
Parallel & Cluster Parallel & Cluster 
ComputingComputing

Distributed Cartesian MeshesDistributed Cartesian Meshes
National Computational Science Institute

August 8-14 2004

Paul Gray, University of Northern Iowa
David Joiner, Shodor Education Foundation

Tom Murphy, Contra Costa College
Henry Neeman, University of Oklahoma

Charlie Peck, Earlham College



NCSI Parallel & Cluster Computing Workshop @ OU
August 8-14 2004 2

Cartesian Coordinates

y

x



NCSI Parallel & Cluster Computing Workshop @ OU
August 8-14 2004 3

Structured Mesh
A structured mesh is like the mesh on the previous 

slide. It’s nice and regular and rectangular, and 
can be stored in a standard Fortran or C array of 
the appropriate dimension.



NCSI Parallel & Cluster Computing Workshop @ OU
August 8-14 2004 4

Flow in Structured Meshes
When calculating flow in a structured mesh, you 

typically use a finite difference equation, like so:
unewi,j =

F(∆t, uoldi,j, uoldi-1,j, uoldi+1,j, uoldi,j-1, uoldi,j+1)
for some function F, where uoldi,j is at time t and 

unewi,j is at time t + ∆t.
In other words, you calculate the new value of ui,j, 

based on its old value as well as the old values of 
its immediate neighbors.

Actually, it may use neighbors a few farther away.



NCSI Parallel & Cluster Computing Workshop @ OU
August 8-14 2004 5

Ghost Zones



NCSI Parallel & Cluster Computing Workshop @ OU
August 8-14 2004 6

Ghost Zones
We want to calculate values in the part of the mesh 

that we care about, but to do that, we need values 
on the boundaries.

Ghost zones are mesh zones that aren’t really part 
of the problem domain that we care about, but 
that hold boundary data for calculating the parts 
that we do care about.



NCSI Parallel & Cluster Computing Workshop @ OU
August 8-14 2004 7

Using Ghost Zones
A good basic algorithm for flow that uses ghost 

zones is:
DO timestep = 1, number_of_timesteps
CALL fill_old_boundary(…)
CALL advance_to_new_from_old(…)

END DO

This approach generally works great on a serial code.



NCSI Parallel & Cluster Computing Workshop @ OU
August 8-14 2004 8

Ghost Zones in MPI
What if you want to parallelize a Cartesian flow 

code in MPI?
You’ll need to:

decompose the mesh into submeshes;
figure out how each submesh talks to its 
neighbors.



NCSI Parallel & Cluster Computing Workshop @ OU
August 8-14 2004 9

Data Decomposition



NCSI Parallel & Cluster Computing Workshop @ OU
August 8-14 2004 10

Data Decomposition
We want to split the data into chunks of equal size, 

and give each chunk to a processor to work on.
Then, each processor can work independently of all 

of the others, except when it’s exchanging 
boundary data with its neighbors.



NCSI Parallel & Cluster Computing Workshop @ OU
August 8-14 2004 11

MPI_Cart_*

MPI supports exactly this kind of calculation, with 
a set of functions MPI_Cart_*:

MPI_Cart_create, MPI_Cart_coords, 
MPI_Cart_shift

These routines create and describe a new 
communicator, one that replaces 
MPI_COMM_WORLD in your code.



NCSI Parallel & Cluster Computing Workshop @ OU
August 8-14 2004 12

MPI_Sendrecv

MPI_Sendrecv is just like an MPI_Send followed 
by an MPI_Recv, except that it’s much better than 
that.

With MPI_Send and MPI_Recv, these are your 
choices:
Everyone calls MPI_Recv, and then everyone 
calls MPI_Send.
Everyone calls MPI_Send, and then everyone 
calls MPI_Recv.
Some call MPI_Send while others call 
MPI_Recv, and then they swap roles.



NCSI Parallel & Cluster Computing Workshop @ OU
August 8-14 2004 13

Why MPI_Sendrecv?
Suppose that everyone calls MPI_Recv, and then 

everyone calls MPI_Send.
Well, these routines are synchronous (also called 

blocking), meaning that the communication has to 
complete before the process can continue on farther 
into the program.

That means that, when everyone calls MPI_Recv, 
they’re waiting for someone else to call 
MPI_Send.

We call this deadlock.
Officially, the MPI standard forbids this approach.



NCSI Parallel & Cluster Computing Workshop @ OU
August 8-14 2004 14

Why MPI_Sendrecv?
Suppose that everyone calls MPI_Send, and then 

everyone calls MPI_Recv.
Well, this will only work if there’s enough buffer 

space available to hold everyone’s messages until 
after everyone is done sending.

Sometimes, there isn’t enough buffer space.
Officially, the MPI standard allows MPI 

implementers to support this, but it’s not part of the 
official MPI standard; that is, a particular MPI 
implementation doesn’t have to allow it.



NCSI Parallel & Cluster Computing Workshop @ OU
August 8-14 2004 15

Why MPI_Sendrecv?
Suppose that some processors call MPI_Send while 

others call MPI_Recv, and then they swap roles.
This will work, and is sometimes used, but it can be a 

pain in the rear end to manage.



NCSI Parallel & Cluster Computing Workshop @ OU
August 8-14 2004 16

Why MPI_Sendrecv?
MPI_Sendrecv allows each processor to 

simultaneously send to one processor and receive 
from another.

For example, P1 could send to P0 while 
simultaneously receiving from P2 .

This is exactly what we need in Cartesian flow: we 
want the boundary information to come in from the 
east while we send boundary information out to the 
west, and then vice versa.

These are called shifts.



NCSI Parallel & Cluster Computing Workshop @ OU
August 8-14 2004 17

MPI_Sendrecv
MPI_Sendrecv(

westward_send_buffer,
westward_send_size, MPI_REAL,
west_neighbor_process, westward_tag,
westward_recv_buffer,
westward_recv_size, MPI_REAL,
east_neighbor_process, westward_tag,
cartesian_communicator, ok_mpi_status);

This call sends to west_neighbor_process the data in 
westward_send_buffer, and at the same time receives 
from east_neighbor_process a bunch of data that end 
up in westward_recv_buffer.



NCSI Parallel & Cluster Computing Workshop @ OU
August 8-14 2004 18

Why MPI_Sendrecv?
The advantage of MPI_Sendrecv is that it allows 

us the luxury of no longer having to worry about 
who should send when and who should receive 
when.

This is exactly what we need in Cartesian flow: we 
want the boundary information to come in from the 
east while we send boundary information out to the 
west – without us having to worry about deciding 
who should do what to who when.



NCSI Parallel & Cluster Computing Workshop @ OU
August 8-14 2004 19

MPI_Sendrecv

Concept
in Principle

Concept
in practice



NCSI Parallel & Cluster Computing Workshop @ OU
August 8-14 2004 20

MPI_Sendrecv

Concept
in practice

westward_send_buffer westward_recv_buffer

Actual
Implementation


	Parallel & Cluster ComputingDistributed Cartesian Meshes
	Cartesian Coordinates
	Structured Mesh
	Flow in Structured Meshes
	Ghost Zones
	Ghost Zones
	Using Ghost Zones
	Ghost Zones in MPI
	Data Decomposition
	Data Decomposition
	MPI_Cart_*
	MPI_Sendrecv
	Why MPI_Sendrecv?
	Why MPI_Sendrecv?
	Why MPI_Sendrecv?
	Why MPI_Sendrecv?
	MPI_Sendrecv
	Why MPI_Sendrecv?
	MPI_Sendrecv
	MPI_Sendrecv

