Use of HPC to Predict Porous Media Properties and Flow in Hydrocarbon Reservoirs

Henry Neeman,² Dimitrios V. Papavassiliou¹

¹School of Chemical Engineering and Materials Science ²School of Computer Science The University of Oklahoma

> OSCER Symposium on High Performance Computing Norman,Oklahoma, September 12-13

Integrated Reservoir Simulation

Integrated Surface Facilities

Fundamentals of Rock Physics and Fluid Flow

Reservoir Simulation

Data Input for Wellbore Corrosion Models

Deliverability of Gas Condensate Reservoirs

<u>Hierarchical Multiscale Simulator Technology (HiMuST)</u>

Develop an integrated, multiscale Problem Solving Environment consisting of software components that simulate, using a hierarchy of scales, the 3D flow through anisotropic porous media, both for Darcy and non-Darcy flow.

<u>Hierarchical Multiscale Simulator Technology (HiMuST)</u>

Level 1: Pore scale simulation

Advantages of the Lattice Boltzmann Method

- It is based on first principles.
- It is substantially parallelizable.
- It can handle irregular boundaries.
- It is equivalent to 2nd order accurate Navier-Stokes solver (Chen et al., 1992)

Discretization

- The porous medium is divided into a 3D network of nodes.
- Each node inside the solid material is set as a "wall" node and is unavailable for flow.

Autoparallelization Speedup

SGI Origin 2000 (@NCSA), MIPSpro compiler.

The University of Oklahoma

Current Parallelization Effort

Done:

- Code has been translated to standard Fortran90 code.
- Optimization of computational efficiency of the program.
 - Reordering of arrays (e.g. A(k,j,i) instead of A(i,j,k)) to improve data locality (23% increase in execution speed)
 - Change to array notation and nested loops (e.g. avoid A=B, where A,B are arrays) to improve data locality (330% increase in execution speed !!)
- Simulation of single phase flow through unconsolidated media.

To Do:

- Simulate two-phase flow through realistic porous material (X-ray tomography images).
- Use Message Passing Interface to improve parallel performance

Level 2: Pore Network Representation

Pores and throats Array geometry (e.g., Dias & Payatakes; Mohanty et al)

Collection of Pipes (e.g., Haring & Greenkorn)

Pore Network Modeling

The Code

• Network geometry module

- Two versions:
 - 2D with two geometries (Fortran 90)
 - 2D and 3D with fully random configuration (C++)
 - Capability to use experimentally observed pore size distributions
- Common output format for network geometry

Flow module

- Network geometry read interface
- Single phase, incompressible, maximum C=3
- Momentum, mass and energy balances
- Non-linear system of equations (order of 3N)
- Newton's method with direct solvers
- Solving for velocity and pressure drop
- Goal: obtain permeability and Forchheimer coefficient

The University of Oklahoma

Original Flow Matrix Structure

Example Pipe Network

Matrix Structure (Newton's Method)

×						×	×										
	×							×	×								
		×								×	×						
			×									×	×				
				×										×	×		
					×											×	×
×	×	×															
	×		×														
		×		×	×												
×	×	×					×	×		×							
	×		×						×			×					
		×		×	×						×			×		×	
	×	×															
				×	×												
								×		×							
														×		×	
×																	
						×											

Problem: system of equations is <u>very</u> hard to solve! •Failed: •LAPACK •PETSc •QMRPack •Succeeded: •IMSL (sometimes)

Improved Flow Matrix Structure

Improved Matrix Structure

The new matrix structure is smaller, but that's not what makes it interesting

Permuted Flow Matrix Structure

After Permuting Rows

The permuted matrix is lower triangular! Properties: 1 - 4 nonzero entries per row # of rows < 3 * N_{pr} Therefore: can solve in $O(N_{pr})$ via substitution!

Level 3: Macroscopic scale

<u>Anisotropic Non-Darcy Integrated Reservoir Simulator</u> ANDIRS

Done:

- Code has been written in standard Fortran90.
- Implicit methods.
- 2D simulation with anisotropic permeability.
- Validation of 2D results

To Do:

- Further improve the numerical scheme
 - Use iterative solvers
- Incorporate well equations
- Incorporate anisotropic, non-Darcy flow cases

ANDIRS – Implicit methods, Anisitropy

Kxx=120mD, Kyy=80mD Kxy=Kyx=0

Single - spot pattern, 20 days, Lx=Ly=100m, ϕ =25%

Summary

- Scope: Develop multiscale, hierarchical simulator.
- Each software component (scale) is stand-alone.
- Prediction of porous media properties with a computational approach based on measurable properties, such as pore size distribution and porosity.

Acknowledgements:

National Computational Science Alliance CTS990021N (NCSA SGI Origin2000)

National Science Foundation, NSF-CMS-00084554

American Chemical Society, ACS-PRF35103-G9

