
Paul Gray, University of Northern Iowa
Henry Neeman, University of Oklahoma

Charlie Peck, Earlham College

Tuesday October 2 2007
University of Oklahoma

Parallel & Cluster
Computing:

MPI Introduction

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 2

What Is MPI?
The Message-Passing Interface (MPI) is a standard for

expressing distributed parallelism via message passing.
MPI consists of a header file, a library of routines and a

runtime environment.
When you compile a program that has MPI calls in it, your

compiler links to a local implementation of MPI, and then
you get parallelism; if the MPI library isn’t available, then the
compile will fail.

MPI can be used in Fortran, C and C++.

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 3

MPI Calls
MPI calls in Fortran look like this:
CALL MPI_Funcname(…, errcode)

In C, MPI calls look like:
errcode = MPI_Funcname(…);

In C++, MPI calls look like:
errcode = MPI::Funcname(…);

Notice that errcode is returned by the MPI routine
MPI_Funcname, with a value of MPI_SUCCESS indicating
that MPI_Funcname has worked correctly.

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 4

MPI is an API
MPI is actually just an Application Programming Interface

(API).
An API specifies what a call to each routine should look like,

and how each routine should behave.
An API does not specify how each routine should be

implemented, and sometimes is intentionally vague about
certain aspects of a routine’s behavior.

Each platform has its own MPI implementation.

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 5

Example MPI Routines
MPI_Init starts up the MPI runtime environment at the
beginning of a run.
MPI_Finalize shuts down the MPI runtime environment at
the end of a run.
MPI_Comm_size gets the number of processes in a run, Np
(typically called just after MPI_Init).
MPI_Comm_rank gets the process ID that the current process
uses, which is between 0 and Np-1 inclusive (typically called
just after MPI_Init).

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 6

More Example MPI Routines
MPI_Send sends a message from the current process to some
other process (the destination).
MPI_Recv receives a message on the current process from
some other process (the source).
MPI_Bcast broadcasts a message from one process to all of
the others.
MPI_Reduce performs a reduction (e.g., sum, maximum) of
a variable on all processes, sending the result to a single
process.

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 7

MPI Program Structure (F90)
PROGRAM my_mpi_program
IMPLICIT NONE
INCLUDE "mpif.h"
[other includes]
INTEGER :: my_rank, num_procs, mpi_error_code
[other declarations]
CALL MPI_Init(mpi_error_code) !! Start up MPI
CALL MPI_Comm_Rank(my_rank, mpi_error_code)
CALL MPI_Comm_size(num_procs, mpi_error_code)
[actual work goes here]
CALL MPI_Finalize(mpi_error_code) !! Shut down MPI

END PROGRAM my_mpi_program

Note that MPI uses the term “rank” to indicate process identifier.

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 8

MPI Program Structure (in C)
#include <stdio.h>
#include "mpi.h"
[other includes]

int main (int argc, char* argv[])
{ /* main */
int my_rank, num_procs, mpi_error;
[other declarations]
mpi_error = MPI_Init(&argc, &argv); /* Start up MPI */
mpi_error = MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
mpi_error = MPI_Comm_size(MPI_COMM_WORLD, &num_procs);

[actual work goes here]
mpi_error = MPI_Finalize(); /* Shut down MPI */

} /* main */

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 9

MPI is SPMD
MPI uses kind of parallelism known as

Single Program, Multiple Data (SPMD).
This means that you have one MPI program – a single

executable – that is executed by all of the processes in an
MPI run.

So, to differentiate the roles of various processes in the MPI
run, you have to have if statements:

if (my_rank == server_rank) {
…

}

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 10

Example: Hello World
1. Start the MPI system.
2. Get the rank and number of processes.
3. If you’re not the server process:

1. Create a “hello world” string.
2. Send it to the server process.

4. If you are the server process:
1. For each of the client processes:

1. Receive its “hello world” string.
2. Print its “hello world” string.

5. Shut down the MPI system.

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 11

hello_world_mpi.c
#include <stdio.h>
#include <string.h>
#include "mpi.h"

int main (int argc, char* argv[])
{ /* main */

const int maximum_message_length = 100;
const int server_rank = 0;
char message[maximum_message_length+1];
MPI_Status status; /* Info about receive status */
int my_rank; /* This process ID */
int num_procs; /* Number of processes in run */
int source; /* Process ID to receive from */
int destination; /* Process ID to send to */
int tag = 0; /* Message ID */
int mpi_error; /* Error code for MPI calls */
[work goes here]

} /* main */

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 12

Hello World Startup/Shut Down
[header file includes]
int main (int argc, char* argv[])
{ /* main */

[declarations]
mpi_error = MPI_Init(&argc, &argv);
mpi_error = MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
mpi_error = MPI_Comm_size(MPI_COMM_WORLD, &num_procs);
if (my_rank != server_rank) {

[work of each non-server (worker) process]
} /* if (my_rank != server_rank) */
else {

[work of server process]
} /* if (my_rank != server_rank)…else */
mpi_error = MPI_Finalize();

} /* main */

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 13

Hello World Client’s Work
[header file includes]
int main (int argc, char* argv[])
{ /* main */

[declarations]
[MPI startup (MPI_Init etc)]
if (my_rank != server_rank) {

sprintf(message, "Greetings from process #%d!“,
my_rank);

destination = server_rank;
mpi_error =

MPI_Send(message, strlen(message) + 1, MPI_CHAR,
destination, tag, MPI_COMM_WORLD);

} /* if (my_rank != server_rank) */
else {

[work of server process]
} /* if (my_rank != server_rank)…else */
mpi_error = MPI_Finalize();

} /* main */

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 14

Hello World Server’s Work
[header file includes]
int main (int argc, char* argv[])
{ /* main */

[declarations, MPI startup]
if (my_rank != server_rank) {

[work of each client process]
} /* if (my_rank != server_rank) */
else {
for (source = 0; source < num_procs; source++) {
if (source != server_rank) {
mpi_error =
MPI_Recv(message, maximum_message_length + 1,

MPI_CHAR, source, tag, MPI_COMM_WORLD,
&status);

fprintf(stderr, "%s\n", message);
} /* if (source != server_rank) */

} /* for source */
} /* if (my_rank != server_rank)…else */
mpi_error = MPI_Finalize();

} /* main */

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 15

How an MPI Run Works
Every process gets a copy of the executable: Single
Program, Multiple Data (SPMD).
They all start executing it.
Each looks at its own rank to determine which part of the
problem to work on.
Each process works completely independently of the other
processes, except when communicating.

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 16

Compiling and Running
% mpicc -o hello_world_mpi hello_world_mpi.c
% mpirun -np 1 hello_world_mpi

% mpirun -np 2 hello_world_mpi

Greetings from process #1!

% mpirun -np 3 hello_world_mpi

Greetings from process #1!
Greetings from process #2!

% mpirun -np 4 hello_world_mpi

Greetings from process #1!
Greetings from process #2!
Greetings from process #3!

Note: The compile command and the run command vary from
platform to platform.

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 17

Why is Rank #0 the server?
const int server_rank = 0;

By convention, the server process has rank (process ID) #0.
Why?

A run must use at least one process but can use multiple
processes.

Process ranks are 0 through Np-1, Np >1 .
Therefore, every MPI run has a process with rank #0.
Note: Every MPI run also has a process with rank Np-1, so you

could use Np-1 as the server instead of 0 … but no one does.

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 18

Why “Rank?”
Why does MPI use the term rank to refer to process ID?
In general, a process has an identifier that is assigned by the

operating system (e.g., Unix), and that is unrelated to MPI:
% ps

PID TTY TIME CMD
52170812 ttyq57 0:01 tcsh

Also, each processor has an identifier, but an MPI run that
uses fewer than all processors will use an arbitrary subset.

The rank of an MPI process is neither of these.

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 19

Compiling and Running

Recall:
% mpicc -o hello_world_mpi hello_world_mpi.c
% mpirun -np 1 hello_world_mpi

% mpirun -np 2 hello_world_mpi
Greetings from process #1!

% mpirun -np 3 hello_world_mpi
Greetings from process #1!
Greetings from process #2!

% mpirun -np 4 hello_world_mpi
Greetings from process #1!
Greetings from process #2!
Greetings from process #3!

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 20

Deterministic Operation?
% mpirun -np 4 hello_world_mpi
Greetings from process #1!
Greetings from process #2!
Greetings from process #3!

The order in which the greetings are printed is deterministic.
Why?

for (source = 0; source < num_procs; source++) {
if (source != server_rank) {

mpi_error =
MPI_Recv(message, maximum_message_length + 1,
MPI_CHAR, source, tag, MPI_COMM_WORLD,
&status);

fprintf(stderr, "%s\n", message);
} /* if (source != server_rank) */

} /* for source */
This loop ignores the receive order.

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 21

Message = Envelope+Contents
MPI_Send(message, strlen(message) + 1,

MPI_CHAR, destination, tag,
MPI_COMM_WORLD);

When MPI sends a message, it doesn’t just send the contents; it
also sends an “envelope” describing the contents:

Size (number of elements of data type)
Data type
Source: rank of sending process
Destination: rank of process to receive
Tag (message ID)
Communicator (e.g., MPI_COMM_WORLD)

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 22

MPI Data Types
C Fortran 90

char MPI_CHAR CHARACTER MPI_CHARACTER

int MPI_INT INTEGER MPI_INTEGER

float MPI_FLOAT REAL MPI_REAL

double MPI_DOUBLE DOUBLE
PRECISION

MPI_DOUBLE_PRECISION

MPI supports several other data types, but most are
variations of these, and probably these are all you’ll
use.

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 23

Message Tags
for (source = 0; source < num_procs; source++) {
if (source != server_rank) {
mpi_error =
MPI_Recv(message, maximum_message_length + 1,
MPI_CHAR, source, tag,
MPI_COMM_WORLD, &status);

fprintf(stderr, "%s\n", message);
} /* if (source != server_rank) */

} /* for source */

The greetings are printed in deterministic order not because
messages are sent and received in order, but because each has
a tag (message identifier), and MPI_Recv asks for a specific
message (by tag) from a specific source (by rank).

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 24

Parallelism is Nondeterministic
for (source = 0; source < num_procs; source++) {
if (source != server_rank) {
mpi_error =
MPI_Recv(message, maximum_message_length + 1,
MPI_CHAR, MPI_ANY_SOURCE, tag,
MPI_COMM_WORLD, &status);

fprintf(stderr, "%s\n", message);
} /* if (source != server_rank) */

} /* for source */

The greetings are printed in non-deterministic order.

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 25

Communicators
An MPI communicator is a collection of processes that can

send messages to each other.
MPI_COMM_WORLD is the default communicator; it contains

all of the processes. It’s probably the only one you’ll need.
Some libraries create special library-only communicators,

which can simplify keeping track of message tags.

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 26

Broadcasting
What happens if one process has data that everyone else needs

to know?
For example, what if the server process needs to send an input

value to the others?
MPI_Bcast(length, 1, MPI_INTEGER,
source, MPI_COMM_WORLD);

Note that MPI_Bcast doesn’t use a tag, and that the call is
the same for both the sender and all of the receivers.

All processes have to call MPI_Bcast at the same time;
everyone waits until everyone is done.

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 27

Broadcast Example: Setup
PROGRAM broadcast

IMPLICIT NONE
INCLUDE "mpif.h"
INTEGER,PARAMETER :: server = 0
INTEGER,PARAMETER :: source = server
INTEGER,DIMENSION(:),ALLOCATABLE :: array
INTEGER :: length, memory_status
INTEGER :: num_procs, my_rank, mpi_error_code

CALL MPI_Init(mpi_error_code)
CALL MPI_Comm_rank(MPI_COMM_WORLD, my_rank, &

& mpi_error_code)
CALL MPI_Comm_size(MPI_COMM_WORLD, num_procs, &

& mpi_error_code)
[input]
[broadcast]
CALL MPI_Finalize(mpi_error_code)

END PROGRAM broadcast

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 28

Broadcast Example: Input
PROGRAM broadcast

IMPLICIT NONE
INCLUDE "mpif.h"
INTEGER,PARAMETER :: server = 0
INTEGER,PARAMETER :: source = server
INTEGER,DIMENSION(:),ALLOCATABLE :: array
INTEGER :: length, memory_status
INTEGER :: num_procs, my_rank, mpi_error_code

[MPI startup]
IF (my_rank == server) THEN
OPEN (UNIT=99,FILE="broadcast_in.txt")
READ (99,*) length
CLOSE (UNIT=99)
ALLOCATE(array(length), STAT=memory_status)
array(1:length) = 0

END IF !! (my_rank == server)...ELSE
[broadcast]
CALL MPI_Finalize(mpi_error_code)

END PROGRAM broadcast

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 29

Broadcast Example: Broadcast
PROGRAM broadcast

IMPLICIT NONE
INCLUDE "mpif.h"
INTEGER,PARAMETER :: server = 0
INTEGER,PARAMETER :: source = server
[other declarations]
[MPI startup and input]
IF (num_procs > 1) THEN
CALL MPI_Bcast(length, 1, MPI_INTEGER, source, &

& MPI_COMM_WORLD, mpi_error_code)
IF (my_rank /= server) THEN
ALLOCATE(array(length), STAT=memory_status)

END IF !! (my_rank /= server)
CALL MPI_Bcast(array, length, MPI_INTEGER, source, &

MPI_COMM_WORLD, mpi_error_code)
WRITE (0,*) my_rank, ": broadcast length = ", length

END IF !! (num_procs > 1)
CALL MPI_Finalize(mpi_error_code)

END PROGRAM broadcast

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 30

Broadcast Compile & Run
% mpif90 -o broadcast broadcast.f90
% mpirun -np 4 broadcast
0 : broadcast length = 16777216
1 : broadcast length = 16777216
2 : broadcast length = 16777216
3 : broadcast length = 16777216

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 31

Reductions
A reduction converts an array to a scalar: for example,

sum, product, minimum value, maximum value, Boolean
AND, Boolean OR, etc.

Reductions are so common, and so important, that MPI has two
routines to handle them:

MPI_Reduce: sends result to a single specified process
MPI_Allreduce: sends result to all processes (and therefore

takes longer)

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 32

Reduction Example
PROGRAM reduce

IMPLICIT NONE
INCLUDE "mpif.h"
INTEGER,PARAMETER :: server = 0
INTEGER :: value, value_sum
INTEGER :: num_procs, my_rank, mpi_error_code

CALL MPI_Init(mpi_error_code)
CALL MPI_Comm_rank(MPI_COMM_WORLD, my_rank, mpi_error_code)
CALL MPI_Comm_size(MPI_COMM_WORLD, num_procs, mpi_error_code)
value_sum = 0
value = my_rank * num_procs
CALL MPI_Reduce(value, value_sum, 1, MPI_INT, MPI_SUM, &

& server, MPI_COMM_WORLD, mpi_error_code)
WRITE (0,*) my_rank, ": reduce value_sum = ", value_sum
CALL MPI_Allreduce(value, value_sum, 1, MPI_INT, MPI_SUM, &

& MPI_COMM_WORLD, mpi_error_code)
WRITE (0,*) my_rank, ": allreduce value_sum = ", value_sum
CALL MPI_Finalize(mpi_error_code)

END PROGRAM reduce

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 33

Compiling and Running
% mpif90 -o reduce reduce.f90
% mpirun -np 4 reduce
3 : reduce value_sum = 0
1 : reduce value_sum = 0
2 : reduce value_sum = 0
0 : reduce value_sum = 24
0 : allreduce value_sum = 24
1 : allreduce value_sum = 24
2 : allreduce value_sum = 24
3 : allreduce value_sum = 24

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 34

Why Two Reduction Routines?
MPI has two reduction routines because of the high cost of

each communication.
If only one process needs the result, then it doesn’t make sense

to pay the cost of sending the result to all processes.
But if all processes need the result, then it may be cheaper to

reduce to all processes than to reduce to a single process and
then broadcast to all.

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 35

Non-blocking Communication
MPI allows a process to start a send, then go on and do work

while the message is in transit.
This is called non-blocking or immediate communication.
Here, “immediate” refers to the fact that the call to the MPI

routine returns immediately rather than waiting for the
communication to complete.

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 36

Immediate Send
mpi_error_code =

MPI_Isend(array, size, MPI_FLOAT,
destination, tag, communicator, request);

Likewise:
mpi_error_code =

MPI_Irecv(array, size, MPI_FLOAT,
source, tag, communicator, request);

This call starts the send/receive, but the send/receive
won’t be complete until:

MPI_Wait(request, status);

What’s the advantage of this?

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 37

Communication Hiding
In between the call to MPI_Isend/Irecv and the call to
MPI_Wait, both processes can do work!

If that work takes at least as much time as the communication,
then the cost of the communication is effectively zero, since
the communication won’t affect how much work gets done.

This is called communication hiding.

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 38

Rule of Thumb for Hiding
When you want to hide communication:

as soon as you calculate the data, send it;
don’t receive it until you need it.

That way, the communication has the maximal amount of time
to happen in background (behind the scenes).

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 39

To Learn More

http://www.oscer.ou.edu/
http://www.sc-conference.org/

http://www.oscer.ou.edu/
http://www.sc-conference.org/

Thanks for your
attention!

Questions?

Parallel & Cluster Computing: MPI Introduction
Tuesday October 2 2007 41

References

[1] P.S. Pacheco, Parallel Programming with MPI, Morgan Kaufmann
Publishers, 1997.

[2] W. Gropp, E. Lusk and A. Skjellum, Using MPI: Portable Parallel
Programming with the Message-Passing Interface, 2nd ed. MIT
Press, 1999.

	Parallel & Cluster Computing:�MPI Introduction
	What Is MPI?
	MPI Calls
	MPI is an API
	Example MPI Routines
	More Example MPI Routines
	MPI Program Structure (F90)
	MPI Program Structure (in C)
	MPI is SPMD
	Example: Hello World
	hello_world_mpi.c
	Hello World Startup/Shut Down
	Hello World Client’s Work
	Hello World Server’s Work
	How an MPI Run Works
	Compiling and Running
	Why is Rank #0 the server?
	Why “Rank?”
	Compiling and Running
	Deterministic Operation?
	Message = Envelope+Contents
	MPI Data Types
	Message Tags
	Parallelism is Nondeterministic
	Communicators
	Broadcasting
	Broadcast Example: Setup
	Broadcast Example: Input
	Broadcast Example: Broadcast
	Broadcast Compile & Run
	Reductions
	Reduction Example
	Compiling and Running
	Why Two Reduction Routines?
	Non-blocking Communication
	Immediate Send
	Communication Hiding
	Rule of Thumb for Hiding
	To Learn More
	Thanks for your attention!��Questions?
	References

