
Parallel Programming Parallel Programming
with MPIwith MPI

NN--Body Codes andBody Codes and
Collective CommunicationCollective Communication

Paul Gray, University of Northern Iowa
David Joiner, Shodor Education Foundation

Tom Murphy, Contra Costa College
Henry Neeman, University of Oklahoma

Charlie Peck, Earlham College

OU Supercomputing Center for Education & Research 2

N Bodies

OU Supercomputing Center for Education & Research 3

N-Body Problems
An N-body problem is a problem involving

N “bodies” – that is, particles (e.g., stars, atoms) –
each of which applies a force to all of the others.

For example, if you have N stars, then each of the N
stars exerts a force (gravity) on all of the other N–1
stars.

Likewise, if you have N atoms, then every atom
exerts a force (nuclear) on all of the other N–1
atoms.

OU Supercomputing Center for Education & Research 4

1-Body Problem
When N is 1, you have a simple 1-Body Problem:

a single particle, with no forces acting on it.
Given the particle’s position P and velocity V at some

time t0, you can trivially calculate the particle’s
position at time t0+∆t:

P(t0+∆t) = P(t0) + V∆t
V(t0+∆t) = V(t0)

OU Supercomputing Center for Education & Research 5

2-Body Problem
When N is 2, you have – surprise! – a 2-Body

Problem: exactly two particles, each exerting a
force that acts on the other.

The relationship between the 2 particles can be
expressed as a differential equation that can be
solved analytically, producing a closed-form
solution.

So, given the particles’ initial positions and velocities,
you can immediately calculate their positions and
velocities at any later time.

OU Supercomputing Center for Education & Research 6

N-Body Problems
For N of 3 or more, no one knows how to solve the

equations to get a closed form solution.
So, numerical simulation is pretty much the only way

to study groups of 3 or more bodies.
Popular applications of N-body codes include

astronomy and chemistry.
Note that, for N bodies, there are on the order of N2

forces, denoted O(N2).

OU Supercomputing Center for Education & Research 7

N Bodies

OU Supercomputing Center for Education & Research 8

N-Body Problems
Given N bodies, each body exerts a force on all of the

other N–1 bodies.
Therefore, there are N • (N–1) forces in total.
You can also think of this as (N • (N–1))/2 forces, in

the sense that the force from particle A to particle B
is the same (except in the opposite direction) as the
force from particle B to particle A.

OU Supercomputing Center for Education & Research 9

Aside: Big-O Notation
Let’s say that you have some task to perform on a

certain number of things, and that the task takes a
certain amount of time to complete.

Let’s say that the amount of time can be expressed as
a polynomial on the number of things to perform
the task on.

For example, the amount of time it takes to read a
book might be proportional to the number of words,
plus the amount of time it takes to sit in your
favorite easy chair.

C1
. N + C2

OU Supercomputing Center for Education & Research 10

Big-O: Dropping the Low Term

C1
. N + C2

When N is very large, the time spent settling into your
easy chair becomes such a small proportion of the
total time that it’s virtually zero.

So from a practical perspective, for large N, the
polynomial reduces to:

C1
. N

In fact, for any polynomial, all of the terms except the
highest-order term are irrelevant, for large N.

OU Supercomputing Center for Education & Research 11

Big-O: Dropping the Constant

C1
. N

Computers get faster and faster all the time. And there
are many different flavors of computers, having
many different speeds.

So, computer scientists don’t care about the constant,
only about the order of the highest-order term of
the polynomial.

They indicate this with Big-O notation:
O(N)

This is often said as: “of order N.”

OU Supercomputing Center for Education & Research 12

N-Body Problems
Given N bodies, each body exerts a force on all of the

other N–1 bodies.
Therefore, there are N • (N–1) forces in total.
In Big-O notation, that’s O(N2) forces to calculate.
So, calculating the forces takes O(N2) time to execute.
But, there are only N particles, each taking up the

same amount of memory, so we say that N-body
codes are of:
O(N) spatial complexity (memory)
O(N2) time complexity

OU Supercomputing Center for Education & Research 13

O(N2) Forces

A

Note that this picture shows only the forces between A and everyone else.

OU Supercomputing Center for Education & Research 14

How to Calculate?
Whatever your physics is, you have some function,

F(A,B), that expresses the force between two
bodies A and B.

For example,
F(A,B) = G · dist(A,B)2 · mA · mB

where G is the gravitational constant and m is the
mass of the particle in question.

If you have all of the forces for every pair of particles,
then you can calculate their sum, obtaining the
force on every particle.

OU Supercomputing Center for Education & Research 15

How to Parallelize?
Okay, so let’s say you have a nice serial (single-CPU)

code that does an N-body calculation.
How are you going to parallelize it?
You could:

have a master feed particles to processes;
have a master feed interactions to processes;
have each process decide on its own subset of the
particles, and then share around the forces;
have each process decide its own subset of the
interactions, and then share around the forces.

OU Supercomputing Center for Education & Research 16

Do You Need a Master?
Let’s say that you have N bodies, and therefore you

have ½N(N-1) interactions (every particle interacts
with all of the others, but you don’t need to
calculate both A B and B A).

Do you need a master?
Well, can each processor determine on its own either

(a) which of the bodies to process, or (b) which of
the interactions?

If the answer is yes, then you don’t need a master.

OU Supercomputing Center for Education & Research 17

Parallelize How?
Suppose you have P processors.
Should you parallelize:

by assigning a subset of N/P of the bodies to each
processor, or
by assigning a subset of ½N(N-1)/P of the
interactions to each processor?

OU Supercomputing Center for Education & Research 18

Data vs. Task Parallelism
Data Parallelism means parallelizing by giving a
subset of the data to each processor.
Task Parallelism means parallelizing by giving a
subset of the tasks to each processor.

OU Supercomputing Center for Education & Research 19

Data Parallelism for N-Body?
If you parallelize an N-body code by data, then
each processor gets N/P pieces of data.
For example, if you have 8 bodies and 2 processors,
then:

P0 gets the first 4 bodies;
P1 gets the second 4 bodies.

But, every piece of data (i.e., every body) has to
interact with every other piece of data.
So, every processor will send all of its data to all of
the other processors, for every single interaction
that it calculates.

OU Supercomputing Center for Education & Research 20

Task Parallelism for N-body?
If you parallelize an N-body code by task, then
each processor gets all of the pieces of data that
describe the particles (e.g., positions, velocities).
Then, each processor can calculate its subset of the
interaction forces on its own, without talking to any
of the other processors.
But, at the end of the force calculations, everyone
must share all of the forces that have been
calculated, so that each particle ends up with the
total force that acts on it.
These is called a global reduction.

OU Supercomputing Center for Education & Research 21

MPI_Reduce
Here’s the syntax for MPI_Reduce:
MPI_Reduce(sendbuffer, recvbuffer, count,
datatype, operation, root,
communicator);

For example, to do a sum over all of the particle forces:
mpi_error_code =

MPI_Reduce(
local_sum_of_particle_forces,
global_sum_of_particle_forces,
number_of_particles, MPI_DOUBLE,
MPI_SUM, master_process,
MPI_COMM_WORLD);

OU Supercomputing Center for Education & Research 22

Sharing the Result
In the N-body case, we don’t want just one processor

to know the result of the sum, we want everyone to
know.

So, we could do a reduce followed immediately by a
broadcast.

But, MPI gives us a routine that packages all of that
for us: MPI_Allreduce.

MPI_Allreduce is just like MPI_Reduce except
that every process gets the result (so we drop the
master_process argument).

OU Supercomputing Center for Education & Research 23

MPI_Allreduce
Here’s the syntax for MPI_Allreduce:
mpi_error_code =

MPI_Allreduce(sendbuffer, recvbuffer,
count, datatype, operation,
communicator);

For example, to do a sum over all of the particle forces:
mpi_error_code =

MPI_Allreduce(
local_sum_of_particle_forces,
global_sum_of_particle_forces,
number_of_particles, MPI_DOUBLE,
MPI_SUM, MPI_COMM_WORLD);

OU Supercomputing Center for Education & Research 24

Collective Communications
A collective communication is a communication that

is shared among many processes, not just a sender
and a receiver.

MPI_Reduce and MPI_Allreduce are collective
communications.

Others include: broadcast, gather/scatter, all-to-all.

OU Supercomputing Center for Education & Research 25

Collectives Are Expensive
Collective communications are very expensive

relative to point-to-point communications, because
so much more communication has to happen.

But, they can be much cheaper than doing zillions of
point-to-point communications, if that’s the
alternative.

	Parallel Programming with MPIN-Body Codes andCollective Communication
	N Bodies
	N-Body Problems
	1-Body Problem
	2-Body Problem
	N-Body Problems
	N Bodies
	N-Body Problems
	Aside: Big-O Notation
	Big-O: Dropping the Low Term
	Big-O: Dropping the Constant
	N-Body Problems
	O(N2) Forces
	How to Calculate?
	How to Parallelize?
	Do You Need a Master?
	Parallelize How?
	Data vs. Task Parallelism
	Data Parallelism for N-Body?
	Task Parallelism for N-body?
	MPI_Reduce
	Sharing the Result
	MPI_Allreduce
	Collective Communications
	Collectives Are Expensive

