
Parallel & Cluster Parallel & Cluster
ComputingComputing

MPI BasicsMPI Basics
National Computational Science Institute

August 8-14 2004

Paul Gray, University of Northern Iowa
David Joiner, Shodor Education Foundation

Tom Murphy, Contra Costa College
Henry Neeman, University of Oklahoma

Charlie Peck, Earlham College

OU Supercomputing Center for Education & Research 2

What Is MPI?
The Message-Passing Interface (MPI) is a standard for

expressing distributed parallelism via message
passing.

MPI consists of a header file, a library of routines and
a runtime environment.

When you compile a program that has MPI calls in it,
your compiler links to a local implementation of
MPI, and then you get parallelism; if the MPI library
isn’t available, then the compile will fail.

MPI can be used in Fortran, C and C++.

OU Supercomputing Center for Education & Research 3

MPI Calls
MPI calls in Fortran look like this:
CALL MPI_Funcname(…, errcode)

In C, MPI calls look like:
errcode = MPI_Funcname(…);

In C++, MPI calls look like:
errcode = MPI::Funcname(…);

Notice that errcode is returned by the MPI routine
MPI_Funcname, with a value of MPI_SUCCESS
indicating that MPI_Funcname has worked
correctly.

OU Supercomputing Center for Education & Research 4

MPI is an API
MPI is actually just an Application Programming

Interface (API).
An API specifies what a call to each routine should

look like, and how each routine should behave.
An API does not specify how each routine should be

implemented, and sometimes is intentionally vague
about certain aspects of a routine’s behavior.

Each platform has its own MPI implementation: IBM
has its own, SGI has its own, Sun has its own, etc.

Plus, there are portable versions: MPICH, LAM-MPI.

OU Supercomputing Center for Education & Research 5

Example MPI Routines
MPI_Init starts up the MPI runtime environment at

the beginning of a run.
MPI_Finalize shuts down the MPI runtime

environment at the end of a run.
MPI_Comm_size gets the number of processors in a

run, Np (typically called just after MPI_Init).
MPI_Comm_rank gets the processor ID that the

current process uses, which is between 0 and Np-1
inclusive (typically called just after MPI_Init).

OU Supercomputing Center for Education & Research 6

More Example MPI Routines
MPI_Send sends a message from the current processor

to some other processor (the destination).
MPI_Recv receives a message on the current

processor from some other processor (the source).
MPI_Bcast broadcasts a message from one processor

to all of the others.
MPI_Reduce performs a reduction (e.g., sum) of a

variable on all processors, sending the result to a
single processor.

… and many others.

OU Supercomputing Center for Education & Research 7

MPI Program Structure (F90)
PROGRAM my_mpi_program
USE mpi
IMPLICIT NONE
INTEGER :: my_rank, num_procs, mpi_error_code

[other declarations]
CALL MPI_Init(mpi_error_code) !! Start up MPI
CALL MPI_Comm_Rank(my_rank, mpi_error_code)
CALL MPI_Comm_size(num_procs, mpi_error_code)

[actual work goes here]
CALL MPI_Finalize(mpi_error_code) !! Shut down MPI

END PROGRAM my_mpi_program

Note that MPI uses the term “rank” to indicate process
identifier.

OU Supercomputing Center for Education & Research 8

MPI Program Structure (in C)
#include <stdio.h>

[other header includes go here]
#include "mpi.h"

int main (int argc, char* argv[])
{ /* main */
int my_rank, num_procs, mpi_error;
[other declarations go here]
mpi_error = MPI_Init(&argc, &argv); /* Start up MPI */
mpi_error = MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
mpi_error = MPI_Comm_size(MPI_COMM_WORLD, &num_procs);

[actual work goes here]
mpi_error = MPI_Finalize(); /* Shut down MPI */

} /* main */

OU Supercomputing Center for Education & Research 9

SPMD Computational Model
SPMD: Single Program, Multiple Data
int main (int argc, char* argv[])
{
MPI_Init(&argc, &argv); /* Start up MPI */
.
.

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
if (my_rank == 0)
master();

else
slave();
.
.

mpi_error = MPI_Finalize(); /* Shut down MPI */
}

OU Supercomputing Center for Education & Research 10

Example: Hello World
1. Start the MPI system.
2. Get the rank and number of processors.
3. If you’re not the master process:

1. Create a “hello world” string.
2. Send it to the master process.

4. If you are the master process:
1. For each of the other processes:

1. Receive its “hello world” string.
2. Print its “hello world” string.

5. Shut down the MPI system.

OU Supercomputing Center for Education & Research 11

hello_world_mpi.c
#include <stdio.h>
#include <string.h>
#include "mpi.h"

int main (int argc, char* argv[])
{ /* main */
const int maximum_message_length = 100;
const int master_rank = 0;
char message[maximum_message_length+1];
MPI_Status status; /* Info about receive status */
int my_rank; /* This process ID */
int num_procs; /* Number of processes in run */
int source; /* Process ID to receive from */
int destination; /* Process ID to send to */
int tag = 0; /* Message ID */
int mpi_error; /* Error code for MPI calls */
[work goes here]

} /* main */

OU Supercomputing Center for Education & Research 12

Hello World Startup/Shut Down
[header file includes]
int main (int argc, char* argv[])
{ /* main */

[declarations]
mpi_error = MPI_Init(&argc, &argv);
mpi_error = MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
mpi_error = MPI_Comm_size(MPI_COMM_WORLD, &num_procs);
if (my_rank != master_rank) {

[work of each non-master process]
} /* if (my_rank != master_rank) */
else {

[work of master process]
} /* if (my_rank != master_rank)…else */
mpi_error = MPI_Finalize();

} /* main */

OU Supercomputing Center for Education & Research 13

Hello World Non-master’s Work
[header file includes]
int main (int argc, char* argv[])
{ /* main */

[declarations]
[MPI startup (MPI_Init etc)]
if (my_rank != master_rank) {

sprintf(message, "Greetings from process #%d!“,
my_rank);

destination = master_rank;
mpi_error =

MPI_Send(message, strlen(message) + 1, MPI_CHAR,
destination, tag, MPI_COMM_WORLD);

} /* if (my_rank != master_rank) */
else {

[work of master process]
} /* if (my_rank != master_rank)…else */
mpi_error = MPI_Finalize();

} /* main */

OU Supercomputing Center for Education & Research 14

Hello World Master’s Work
[header file includes]
int main (int argc, char* argv[])
{ /* main */

[declarations, MPI startup]
if (my_rank != master_rank) {

[work of each non-master process]
} /* if (my_rank != master_rank) */
else {

for (source = 0; source < num_procs; source++) {
if (source != master_rank) {
mpi_error =

MPI_Recv(message, maximum_message_length + 1,
MPI_CHAR, source, tag, MPI_COMM_WORLD,
&status);

fprintf(stderr, "%s\n", message);
} /* if (source != master_rank) */

} /* for source */
} /* if (my_rank != master_rank)…else */
mpi_error = MPI_Finalize();

} /* main */

OU Supercomputing Center for Education & Research 15

Compiling and Running
% setenv MPIENV gcc [Do this only once per login; use nag for Fortran.]
% mpicc -o hello_world_mpi hello_world_mpi.c
% mpirun -np 1 hello_world_mpi
% mpirun -np 2 hello_world_mpi
Greetings from process #1!
% mpirun -np 3 hello_world_mpi
Greetings from process #1!
Greetings from process #2!
% mpirun -np 4 hello_world_mpi
Greetings from process #1!
Greetings from process #2!
Greetings from process #3!

Note: the compile command and the run command
vary from platform to platform.

OU Supercomputing Center for Education & Research 16

Why is Rank #0 the Master?
const int master_rank = 0;

By convention, the master process has rank
(process ID) #0. Why?

A run must use at least one process but can use
multiple processes.

Process ranks are 0 through Np-1, Np >1 .
Therefore, every MPI run has a process with rank #0.
Note: every MPI run also has a process with rank Np-

1, so you could use Np-1 as the master instead of 0
… but no one does.

OU Supercomputing Center for Education & Research 17

Why “Rank?”
Why does MPI use the term rank to refer to process ID?
In general, a process has an identifier that is assigned

by the operating system (e.g., Unix), and that is
unrelated to MPI:

% ps
PID TTY TIME CMD

52170812 ttyq57 0:01 tcsh

Also, each processor has an identifier, but an MPI run
that uses fewer than all processors will use an
arbitrary subset.

The rank of an MPI process is neither of these.

OU Supercomputing Center for Education & Research 18

Compiling and Running
Recall:
% mpicc -o hello_world_mpi hello_world_mpi.c
% mpirun -np 1 hello_world_mpi
% mpirun -np 2 hello_world_mpi
Greetings from process #1!
% mpirun -np 3 hello_world_mpi
Greetings from process #1!
Greetings from process #2!
% mpirun -np 4 hello_world_mpi
Greetings from process #1!
Greetings from process #2!
Greetings from process #3!

OU Supercomputing Center for Education & Research 19

Deterministic Operation?
% mpirun -np 4 hello_world_mpi
Greetings from process #1!
Greetings from process #2!
Greetings from process #3!

The order in which the greetings are printed is
deterministic. Why?

for (source = 0; source < num_procs; source++) {
if (source != master_rank) {
mpi_error =
MPI_Recv(message, maximum_message_length + 1,
MPI_CHAR, source, tag, MPI_COMM_WORLD,
&status);

fprintf(stderr, "%s\n", message);
} /* if (source != master_rank) */

} /* for source */

This loop ignores the receive order.

OU Supercomputing Center for Education & Research 20

Message = Envelope+Contents
MPI_Send(message, strlen(message) + 1,

MPI_CHAR, destination, tag,
MPI_COMM_WORLD);

When MPI sends a message, it doesn’t just send the
contents; it also sends an “envelope” describing the
contents:
Size (number of elements of data type)
Data type
Rank of sending process (source)
Rank of process to receive (destination)
Tag (message ID)
Communicator (e.g., MPI_COMM_WORLD)

OU Supercomputing Center for Education & Research 21

MPI Data Types

DOUBLE PRECISIONdoubleMPI_DOUBLE

REALfloatMPI_FLOAT

INTEGERintMPI_INT

CHARACTERcharMPI_CHAR

FortranC/C++MPI

MPI supports several other data types, but most are
variations of these, and probably these are all you’ll
use.

OU Supercomputing Center for Education & Research 22

Message Tags
for (source = 0; source < num_procs; source++) {
if (source != master_rank) {
mpi_error =
MPI_Recv(message, maximum_message_length + 1,
MPI_CHAR, source, tag, MPI_COMM_WORLD,
&status);

fprintf(stderr, "%s\n", message);
} /* if (source != master_rank) */

} /* for source */

The greetings are printed in deterministic order not
because messages are sent and received in order, but
because each has a tag (message identifier), and
MPI_Recv asks for a specific message (by tag) from
a specific source (by rank).

We could do this in nondeterministic order, using
MPI_ANY_SOURCE.

OU Supercomputing Center for Education & Research 23

Communicators
An MPI communicator is a collection of processes that

can send messages to each other.
MPI_COMM_WORLD is the default communicator; it

contains all of the processes. It’s probably the only
one you’ll need, at least until we get to the last
example code (flow in Cartesian coordinates).

Some libraries (e.g., PETSc) create special library-
only communicators, which can simplify keeping
track of message tags.

OU Supercomputing Center for Education & Research 24

Point-to-point Communication
Point-to-point means one specific process talks to
another specific process.
The “hello world” program provides a simple
implementation of point-to-point communication.
Many variations! – idea of “local completion” vs.
“global completion” of the communication
Blocking and Nonblocking Routines
Communication Modes:

standard – no assumptions on when the recv is started
buffered – send may start before a matching recv, app buf
synchronous – complete send & recv together
ready – send can only start if matching recv has begun

OU Supercomputing Center for Education & Research 25

Collective Communication
Collective communications involve sets of
processes
Intra-communicators are used to delegate the group
members
Instead of using message tags, communication is
coordinated through the use of common variables.
Examples: broadcast, reduce, scatter/gather, barrier
and all-to-all

OU Supercomputing Center for Education & Research 26

Collective Routines

MPI_Bcast() – broadcast from the root to all other
processes

MPI_Gather() – gather values from the group of
processes

MPI_Scatter() – scatters buffer in parts to group of
processes

MPI_Alltoall() – sends data from all processes to
all processes

MPI_Reduce() – combine values on all processes to
a single value

	Parallel & Cluster ComputingMPI Basics
	What Is MPI?
	MPI Calls
	MPI is an API
	Example MPI Routines
	More Example MPI Routines
	MPI Program Structure (F90)
	MPI Program Structure (in C)
	SPMD Computational Model
	Example: Hello World
	hello_world_mpi.c
	Hello World Startup/Shut Down
	Hello World Non-master’s Work
	Hello World Master’s Work
	Compiling and Running
	Why is Rank #0 the Master?
	Why “Rank?”
	Compiling and Running
	Deterministic Operation?
	Message = Envelope+Contents
	MPI Data Types
	Message Tags
	Communicators
	Point-to-point Communication
	Collective Communication
	Collective Routines

