
Paul Gray, University of Northern Iowa
Henry Neeman, University of Oklahoma

Charlie Peck, Earlham College

Tuesday October 2 2007
University of Oklahoma

Parallel & Cluster
Computing:

N-Body

Parallel & Cluster Computing: N-Body
Tuesday October 2 2007 2

N Bodies

Parallel & Cluster Computing: N-Body
Tuesday October 2 2007 3

N-Body Problems
An N-body problem is a problem involving N “bodies” –

that is, particles (e.g., stars, atoms) – each of which applies a
force to all of the others.

For example, if you have N stars, then each of the N stars
exerts a force (gravity) on all of the other N–1 stars.

Likewise, if you have N atoms, then every atom exerts a force
(nuclear) on all of the other N–1 atoms.

Parallel & Cluster Computing: N-Body
Tuesday October 2 2007 4

1-Body Problem
When N is 1, you have a simple 1-Body Problem: a single

particle, with no forces acting on it.
Given the particle’s position P and velocity V at some time t0,

you can trivially calculate the particle’s position at time
t0+Δt:

P(t0+Δt) = P(t0) + VΔt
V(t0+Δt) = V(t0)

Parallel & Cluster Computing: N-Body
Tuesday October 2 2007 5

2-Body Problem
When N is 2, you have – surprise! – a 2-Body Problem: exactly

2 particles, each exerting a force that acts on the other.
The relationship between the 2 particles can be expressed as a

differential equation that can be solved analytically,
producing a closed-form solution.

So, given the particles’ initial positions and velocities, you can
trivially calculate their positions and velocities at any later
time.

Parallel & Cluster Computing: N-Body
Tuesday October 2 2007 6

N-Body Problems (N > 3)
For N of 3 or more, no one knows how to solve the equations to

get a closed form solution.
So, numerical simulation is pretty much the only way to study

groups of 3 or more bodies.
Popular applications of N-body codes include:

astronomy (e.g., galaxy formation, cosmology);
chemistry (e.g., protein folding, molecular dynamics).

Note that, for N bodies, there are on the order of N2 forces,
denoted O(N2).

Parallel & Cluster Computing: N-Body
Tuesday October 2 2007 7

N Bodies

Parallel & Cluster Computing: N-Body
Tuesday October 2 2007 8

Force #1

A

Parallel & Cluster Computing: N-Body
Tuesday October 2 2007 9

Force #2

A

Parallel & Cluster Computing: N-Body
Tuesday October 2 2007 10

Force #3

A

Parallel & Cluster Computing: N-Body
Tuesday October 2 2007 11

Force #4

A

Parallel & Cluster Computing: N-Body
Tuesday October 2 2007 12

Force #5

A

Parallel & Cluster Computing: N-Body
Tuesday October 2 2007 13

Force #6

A

Parallel & Cluster Computing: N-Body
Tuesday October 2 2007 14

Force #N-1

A

Parallel & Cluster Computing: N-Body
Tuesday October 2 2007 15

N-Body Problems
Given N bodies, each body exerts a force on all of the other

N – 1 bodies.
Therefore, there are N • (N – 1) forces in total.
You can also think of this as (N • (N – 1)) / 2 forces, in the

sense that the force from particle A to particle B is the same
(except in the opposite direction) as the force from particle
B to particle A.

Parallel & Cluster Computing: N-Body
Tuesday October 2 2007 16

Let’s say that you have some task to perform on a certain
number of things, and that the task takes a certain amount of
time to complete.

Let’s say that the amount of time can be expressed as a
polynomial on the number of things to perform the task on.

For example, the amount of time it takes to read a book might
be proportional to the number of words, plus the amount of
time it takes to settle into your favorite easy chair.

C1
. N + C2

Aside: Big-O Notation

Parallel & Cluster Computing: N-Body
Tuesday October 2 2007 17

Big-O: Dropping the Low Term
C1

. N + C2
When N is very large, the time spent settling into your easy

chair becomes such a small proportion of the total time that
it’s virtually zero.

So from a practical perspective, for large N, the polynomial
reduces to:

C1
. N

In fact, for any polynomial, if N is large, then all of the terms
except the highest-order term are irrelevant.

Parallel & Cluster Computing: N-Body
Tuesday October 2 2007 18

Big-O: Dropping the Constant
C1

. N
Computers get faster and faster all the time. And there are

many different flavors of computers, having many different
speeds.

So, computer scientists don’t care about the constant, only
about the order of the highest-order term of the polynomial.

They indicate this with Big-O notation:
O(N)

This is often said as: “of order N.”

Parallel & Cluster Computing: N-Body
Tuesday October 2 2007 19

N-Body Problems
Given N bodies, each body exerts a force on all of the other

N – 1 bodies.
Therefore, there are N • (N – 1) forces total.
In Big-O notation, that’s O(N2) forces.
So, calculating the forces takes O(N2) time to execute.
But, there are only N particles, each taking up the same amount

of memory, so we say that N-body codes are of:
O(N) spatial complexity (memory)
O(N2) time complexity

Parallel & Cluster Computing: N-Body
Tuesday October 2 2007 20

O(N2) Forces

Note that this picture shows only the forces between A and everyone else.

A

Parallel & Cluster Computing: N-Body
Tuesday October 2 2007 21

How to Calculate?
Whatever your physics is, you have some function, F(A,B),

that expresses the force between two bodies A and B.
For example, for stars and galaxies,

F(A,B) = G · mA · mB / dist(A,B)2

where G is the gravitational constant and m is the mass of the
body in question.

If you have all of the forces for every pair of particles, then
you can calculate their sum, obtaining the force on every
particle.

From that, you can calculate every particle’s new position and
velocity.

Parallel & Cluster Computing: N-Body
Tuesday October 2 2007 22

How to Parallelize?
Okay, so let’s say you have a nice serial (single-CPU) code

that does an N-body calculation.
How are you going to parallelize it?
You could:

have a server feed particles to processes;
have a server feed interactions to processes;
have each process decide on its own subset of the particles,
and then share around the forces;
have each process decide its own subset of the interactions,
and then share around the forces.

Parallel & Cluster Computing: N-Body
Tuesday October 2 2007 23

Do You Need a Master?
Let’s say that you have N bodies, and therefore you have

½ N (N - 1) interactions (every particle interacts with all of
the others, but you don’t need to calculate both A B and
B A).

Do you need a server?
Well, can each processor determine, on its own, either

(a) which of the bodies to process, or (b) which of the
interactions to process?

If the answer is yes, then you don’t need a server.

Parallel & Cluster Computing: N-Body
Tuesday October 2 2007 24

Parallelize How?
Suppose you have Np processors.
Should you parallelize:

by assigning a subset of N / Np of the bodies to each
processor, OR
by assigning a subset of ½ N (N - 1) / Np of the interactions
to each processor?

Parallel & Cluster Computing: N-Body
Tuesday October 2 2007 25

Data vs. Task Parallelism
Data Parallelism means parallelizing by giving a subset of
the data to each process, and then each process performs the
same tasks on the different subsets of data.
Task Parallelism means parallelizing by giving a subset of
the tasks to each process, and then each process performs a
different subset of tasks on the same data.

Parallel & Cluster Computing: N-Body
Tuesday October 2 2007 26

Data Parallelism for N-Body?
If you parallelize an N-body code by data, then each

processor gets N / Np pieces of data.
For example, if you have 8 bodies and 2 processors, then:

P0 gets the first 4 bodies;
P1 gets the second 4 bodies.

But, every piece of data (i.e., every body) has to interact
with every other piece of data, to calculate the forces.

So, every processor will have to send all of its data to all
of the other processors, for every single interaction that
it calculates.

That’s a lot of communication!

Parallel & Cluster Computing: N-Body
Tuesday October 2 2007 27

Task Parallelism for N-body?
If you parallelize an N-body code by task, then each processor

gets all of the pieces of data that describe the particles (e.g.,
positions, velocities).

Then, each processor can calculate its subset of the interaction
forces on its own, without talking to any of the other
processors.

But, at the end of the force calculations, everyone has to share all
of the forces that have been calculated, so that each particle
ends up with the total force that acts on it (global reduction).

Parallel & Cluster Computing: N-Body
Tuesday October 2 2007 28

MPI_Reduce
Here’s the syntax for MPI_Reduce:
MPI_Reduce(sendbuffer, recvbuffer,

count, datatype, operation,
root, communicator);

For example, to do a sum over all of the particle forces:
MPI_Reduce(

local_particle_force_sum,
global_particle_force_sum,
number_of_particles,
MPI_DOUBLE, MPI_SUM,
server_process, MPI_COMM_WORLD);

Parallel & Cluster Computing: N-Body
Tuesday October 2 2007 29

Sharing the Result
In the N-body case, we don’t want just one processor to know

the result of the sum, we want every processor to know.
So, we could do a reduce followed immediately by a broadcast.
But, MPI gives us a routine that packages all of that for us:
MPI_Allreduce.

MPI_Allreduce is just like MPI_Reduce except that
every process gets the result (so we drop the
server_process argument).

Parallel & Cluster Computing: N-Body
Tuesday October 2 2007 30

MPI_Allreduce
Here’s the syntax for MPI_Allreduce:

MPI_Allreduce(sendbuffer,
recvbuffer, count, datatype,
operation, communicator);

For example, to do a sum over all of the particle forces:
MPI_Allreduce(

local_particle_force_sum,
global_particle_force_sum,
number_of_particles,
MPI_DOUBLE, MPI_SUM,
MPI_COMM_WORLD);

Parallel & Cluster Computing: N-Body
Tuesday October 2 2007 31

Collective Communications
A collective communication is a communication that is shared

among many processes, not just a sender and a receiver.
MPI_Reduce and MPI_Allreduce are collective

communications.
Others include: broadcast, gather/scatter, all-to-all.

Parallel & Cluster Computing: N-Body
Tuesday October 2 2007 32

Collectives Are Expensive
Collective communications are very expensive relative to

point-to-point communications, because so much more
communication has to happen.

But, they can be much cheaper than doing zillions of point-to-
point communications, if that’s the alternative.

Parallel & Cluster Computing: N-Body
Tuesday October 2 2007 33

To Learn More

http://www.oscer.ou.edu/
http://www.sc-conference.org/

http://www.oscer.ou.edu/
http://www.sc-conference.org/

Thanks for your
attention!

Questions?

	Parallel & Cluster Computing:�N-Body
	N Bodies
	N-Body Problems
	1-Body Problem
	2-Body Problem
	N-Body Problems (N > 3)
	N Bodies
	Force #1
	Force #2
	Force #3
	Force #4
	Force #5
	Force #6
	Force #N-1
	N-Body Problems
	Aside: Big-O Notation
	Big-O: Dropping the Low Term
	Big-O: Dropping the Constant
	N-Body Problems
	O(N2) Forces
	How to Calculate?
	How to Parallelize?
	Do You Need a Master?
	Parallelize How?
	Data vs. Task Parallelism
	Data Parallelism for N-Body?
	Task Parallelism for N-body?
	MPI_Reduce
	Sharing the Result
	MPI_Allreduce
	Collective Communications
	Collectives Are Expensive
	To Learn More
	Thanks for your attention!��Questions?

