL
x1f90 -0 —gmaxmem=-1 —garch=auto

Intel —gtune=auto —qcache=auto —ghot
n nte
1fort —O —march=core2 —mtune=core2

= Portland Group f90
pgf90 —03 -fastsse —tp core2-64

= NAG f95
fO5 —04 —Ounsafe —i1eee=nonstd
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& :“‘“\\ ™ 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
C %ICM)&:EE/Q;I QI lgt INFORMATION

AT



What Does the Compiler Do?

Example: NAG f95 compiler
95 —O<level> source.f90

Possible levels are =00, -01, -02, -03, -04:

-00 No optimisation.

-01 Minimal quick optimisation.
-02 Normal optimisation.

-03 Further optimisation.

-04 Maximal optimisation.

The man page is pretty cryptic.
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Arithmetic Operation Speeds
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Optimization Performance
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More Optimized Performance
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Profiling

Profiling means collecting data about how a program executes.
The two major kinds of profiling are:

= Subroutine profiling

= Hardware timing
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Subroutine Profiling

Subroutine profiling means finding out how much time is
spent in each routine.

The 90-10 Rule: Typically, a program spends 90% of its
runtime in 10% of the code.

Subroutine profiling tells you what parts of the program to
spend time optimizing and what parts you can ignore.

Specifically, at regular intervals (e.g., every millisecond), the
program takes note of what instruction it’s currently on.
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Profiling Example

On IBM pSeries systems:
xIf90 -0 —g -pg
The —g -pg options tell the compiler to set the executable up
to collect profiling information.

Running the executable generates a file named gmon . out,
which contains the profiling information.

l/&)i_EE}\ % ™ 4 SCO08 Parallel & Cluster Computing: Stupid Compiler Tricks
\\_—// lit.}'é_f;%?%iﬁ%? Oklahoma Supercomputing Symposium, October 6 2008 ”,7? 52



Profiling Example (cont’d)

When the run has completed, a file named gmon . out has
been generated.

Then:
gprof executable

produces a list of all of the routines and how much time was
spent in each.
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Profiling Result

% cumulative self self total
time seconds seconds calls ms/call ms/call name
27 .6 52.72 52.72 480000 0.11 0.11 longwave_ [5]
24.3 99.06 46.35 897 51.67 51.67 mpdata3_ [8]
7.9 114.19 15.13 300 50.43 50.43 +turb_ [9]
7.2 127.94 13.75 299 45_.98 45.98 turb_scalar_ [10]
4.7 136.91 8.96 300 29.88 29.88 advect2_z_ [12]
4.1 144.79 7.88 300 26.27 31.52 cloud_ [11]
3.9 152.22 7.43 300 24.77 212.36 radiation_ [3]
2.3 156.65 4.43 897 4.94 56.61 smir_ [7]
2.2 160.77 4.12 300 13.73 24.39 tke_full_ [13]
1.7 163.97 3.20 300 10.66 10.66 shear_prod_ [15]
1.5 166.79 2.82 300 9.40 9.40 rhs_ [16]
1.4 169.53 2.74 300 9.13 9.13 advect2_xy_ [17]
1.3 172.00 2.47 300 8.23 15.33 poisson_ [14]
1.2 174.27 2.27 480000 0.00 0.12 1long_wave_ [4]
1.0 176.13 1.86 299 6.22 177.45 advect_scalar_ [6]
0.9 177.94 1.81 300 6.04 6.04 buoy_ [19]
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To Learn More Supercomputing
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Thanks for your

g attention!

Questions?
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