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Par allelism

Parallelism means doing
multiple things at the same
time: you can get more
work done in the same time.
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i What IsILP?

Instruction-Level Parallelism (ILP) isaset of
techniques for executing multiple instructions at
the sametime within the same CPU.

The problem: the CPU haslots of circuitry, and at any
given time, most of itisidle.

The solution: have different parts of the CPU work on
different operations at the same time.

If the CPU can work on 10 operations at atime, then
the program can run as much as 10 times as fast
(although In practice, not quite so much).
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Kindsof ILP

Superscalar: perform multiple operations at the same time
(e.g., smultaneoudly perform an add, a multiply and aload)

Pipeline: start performing an operation on one piece of data
while finishing the same operation on another piece of data—
perform different stages of the same operation on different
sets of operands at the same time (like an assembly line)

Superpipeline: combination of superscalar and pipelining —
perform multiple pipelined operations at the same time

Vector: load multiple pieces of datainto special registers and
perform the same operation on all of them at the same time
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What's an I nstruction?
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Memory: e.g., load avalue from a specific
address in main memory into a specific
register, or store avalue from a specific
register into a specific address in main memory

Arithmetic: e.g., add two specific registers
together and put their sum in a specific register
— or subtract, multiply, divide, square root, etc

Logical: e.g., determine whether two registers
both contain nonzero values (“ AND”)

Branch: jump from one sequence of
Instructions to another

. and soon




i What's a Cycle?

Y ou’ve heard people talk about having a 500 MHz
processor or a1l GHz processor or whatever. (For
W example, Henry’ s laptop has a 1.6 GHz Pentium4.)

Inside every CPU is alittle clock that ticks with afixed
frequency. We call each tick of the CPU clock a
clock cycle or acycle.

Typically, aprimitive operation (e.g., add, multiply,
divide) takes afixed number of cyclesto execute
(assuming no pipelining).
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Cycle Examples

= IBM POWERA4 1]
= Multiply or add: 6 cycles (64 bit floating point)
= Load: 4 cyclesfrom L1 cache

14 cycles from L2 cache

= Intd Pentium4 12

= Multiply: 7 cycles (64 bit floating point)
= Add, subtract: 5 cycles (64 bit floating point)
= Divide, squareroot. 38 cycles (64 bit floating point)
= Tangent: 225-250 cycles (64 bit floating point)
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Scalar Operation

Z =—a*b+c*d
How would this statement be executed?

. Load a intoregister RO

2. Load b into R1

. Multiply R2 = RO * R1

s Load c into R3

s.  Load d Into R4

6. Multiply R5 = R3 * R4

77 Add R6 = R2 + R5

s. Store R6 Into z
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Does Order M atter ?

Z =—a*b+c *d

1 Load a into RO
2. Load b into R1

3 Multiply R2 = RO *

R1
4. Load c into R3
5, Load d into R4

6. Multiply RS = R3 *

R4

7 Add R6 = R2 + R5

Store R6 into z

Load d into R4

Load c into R3

Multiply R5 = R3 * R4
Load a into RO

Load b into R1

Multiply R2 = RO * R1
Add R6 = R2 + R5
Store R6 into z

In the cases where order doesn’'t matter, we say that
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i Super scalar Operation

Z —a*b+c*d
1. Load a into RO AND load b into R1

2. Multiply R2 = RO * R1 AND
load ¢ Into R3 AND load d into R4

s Multiply R5 = R3 * R4
. Add R6 = R2 + R5
5. Store R6 INt0 z

So, we go from 8 operations down to 5.
(Note: there are lots of ssimplifying assumptions here.)
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i L oops Are Good

Most compilers are very good at optimizing
loops, and not very good at optimizing other
constructs.

DO 1ndex = 1, length
dst(index) = srcl(index) + src2(index)
END DO Il 1ndex = 1, length

Why?
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Why Loops Are Good

3

= Loops are very common in many programs.

= Also, it's easier to optimize loops than more
arbitrary seguences of instructions; when a
program does the same thing over and over, it's
easier to predict what’ s likely to happen next.

S0, hardware vendors have designed their products to
be able to execute |oops quickly.
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Super scalar L oops

n
§)b()+C()*d()
1 =

! 1,

Each of the iterations is completely independent of all
of the other Iterations; e.g.,

z(1) = a(1)*b(1) + c(1)*d(D)
has nothing to do with
z(2) = a(2)*b(2) + c(2)*d(2)

Operations that are independent of each other can be
performed In paralldl.
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Super scalar L oops

for (i = 0; 1 <n; i++) {

z[1] = afi]*b[1] + cla]*d[1];
1 */

} /7* for
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Load aJ 1] intoRO AND load b[1] intoR1
Multiply R2 = RO * R1 AND load c[1] into
R3 AND load dfi1] into R4

Multiply R5 = R3 * R4 AND load aJi1+1]
iInto RO AND load b[1+1] into R1

Add R6 = R2 + R5 AND load c[1+1] into R3
AND load d[1+1] into R4

Store R6 into z[ 1] AND multiply R2 = RO * R1
elc etc etc

ncethisloopis“inflight,” each iteration adds only 2

operations to the total, not 8.




i Example: IBM POWER4

8-way Superscalar: can execute up to 8
operations at the same time!ll

= 2integer arithmetic or logical operations, and
= 2 floating point arithmetic operations, and

= 2 memory access (load or store) operations,
and

= 1 branch operation, and
= 1 conditional operation
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i Pipelining

Pipelining is like an assembly line or a bucket brigade.

= An operation consists of multiple stages.

= After aparticular set of operands
z(n)=a(n)*b(r)+c(n)*d(n)
completes a particular stage, they move into the
next stage.

= Then, another set of operands
z(i+1D)=a(1+1)*b(1+1)+c(1+1)*d(1+1)

can move into the stage that was just abandoned by
the previous set.
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Pipelining Example

t=1 t=2 t=3 t=4 t=5 t=6 t=7

1 = 1 poN'TPANIC!

DON'TPANIC! § = 4

Computation time

If each stage takes, say, one CPU cycle, then once
the loop gets going, each iteration of the loop
only increases the total time by one cycle. So a
loop of length 1000 takes only 1004 cycles. 3]
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i Pipelines: Example

= |[BM POWERA4: pipdine length = 15 stages [
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Some Simple L oops

DO index = 1, length
dst(index) = srcl(index) + src2(index)
END DO !l index = 1, length

DO index = 1, length
dst(index) = srcl(index) - src2(index)
END DO !! index = 1, length

DO index = 1, length
dst(index) = srcl(index) * src2(index)
END DO !! index = 1, length

DO index = 1, length
dst(index) = srcl(index) / src2(index)
END DO !l index = 1, length

DO index = 1, length Reduction: convert

sum = sum + src(index)

END DO !l index =1, length grray to scalar
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Slightly L ess Simple L oops

DO index = 1, length
dst(index) = srcl(index) ** src2(index)
END DO !! index = 1, length

DO index = 1, length
dst(index) = MOD(srcl(index), src2(index))
END DO !! index = 1, length

DO index = 1, length
dst(index) = SQRT(src(index))
END DO !! index = 1, length

DO index = 1, length
dst(index) = COS(src(index))
END DO !! index = 1, length

DO index = 1, length
dst(index) = EXP(src(index))
END DO !! index = 1, length

DO index = 1, length
dst(index) = LOG(src(index))
END DO Il index = 1, length
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Perfor mance Characteristics
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Different operations take different amounts of
time.

Different processors types have different
performance characteristics, but there are some
characteristics that many platforms have in
common.

Different compilers, even on the same hardware,
perform differently.

On some processors, floating point and integer
speeds are similar, while on others they differ.




Arithmetic Operation Speeds

Ordered Arithmetic Operations
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i Fast and Slow Operations

= Fast: sum, add, subtract, multiply

= Medium: divide, mod (i.e., remainder)

= Slow: transcendental functions (sgrt, sin, exp)
= Incredibly slow: power x¥ for real x andy

On most platforms, divide, mod and transcendental
functions are not pipelined, so your code will run
faster iIf most of It Isjust adds, subtracts and
multiplies (e.g., solving systems of linear
equations by LU decomposition).
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i What Can Prevent Pipéining?

Certain events make it very hard (maybe even
Impossible) for compilersto pipeline aloop, such as:

» array elements accessed in random order

= |oop body too complicated

» |F statements inside the loop (on some
platforms)

= premature loop exits
» function/subroutine calls
= 1/O
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i How Do They Kill Pipdlining?

= Random access order: ordered array access|is
common, so pipelining hardware and compilers tend
to be designed under the assumption that most loops
will be ordered. Also, the pipeline will constantly
stall because data will come from main memory, not
cache.

= Complicated loop body: the compiler getstoo

overwhelmed and can’t figure out how to schedule
the instructions.
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How Do They Kill Pipeining?

= | F statementsin the loop: on some platforms (but

not all), the pipelines need to perform exactly the
same operations over and over; I F statements make

that impossible.

However, many CPUs can now perform speculative
execution: both branches of the I F statement are

executed while the condition is being evaluated, but
only one of the resultsisretained (the one
associated with the condition’ s value).

Also, many CPUs can now perform branch prediction
to head down the most likely compute path.
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i How Do They Kill Pipdlining?

= Function/subroutine calls interrupt

the flow of the

program even more than 1 F statements. They can
take execution to a completely different part of the

= Loop exitsare similar. Most compi

exits.
= |/O: typically, I/Oishandled in su

program, and pipelines aren’t set up to handle that.

lerscan’'t

nipeline loops with premature or unpredictable

proutines

(above). Also, I/O instructions can take control of

the program away from the CPU (t
control to 1/0O devices).
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i What If No Pipelining?
SLOW!

(on most platforms)
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Randomly Per muted L oops

Permuted Arithmetic Operations

80
70
60 -
50
40 -
30 -
20 -
10 -+

MFLOPS

ord radd
ord iadd
radd
iadd
rsum
isum
rsub
isub
rmul
imul
rdiv
idiv
rpow
imod
rsgrt
rcos
rexp
rlog

12r

r2i

Type/Operation
B CrayJo0 M Pentium3 NAG M Pentium3 Vast B SGI Origin2000

0Mr b "-f\/

&b Fﬁf NCSI Parallel & Cluster Computing Workshop @ OU
E August 8-14 2004

“!? oY _-..:-'




g Superpipelining



Super pipelining

Superpipelining is a combination of superscalar and
pipelining.

S0, a superpipeline is acollection of multiple
pipelines that can operate simultaneously.

In other words, several different operations can
execute ssmultaneoudly, and each of these
operations can be broken into stages, each of
which isfilled all the time.

So you can get multiple operations per CPU cycle. »

For example, a|BM Power4 can have over 200
different operations “in flight” at the same time.!1!
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i More OperationsAt a Time

= |f you put more operations into the code for aloop,
you'll get better performance:

= More operations can execute at atime (use more
pipelines), and
= yOu get better register/cache reuse.
= On most platforms, there’ s alimit to how many
operations you can put in aloop to increase

performance, but that limit varies among platforms,
and can be quite large.
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Some Complicated L oops

O index = 1, length madd (or FMA):
dst(index) = srcl(index) + 5.0 * src2(index) mult then add
END DO !! index = 1, length

(2 ops)
dot = O
DO index = 1, length dot product

dot = dot + srcl(index) * src2(index)
END DO !! index = 1, length (2 ops)

DO index = 1, length

dst(index) = srcl(index) * src2(index) + & fﬂwnorr
& src3(index) * src4(index) exampie
END DO I! index = 1, length (3 ops)
DO index = 1, length : :

diffl2 = srcl(index) - src2(index) Euclidean distance

diff34 = src3(index) - src4(index) (6 ops)

dst(index) = SQRT(diffl2 * diffl2 + diff34 * diff34)
END DO ! index = 1, length
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A Very Complicated L oop

lot = 0.0

DO 1ndex = 1,
ot =

Z Q0 R0 R0 Q0 QRO Ro Ro Ro Ro Qo Qo Qo

E

D DO I1

ot +

length

srcl(index) * src2(index) +
src3(index) * src4(index) +

(srcl(index)
(src3(index)
(srcl(index)
(src3(index)
(srcl(index)
src2(index)
(srcl(index)
src2(index)
(srcl(index)
(src2(index)
Index =

+
+

* b+ 4 1

1,

src2(index))
src4(index))
src2(index))
src4(index))

src3(index) +

src4(index))

src3(index) -

src4(index))
src3(index))
src4(index))
length

24 arithmetic ops per iteration
4 memory/cache |oads per iteration
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Multiple Ops Per Iteration

Ordered Arithmetic Oper ations
(multiple ops per iteration)
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Vectors




i What Isa Vector?

A vector Isacollection of registers that act together to
perform the same operation on multiple operands.

In a sense, vectors are like operation-specific cache.

A vector register Isaregister that’s actually made up of
many individual registers.

A vector Instruction is an instruction that operates on
al of the individual registers of avector register.
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i Vector Register
vO vl V2
v2 = vO + vl
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i Vectors Are Expensive
Y

ectors were very popular in the 1980s, because
they’re very fast, often faster than pipelines.

In the 1990s, though, they weren't very popular.
Why?

Well, vectors aren’t used by most commercial codes
(e.q., MSWord). So most chip makers don’t
bother with vectors.

S0, if you wanted vectors, you had to pay alot of
extra money for them.

However, with the Pentium 111 Intel reintroduced = %,
very small vectors (2 operations at atime), for @ |1
Integer operations only. The Pentium4 added ~# i
floating point vector operations, also of size 2. &
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A Real Examplée“

DO k=2,nz-1
DO j=2,ny-1
DO 1=2,nx-1
teml(i,],k)
tem2(i1,],k)
tem3(1,],Kk)
END DO
END DO
END DO
DO k=2,nz-1
DO j=2,ny-1
DO 1=2,nx-1
u(i,j.k,3) = udi,jy,k,1) - &
& dtbig2*(teml(1,j,k)+tem2(1,j,k)+tem3(i1,j,k))
END DO
END DO
END DO

u(i,J,k,2)*u(i+1,j,k,2)-u(i-1,j,
v(i,J,K,2)*(u(r,J+1,k,2)-u(1, J-

J.K,2))*dxinv2
-1,
w(r,J,K,2)*(u(r,3,k+1,2)-u(r,J,Kk-

k
k,2))*dyinv2
1,2))*dzinv2
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Real Example Perfor mance

MFLOPS

Performance By M ethod
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Why You Shouldn’t Panic

3
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In general, the compiler and the CPU will do most
of the heavy lifting for instruction-level

BUT:

Y ou need to be aware of ILP, because
how your code is structured affects
how much |LP the compiler and the
CPU can give you.
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