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N Bodies
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N-Body Problems
An N-body problem is a problem involving 

N “bodies” – that is, particles (e.g., stars, atoms) –
each of which applies a force to all of the others.

For example, if you have N stars, then each of the N
stars exerts a force (gravity) on all of the other N–1 
stars.

Likewise, if you have N atoms, then every atom 
exerts a force (nuclear) on all of the other N–1 
atoms.
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1-Body Problem
When N is 1, you have a simple 1-Body Problem:      

a single particle, with no forces acting on it.
Given the particle’s position P and velocity V at some 

time t0, you can trivially calculate the particle’s 
position at time t0+∆t:

P(t0+∆t) = P(t0) + V∆t
V(t0+∆t) = V(t0)



OU Supercomputing Center for Education & Research 5

2-Body Problem
When N is 2, you have – surprise! – a 2-Body 

Problem: exactly two particles, each exerting a 
force that acts on the other.

The relationship between the 2 particles can be 
expressed as a differential equation that can be 
solved analytically, producing a closed-form 
solution.

So, given the particles’ initial positions and velocities, 
you can immediately calculate their positions and 
velocities at any later time.
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N-Body Problems
For N of 3 or more, no one knows how to solve the 

equations to get a closed form solution.
So, numerical simulation is pretty much the only way 

to study groups of 3 or more bodies.
Popular applications of N-body codes include 

astronomy and chemistry.
Note that, for N bodies, there are on the order of N2

forces, denoted O(N2).
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N Bodies
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N-Body Problems
Given N bodies, each body exerts a force on all of the 

other N–1 bodies.
Therefore, there are N • (N–1) forces in total.
You can also think of this as (N • (N–1))/2 forces, in 

the sense that the force from particle A to particle B 
is the same (except in the opposite direction) as the 
force from particle B to particle A.
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Aside: Big-O Notation
Let’s say that you have some task to perform on a 

certain number of things, and that the task takes a 
certain amount of time to complete.

Let’s say that the amount of time can be expressed as 
a polynomial on the number of things to perform 
the task on.

For example, the amount of time it takes to read a 
book might be proportional to the number of words, 
plus the amount of time it takes to sit in your 
favorite easy chair.

C1
. N + C2



OU Supercomputing Center for Education & Research 10

Big-O: Dropping the Low Term

C1
. N + C2

When N is very large, the time spent settling into your 
easy chair becomes such a small proportion of the 
total time that it’s virtually zero.

So from a practical perspective, for large N, the 
polynomial reduces to:

C1
. N

In fact, for any polynomial, all of the terms except the 
highest-order term are irrelevant, for large N.
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Big-O: Dropping the Constant

C1
. N

Computers get faster and faster all the time. And there 
are many different flavors of computers, having 
many different speeds.

So, computer scientists don’t care about the constant, 
only about the order of the highest-order term of 
the polynomial.

They indicate this with Big-O notation:
O(N)

This is often said as: “of order N.”
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N-Body Problems
Given N bodies, each body exerts a force on all of the 

other N–1 bodies.
Therefore, there are N • (N–1) forces in total.
In Big-O notation, that’s O(N2) forces to calculate.
So, calculating the forces takes O(N2) time to execute.
But, there are only N particles, each taking up the 

same amount of memory, so we say that N-body 
codes are of:
O(N)  spatial complexity (memory)
O(N2) time complexity
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O(N2) Forces

A

Note that this picture shows only the forces between A and everyone else.
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How to Calculate?
Whatever your physics is, you have some function, 

F(A,B), that expresses the force between two 
bodies A and B.

For example,
F(A,B) = G · dist(A,B)2 · mA · mB

where G is the gravitational constant and m is the 
mass of the particle in question.

If you have all of the forces for every pair of particles, 
then you can calculate their sum, obtaining the 
force on every particle.
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How to Parallelize?
Okay, so let’s say you have a nice serial (single-CPU) 

code that does an N-body calculation.
How are you going to parallelize it?
You could:

have a master feed particles to processes;
have a master feed interactions to processes;
have each process decide on its own subset of the 
particles, and then share around the forces;
have each process decide its own subset of the 
interactions, and then share around the forces.
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Do You Need a Master?
Let’s say that you have N bodies, and therefore you 

have ½N(N-1) interactions (every particle interacts 
with all of the others, but you don’t need to 
calculate both A B and B A).

Do you need a master?
Well, can each processor determine on its own either 

(a) which of the bodies to process, or (b) which of 
the interactions?

If the answer is yes, then you don’t need a master.
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Parallelize How?
Suppose you have P processors.
Should you parallelize:

by assigning a subset of N/P of the bodies to each 
processor, or
by assigning a subset of ½N(N-1)/P of the 
interactions to each processor?
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Data vs. Task Parallelism
Data Parallelism means parallelizing by giving a 
subset of the data to each processor.
Task Parallelism means parallelizing by giving a 
subset of the tasks to each processor.
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Data Parallelism for N-Body?
If you parallelize an N-body code by data, then 
each processor gets N/P pieces of data.
For example, if you have 8 bodies and 2 processors, 
then:

P0 gets the first 4 bodies;
P1 gets the second 4 bodies.

But, every piece of data (i.e., every body) has to 
interact with every other piece of data.
So, every processor will send all of its data to all of 
the other processors, for every single interaction 
that it calculates.
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Task Parallelism for N-body?
If you parallelize an N-body code by task, then 
each processor gets all of the pieces of data that 
describe the particles (e.g., positions, velocities).
Then, each processor can calculate its subset of the 
interaction forces on its own, without talking to any 
of the other processors.
But, at the end of the force calculations, everyone 
must share all of the forces that have been 
calculated, so that each particle ends up with the 
total force that acts on it.
These is called a global reduction.
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MPI_Reduce
Here’s the syntax for MPI_Reduce:
MPI_Reduce(sendbuffer, recvbuffer, count, 
datatype, operation, root, 
communicator);

For example, to do a sum over all of the particle forces:
mpi_error_code =

MPI_Reduce(
local_sum_of_particle_forces,
global_sum_of_particle_forces,
number_of_particles, MPI_DOUBLE,
MPI_SUM, master_process,
MPI_COMM_WORLD);
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Sharing the Result
In the N-body case, we don’t want just one processor 

to know the result of the sum, we want everyone to 
know.

So, we could do a reduce followed immediately by a 
broadcast.

But, MPI gives us a routine that packages all of that 
for us: MPI_Allreduce.

MPI_Allreduce is just like MPI_Reduce except 
that every process gets the result (so we drop the 
master_process argument).
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MPI_Allreduce
Here’s the syntax for MPI_Allreduce:
mpi_error_code =

MPI_Allreduce(sendbuffer, recvbuffer,
count, datatype, operation,
communicator);

For example, to do a sum over all of the particle forces:
mpi_error_code =

MPI_Allreduce(
local_sum_of_particle_forces,
global_sum_of_particle_forces,
number_of_particles, MPI_DOUBLE,
MPI_SUM, MPI_COMM_WORLD);
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Collective Communications
A collective communication is a communication that 

is shared among many processes, not just a sender 
and a receiver.

MPI_Reduce and MPI_Allreduce are collective 
communications.

Others include: broadcast, gather/scatter, all-to-all.
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Collectives Are Expensive
Collective communications are very expensive 

relative to point-to-point communications, because 
so much more communication has to happen.

But, they can be much cheaper than doing zillions of 
point-to-point communications, if that’s the 
alternative.
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