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Develop an integrated, multiscale Problem Solving Environment
consisting of software components that simulate, using a 
hierarchy of scales, the 3D flow through anisotropic porous 
media, both for Darcy and non-Darcy flow.

ResultsResults
DataData

NMR digital images
Pore size distribution

Porosity
Permeability tensor

-Allocate resources
-Decide on methods
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Level 1: Pore scale simulationLevel 1: Pore scale simulation

Advantages of the 
Lattice Boltzmann Method

• It is based on first principles.
• It is substantially parallelizable.
• It can handle irregular boundaries.
• It is equivalent to 2nd order 

accurate Navier-Stokes solver 
(Chen et al., 1992)

Discretization 
• The porous medium is divided into a 

3D network of nodes.
• Each node inside the solid material 

is set as a “wall” node and is 
unavailable for flow.
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AutoparallelizationAutoparallelization SpeedupSpeedup
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SGI Origin 2000 (@NCSA), MIPSpro compiler.
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Current Parallelization EffortCurrent Parallelization Effort
Done:
• Code has been translated to standard Fortran90 code.
• Optimization of computational efficiency of the program.

• Reordering of arrays (e.g. A(k,j,i) instead of A(i,j,k)) to 
improve data locality (23% increase in execution speed)

• Change to array notation and nested loops (e.g. avoid A=B, 
where A,B are arrays) to improve data locality (330% 
increase in execution speed !! ) 

• Simulation of single phase flow through unconsolidated media.

To Do:
• Simulate two-phase flow through realistic porous material (X-
ray tomography images).
• Use Message Passing Interface to improve parallel performance
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Level 2: Pore Network RepresentationLevel 2: Pore Network Representation
Pores and throats
Array geometry
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(e.g., Dias & Payatakes; Mohanty et al)
Collection of Pipes

(e.g., Haring & Greenkorn)



Pore Network ModelingPore Network Modeling
The Code

• Network geometry module
• Two versions:

• 2D with two geometries (Fortran 90)
• 2D and 3D with fully random configuration (C++)
• Capability to use experimentally observed pore size distributions

• Common output format for network geometry 

• Flow module
• Network geometry read interface
• Single phase, incompressible, maximum C=3
• Momentum, mass and energy balances
• Non-linear system of equations (order of 3N)
• Newton’s method with direct solvers
• Solving for velocity and pressure drop
• Goal:  obtain permeability and Forchheimer coefficient
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Original Flow Matrix StructureOriginal Flow Matrix Structure

Matrix Structure
(Newton’s Method)

Example Pipe Network
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Problem: system of equations
is very hard to solve!

•Failed:
•LAPACK
•PETSc
•QMRPack

•Succeeded:
•IMSL (sometimes)
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Improved Flow Matrix StructureImproved Flow Matrix StructureImproved Flow Matrix StructureImproved Flow Matrix Structure

Original Matrix Structure Improved Matrix Structure
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The new matrix structure is smaller, but that’s not what
makes it interesting . . . .
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Permuted Flow Matrix StructurePermuted Flow Matrix Structure
Improved Matrix Structure After Permuting Rows

The permuted matrix is lower triangular!
Properties: 1 – 4 nonzero entries per row # of rows < 3 * Npr

Therefore:  can solve in O(Npr)  via substitution!
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Level 3: Macroscopic scaleLevel 3: Macroscopic scale

Anisotropic Non-Darcy Integrated Reservoir Simulator
ANDIRS

Done:
• Code has been written in standard Fortran90.
• Implicit methods. 
• 2D simulation with anisotropic permeability.
• Validation of 2D results

To Do:
• Further improve the numerical scheme

- Use iterative solvers
• Incorporate well equations
• Incorporate anisotropic, non-Darcy flow cases

The University of OklahomaThe University of Oklahoma



ANDIRS ANDIRS –– Implicit methods, Implicit methods, AnisitropyAnisitropy
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SummarySummary

• Scope: Develop multiscale, hierarchical simulator.
• Each software component (scale) is stand-alone.
• Prediction of porous media properties with a 

computational approach based on measurable 
properties, such as pore size distribution and porosity.
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