Blue Ribbon Panel on Cyberinfrastructure

Summary for the OSCER Symposium

13 September 2002

Panel Members

- **Daniel E. Atkins**, Chair, Univ. of Michigan, EECS and SI, atkins@umich.edu
- **Kelvin K. Droegemeier**, Center for Analysis and Prediction of Storms, University of Oklahoma, kkd@ou.edu
- Stuart I. Feldman, IBM Research, sif@us.ibm.com
- **Hector Garcia-Molina**, CS Dept., Stanford University, hector@cs.standford.edu
- Michael Klein, Center for Molecular Modeling, University of Pennsylvania, klein@lrsm.upenn.edu
- Paul Messina, Cal Tech, messina@cacr.caltech.edu
- **David G. Messerschmitt**, UC-Berkeley, EECS & SIMS, messer@eecs.berkeley.edu
- Jeremiah P. Ostriker, Princeton University, jpo@astro.princeton.
- Margaret H. Wright, Computer Science Department, Courant Institute of Mathematical Sciences, New York University, mhw@cs.nyu.edu

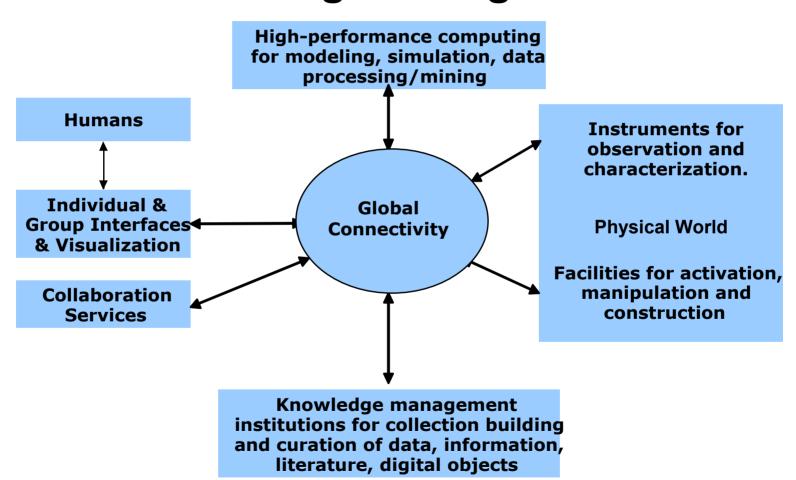
Formal Charge

With respect to meeting the needs of the scientific and engineering research community:

• A) Evaluate the current PACI programs.

"Cyberinfrastructure • B) Recommend new areas of emphasis for CISE Directorate,

• C) Recommend an implementation plan to enact recommended changes.


Process (1)

- Community-wide web survey
 - Widely publicized
 - >700 responses
 - Quantitative comparisons with the Hayes Report
- Oral public testimony (3 sessions)
 - 62 participants selected from: research scientists and engineers; computer and computational scientists; center directors; agency and corporate leaders; system administrators; educators; students and young scientists; technicians and consultants
 - Included traditionally underrepresented groups, EPSCOR and the physically challenged
 - Written transcripts and A/V materials assembled and is available.
- Ad hoc input from various sources.
- Used experiences and expertise of the Panel members.

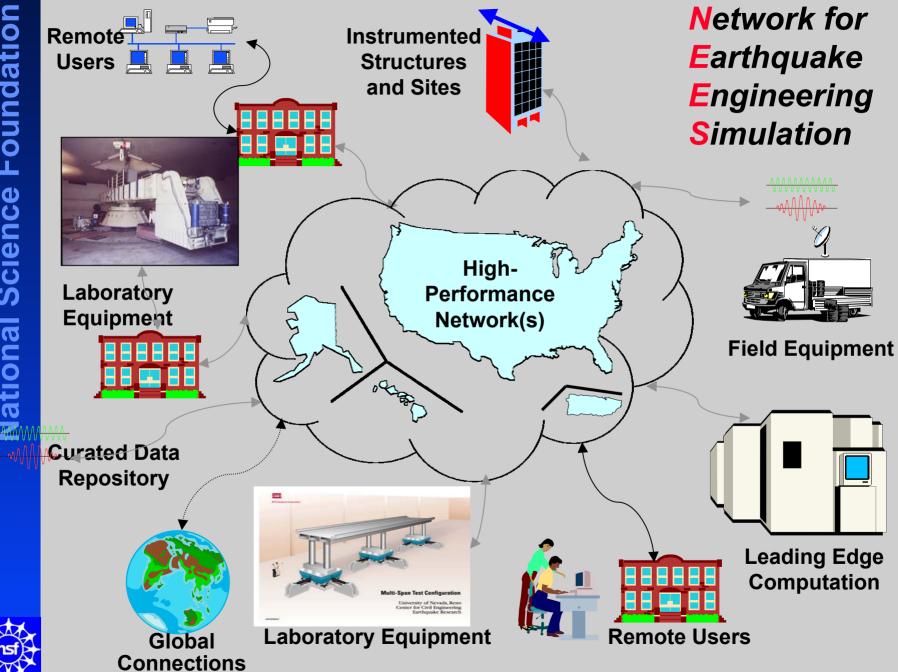
A broad, systematic, strategic conceptualization

Components of CI-enabled science & engineering

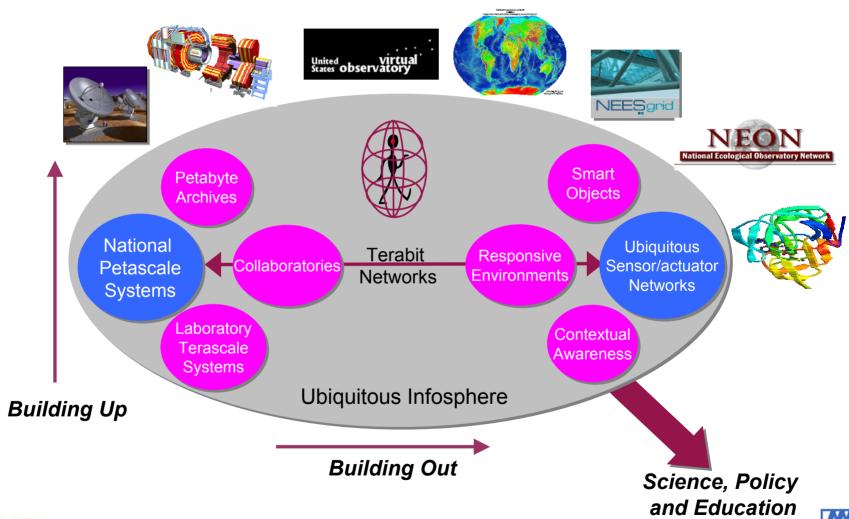
Coordination (synergy) Matrix

Applications of information technology to science and engineering research

Cyberinfrastructure in support of applications


Core technologies incorporated into cyberinfrastructure

Research in technologies, systems, and applications


Development or acquisition

Operations in support of end users

Futures: The Computing Continuum

Bottom-line Recommendations

- NSF leadership for the Nation -- an INITIATIVE to revolutionize science and engineering research capitalizing on new computing and communications opportunities.
 - 21st Century Cyberinfrastructure includes supercomputing massive storage, networking, software, collaboration, visualization, and human resources
 - Current centers (NCSA, SDSC, PSC) and other programs are a key resource for the INITIATIVE.
 - Budget estimate: incremental \$990 M/year (continuing).

Budget Overview (Incremental in \$ Millions)

•	Research in IT and its application	\$218
•	Software development & support	\$200
•	High-end distributed centers and networks	\$392
•	Information and data support	\$180
•	TOTAL	\$990

